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This paper presents a gain-scheduling design technique that relies upon neural models to approximate plant behaviour. The
controller design is based on generic model control (GMC) formalisms and linearization of the neural model of the process. As a
result, a PI controller action is obtained, where the gain depends on the state of the system and is adapted instantaneously on-line.
The algorithm is tested on a nonisothermal continuous stirred tank reactor (CSTR), considering both single-input single-output
(SISO) and multi-input multi-output (MIMO) control problems. Simulation results show that the proposed controller provides
satisfactory performance during set-point changes and disturbance rejection.

1. Introduction

Most industrial plants are nonlinear in nature, but process
control often relies on traditional linear PID algorithm,
because of its simplicity and well recognition by the industry.
This solution can be justified by the fact that nonlinear
processes can be approximated with a linear model as they
approach steady state; therefore, in case of close regulatory
control, the use of a linear control is adequate [1]. Neverthe-
less, for those nonlinear processes whose nonlinearities are
strong and large changes of the operating conditions occur
during the operation, linear controller designs are inadequate
and more effective alternatives should be considered [2]. The
availability of powerful computer tools opened the way to
implement advanced process control strategies, where system
nonlinearities can be taken into account.

Model-based feedback control can be a valid alternative to
the use of the linear model-free PI algorithm, and the use of
adaptive parameters along the process motions can represent
a possible solution for controlling nonlinear time-variant
processes [3]. Adaptive systems are also used to compensate
input delay, as proposed in Na et al. [4] where an adaptive
NNobserver was designed for nonlinear systems.The generic
model control (GMC) of Lee and Sullivan [5] is probably one
of the simplest nonlinear control techniques to install and

maintain among nonlinear model-based controllers. In the
chemical engineering field the application of GMC strategy
was investigated for control reactors [6, 7], batch cooling
crystallizers [8], batch and semibatch polymerization reactors
[9, 10], and, recently, multistage flash desalinations [11].

In this work, theGMCalgorithmwas used in conjunction
with a dynamic neural network model, which describes
the nonlinear relationship between controlled outputs and
manipulated inputs [12, 13]. The main advantage of the
proposed algorithm is the obtainment of a PID-like controller
structure, where the nonlinear dependence of the process
gain on the operating condition is achieved by a gain-
scheduling control scheme.The proposed algorithm is simple
to implement and it can be obtained without the need of
a detailed knowledge of the plant; therefore it is suited for
industrial applications where standard solutions are generally
preferred. The performance of the proposed technique for
nonlinear process control was tested for two case studies,
referring to a SISO [14] and aMIMO [15] control problem for
a nonisothermal continuously stirred tank reactor (CSTR).
These two cases, which are well known benchmarks for
testing controlmethodology,were selected because the strong
nonlinearities, due to the Arrhenius dependence of the
kinetic rate on temperature, lead to a very rapid response of
the process variables in regions of high conversion and a very
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Figure 1: Neural network structure.

mild response in regions of low conversion. Therefore, the
need for adaptive control strategies is more evident.

2. Neural Network Model

There are several possibilities of building a dynamic neural
network that may be classified in two main classes: time-
lagged feedforward networks, TLFN, or recurrent neural
networks, RNN (cf. [16]). While in the TLFN the dynamics
are generally accounted for in the input layer as a linear
combination of inputs (present and past values of the inputs)
followed by a static nonlinear mapper between inputs and
outputs, in the RNN the memory mechanism is brought
inside the nonlinear mapping; that is, recurrent connections
are applied among some or all layers (cf. Jordan or Elman
networks). Both the architectures are able to describe the
dynamic behaviour of a process, while training procedure and
stability become an issue moving from the TLFN to the RNN
(cf. [16]).

In this work, a multi-feed-forward neural network with
recurrent neurons in the output layer is used to describe the
process dynamics. The net topology is shown in Figure 1
and can be considered a special case of the TLFN where the
dynamic is moved from the input to the output layer and,
in this way, the advantage of the TLFN over the RNN is
maintained.

The equations that describe the neuron output evolution
are reported in the following:

𝜏𝑑𝑦𝑘𝑑𝑡 + 𝑦𝑘 =
𝑛2∑
𝑗=1

𝑤2 (𝑗, 𝑘) 𝑧2 (𝑗) , (1a)

𝑧2 (𝑗) = 𝑓(
𝑛1+1∑
𝑖=1

𝑤1 (𝑖, 𝑗) 𝑧1 (𝑖)) , (1b)

where the activation function 𝑓(⋅) is chosen as

𝑓 (𝑥) = 11 + exp (−𝑥) , 𝑥 ∈R. (2)

The weight 𝑤2(𝑗, 𝑘) is the interconnection between the𝑘th output and the 𝑗th hidden neuron;𝑤1(𝑖, 𝑗) is the connec-
tion between the 𝑖th input and the 𝑗th hidden neuron; z2 is the
output vector from the hidden layer; and z1 is the input vector.
It is worth noting that the nonlinear plant characteristic
modelled by (1a)-(1b) is stored in the weights between the
input and output layers, and this represents the long-term
capability prediction, while the locally recurrent neurons in
the output layer may be thought of as a representational layer
for time (short-term) of information (cf. [16]).

In the present work, this neural model will be applied to
develop a gain-scheduling control scheme. In order to obtain
the simplest controller structure, a number of hidden neurons
equal to the number of manipulated variables are selected. As
results reported in the following sections will demonstrate,
this choice does not affect the neural model performance.
Under this assumption, for a SISO system the neural network
expression becomes

𝜏𝑑𝑦𝑑𝑡 + 𝑦 = 𝑤2 (1, 1) 𝑧2 (1) = 𝑤2 (1, 1) 𝑓 (𝑢, x) , (3)

where 𝑦 is the predicted output and 𝑢 is the manipulated
variable. The variable 𝑧2(1) is the only output of the hidden
neuron, which nonlinearly depends on the unique manipu-
lated variable, 𝑢, since sigmoidal activation function is used
for neurons in the hidden layer. The vector x represents the
other net inputs necessary to describe the plant properly. For
the sake of brevity, the case of the neural network for aMIMO
system is not reported, since it can be straightforwardly
derived from (3).

3. Neural Based Gain-Scheduling Control

Starting from the nonlinear neural model, a GMC [5]
approach is used to synthesize the gain-scheduling control.
In order to define the controller action, the desired output
behaviour has to be specified in the form of a trajectory.Then
the process model is used directly to synthesize the controller
required to cause the process output to follow this trajectory.
A good choice [5] for the reference trajectory 𝑦𝑟 is reported
in

𝑑𝑦𝑟𝑑𝑡 = 𝐾1 (𝑦𝑑 − 𝑦) + 𝐾2 ∫ (𝑦𝑑 − 𝑦) 𝑑𝑡, (4)

where, for a given desired output 𝑦𝑑, a suitable selection
of parameters 𝐾1 and 𝐾2 can be made to achieve a variety
of responses in 𝑦(𝑡). Substituting the reference trajectory in
(3), the action of the manipulated variable can be implicitly
derived from the model. Of course, the control action in this
case is not linear, and it is difficult to implement. Referring to
Ogunnaike and Ray [17], a GMC control structure can lead to
a PI-like controller if a first-order system is driven to follow a
first-order reference trajectory, that is, setting𝐾2 = 0 in (4).

Letting 𝑦 = 𝑦𝑟, the process model (3) can be used directly
to obtain the controller required to cause the process to
follow trajectory (4) and solving for 𝑢(𝑡). It should be pointed
out that using model (3) no explicit solution is available
for the manipulated input and the controller equation has
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to be solved numerically. The controller algorithm can be
simplified by linearizing the right-hand side of (3); hence the
model for a SISO system becomes

𝜏𝑑𝑦𝑑𝑡 + 𝑦 = 𝑤2 (1, 1) 𝜕𝑧2𝜕𝑢 𝑢 (𝑡) . (5)

In the following, the coefficient of the manipulated input will
be indicated with 𝐾 (6). The gain 𝐾 depends on the state of
the system, through the derivative of 𝑧2 with respect to the
input of the neural model:

𝐾 = 𝑤2 (1, 1) 𝜕𝑧2𝜕𝑢 . (6)

The nonlinearity of the system is taken into account by
calculating at every sampling time the derivative of 𝑧2 with
respect to the inputs from the neural model (3).

The PI controller action is derived at this point by setting𝐾2 = 0 in the reference trajectory (4), leading to

𝑑𝑦𝑟𝑑𝑡 = 𝐾1 (𝑦𝑑 − 𝑦) , (7)

or

𝑑𝑦𝑟𝑑𝑡 = 𝐾1𝑒 (𝑡) , (8)

where 𝑒(𝑡) represents the usual feedback error term. Integrat-
ing (8), the following expression for the desired trajectory is
obtained:

𝑦𝑟 = 𝐾1 ∫ 𝑒 (𝑡) 𝑑𝑡. (9)

The control action required to cause the process to follow
the trajectory described by (8) and (9) may be obtained
by substituting the desired trajectory expressions in the
linearized model (5), leading to

𝜏𝐾1𝑒 (𝑡) + 𝐾1 ∫ 𝑒 (𝑡) = 𝐾𝑢 (𝑡) (10)

and then solving for 𝑢(𝑡):
𝑢 (𝑡) = 𝜏𝐾1𝐾 [𝑒 (𝑡) + 1𝜏 ∫

𝑡

0
𝑒 (𝜃) 𝑑𝜃] . (11)

In this way, a PI controller law is obtained, where 𝑒
represents the actual error, 𝜏 is equal to the time constant of
the output neuron, 𝐾1 is a tuning parameter and is set as the
inverse of the desired time of response, and 𝐾 is the static
gain of the linear first-order system that we have obtained
by linearizing the neural model of the system, as defined by
(5). The gain is a function of the system status because it
depends on the derivative of 𝑧2 with respect to the input.The
presence of the integral term will compensate for the error of
the approximated neural model.

The advantage of such an approach is that the nonlinear
behaviour of the process is considered because of the time-
varying nature of the controller gain. As a result, since param-
eters are simply adjusted on-line for all process conditions, a
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Figure 2: Neural scheduled adaptive control scheme.

standard PI controller structure is maintained.The proposed
methodology has the scheme of a gain-scheduling control
approach, as the block diagram in Figure 2 shows. It is
important to note that in this case the use of a neural model
removes the need for detailed process knowledge to define
operating bands and for open loop tests to locally calibrate
the controller gain within each band, which is the typical
drawback of the gain-scheduling controller scheme.

4. Results and Discussion

As mentioned in Introduction, two continuously stirred tank
reactor systems are considered to show the performance
of the proposed control algorithm. The two proposed case
studies are well known benchmarks for advanced control
methodology testing [14, 15, 18].

4.1. Case 1. The first case study is the CSTR proposed by
Lightbody and Irwin [18] and Ge et al. [14]. The system
consists of a constant volume reactor cooled by a single
coolant stream, and the objective is to control the effluent
concentration, 𝑦1, by manipulating the coolant flow rate, 𝑢1.
The model equations are reported as follows:

𝑑𝐶𝑎𝑑𝑡 = 𝑞𝑉 (𝐶𝑎0 − 𝐶𝑎) − 𝑎0𝐶𝑎𝑒−𝐸/𝑅𝑇𝑎 , (12a)

𝑑𝑇𝑎𝑑𝑡 = 𝑞𝑉 (𝑇𝑓 − 𝑇𝑎) + 𝑎1𝐶𝑎𝑒−𝐸/𝑅𝑇𝑎
+ 𝑎3𝑞𝑐 (1 − 𝑒−𝑎2/𝑞𝑐) (𝑇𝑐𝑓 − 𝑇𝑎) ,

(12b)

where 𝑦1 = 𝐶𝑎 and 𝑢1 = 𝑞𝑐. The model parameters and
nominal values used for this work are reported in Table 1.

The selected neural network model that describes the
process is composed of two neurons in the input layer, one
neuron in the hidden one (because one is the number of
the manipulated variables), and one neuron in the output
layer. The system has one natural input, which is the coolant
flow rate, 𝑢1. In order to provide more information on
the state of the reactor, another input, 𝑥2, is selected as
energy balance around the cooling system.The net is trained
using data obtained simulating the reactor for 300 minutes
(1500 points sampled every 0.2 minutes), by exciting the
plant through step variations of the manipulated variable.
The input was modified every 5 minutes, randomly varying
the amplitude of the step in the range 94.7–108.0 l/min.
The Levenberg-Marquardt algorithm is used to estimate the
network’s weights, with the sum of squared error as objective
function and performing the training for one hundred initial
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Table 1: Summary of parameters and variables in the CSTR model for Case 1.

Symbol Nominal Value Description
𝑞 100ml/min Process flow-rate𝐶𝑎0 1mol/l Concentration of component A𝑇𝑓 350K Feed temperature
𝑇𝑐𝑓 350K Inlet coolant temperature
𝑞𝑐 100 l/min Coolant flow-rate𝑉 100ml Volume of tankℎ𝑎 7 ⋅ 105 J/(minK) Heat transfer coefficient𝑎0 7.2 ⋅ 1010min−1 Pre exponential factor𝐸/𝑅 1 ⋅ 1010 K Activation energy−Δ𝐻 2 ⋅ 104 cal/mol Heat of reaction𝜌1, 𝜌𝑐 1 ⋅ 103 g/l Liquid densities𝐶𝑝, 𝐶𝑝𝑐 1 cal/(g K) Heat capacities

𝑎1 = (−Δ𝐻) 𝑎0𝜌1𝐶𝑝 = 1.44 ⋅ 1013 𝑎2 = ℎ𝑎𝜌𝑐𝐶𝑝𝑐 = 698.7 𝑎3 = 𝜌𝑐𝐶𝑝𝑐𝜌1𝐶𝑝𝑉 = 0.01
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Figure 3: Performance of the neural model to reconstruct con-
centration and Jacobian for CSTR in Case 1. (a) Concentration
predicted by the neural model (black dashed line) and CSTR (blue
line). (b) Process gain calculated with the neural model (black
dashed line) and actual gain of the process (blue line).

values, randomly generated.The selected weights are the ones
leading to the lower error calculated on validation set, which
is the 30% of the total amount of data recorded.

The capability of the network to reconstruct the system
dynamics is shown in Figure 3, where concentration and
Jacobian values estimated by the neural model are compared
to those calculated by integrating equations ((12a)-(12b)) of
the true plant. In this case, the output was obtained by
randomly changing the manipulated variable and corrupting

the measured inputs to the network by noise, in particular
introducing an error of ±1∘C in temperature measurements
and ±2 l/min in the coolant flow rate measurement. Results
indicate that the neural model reliably represents the system
behaviour, at least for the considered process conditions; in
fact the line representing the estimated variables completely
masks the true values. When the plant model is not available,
proof of the ability of the network to reconstruct system
gain can be accomplished experimentally by performing an
appropriate set of step tests.

The obtained dynamic neural model was then applied
to construct the gain-scheduling PI controller described
in Section 3. As a result, the only parameter to be tuned
is the inverse of the desired time response, 𝐾1, because
the controller gain and the integral time are derived from
the model (the latter is not adjusted in time). In order to
guarantee the robustness of the control system, the inverse of𝐾1 is set 2.5 times smaller than the maximum characteristic
time of the process, applying the recommended choice for
model-based controller that suggests to have the desired
closed-loop time constant for a first-order process greater
than 0.2 𝜏 [17]. The good fit shown in Figure 3 between the
Jacobian calculated by the neural model and the true one
guarantees that the gain will be properly adapted on-line.

The adaptive controller technique was tested in terms
of set-point tracking, performing the test and comparing
the results to a conventional PI controller, as reported in
Ge et al. [14]. The set-point tracking results are shown in
Figure 4, where the output variable, 𝑦1, and the loads on
the manipulated variables, 𝑢1, are reported for the adaptive
controller and the conventional PI. The results show that the
adaptive controller exhibits good set-point tracking capabili-
ties (short response time), without requiring excessive loads
on themanipulated variables. Indeed, the curves representing
the programmed set-point changes are almost completely
masked by the ones representing the dynamic behaviour
of the CSTR under the control of the gain scheduled PI.
The presence of a low overshoot is the compromise for a
short time response. On the other hand, the conventional PI
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Figure 4: Performance of the gain-scheduling PI in Case 1 and a
conventional PI with𝐾𝑐 = 44.0 and 𝜏𝐼 = 0.25. (a) Set-point (dashed
blue line), gain-scheduling controller (black line), and conventional
PI (red line). (b)Manipulated variable for gain-scheduling controller
(black line) and conventional PI (red line).

shows a sluggish response with respect to the gain-scheduling
controller.

4.2. Case 2. As a second case study, a CSTR in which an
exothermic first-order reaction takes place is considered.This
benchmark was proposed by Scott and Ray [15] in order to
demonstrate the inadequacy of a standard PI controller in
such nonlinear systems and is described in a dimensionless
form by the following differential equations:

𝑑𝑥1𝑑𝑡 = 1𝜏 (− (𝑚2 + 1) (𝑥1 − 𝑑2)
+ 𝐷𝑎 (1 − 𝑥1) 𝑒𝛾𝑥2/(𝑥2+1)) ,

(13a)

𝑑𝑥2𝑑𝑡 = 1𝜏 ((𝑚2 + 1) (𝑑1 − 𝑥2)

+ 𝐵𝐷𝑎𝛾 (1 − 𝑥1) 𝑒𝛾𝑥2/(𝑥2+1) − 𝛽 (𝑥2 − 𝑚1)) .
(13b)

According to Scott and Ray [15], the meaning of the
constants and variables that appear in (13a) and (13b),
along with the normalized variable used for training the
network and representing the results of the control system,
are summarized in Table 2.

The control objective is to maintain both bulk tempera-
ture and concentration at set-point values. The manipulated
variables are the coolant temperature,𝑚1, and the input feed
flow rate,𝑚2, while the control variables are the reactantmole
fraction, 𝑥1, and the bulk temperature, 𝑥2.

The dynamic neural model of the CSTR consists of a
net with four neurons in the input layer, two neurons in
the hidden layer, and two neurons in the output layer. Four
inputs were selected with the aim of giving the net the
most representative information about the process status.
Indeed, two terms which represent, respectively, the heat flux
exchange through the cooling system and a measure of the
heat flux carried out with the convective outlet stream were
fed as input to the network, along with the two manipulated
variables (cf. [13]).

The dynamic neural network was trained using 1000
data points generated through the CSTR dynamic simula-
tor (sampling time equal to 0.1min), randomly changing
the dimensionless manipulated variable. The Levenberg-
Marquardt algorithm was used to calculate the weights using
the sum of the squared error as objective function and
selecting the best model evaluating the predictions on the
validation test. Also in this situation, it was verified that the
Jacobian of the neural model fitted the exact one, which is a
guarantee of the robustness of the control system. Results are
not reported for the sake of brevity.

As in the previous case, the only controller parameter
to be tuned is the inverse of the desired time response, 𝐾1,
because the controller gain and the integral time are derived
from the model. In this case, the inverse of𝐾1 is set 2.5 times
smaller than the characteristic time of the process for both
the controllers [17].

The gain-scheduling PI controller was tested in terms
of set-point tracking and disturbance rejection capabilities,
performing the same test as in Scott and Ray [15]. The
set-point changes and disturbances imposed on the system
to test the performance of the proposed methodology are
summarized in Table 3.

For the sake of brevity, only the performance of the gain-
scheduling control structure at the point of maximum gain
is reported in graphical form, while all the other results are
reported in Table 4 using the integral squared error (ISE) as
performance index:

ISE = ∫∞
0
(𝑦sp,1 − 𝑦1)2 𝑑𝑡 + ∫∞

0
(𝑦sp,2 − 𝑦2)2 𝑑𝑡. (14)

The set-point tracking results are shown in Figure 5(b)
for the first variable, 𝑦1, and in Figure 5(c) for the second
variable, 𝑦2, while the loads on the manipulated variables are
reported in Figure 5(a). The results show that the controller
exhibits good set-point tracking capability (short response
time) without requiring excessive loads on the manipulated
variables. Indeed, the curves representing the programmed
set-point changes (dashed curves) are completely masked by
the ones representing the dynamic behaviour of the CSTR
under the control of the gain scheduled PI controller. The
performance of the controller with respect to disturbance
rejection is shown in Figures 5(d)–5(f). Also in this situation
the gain-scheduling controller performs well and exhibits
good capability to quickly compensate for the upsets entering
the CSTR.

As in the previous case, noisy measured inputs fed to
the neural network did not affect the performance of the
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Table 2: Summary of parameters and variables in the CSTR model for Case 2.

Symbol Value or Range Description

𝜏 = 𝑉𝐹0 1.0 Nominal space time of reactor

𝐷𝑎 = 𝑘0𝑒−𝛾𝑉𝐹0 0.11 Damkohler number

𝛾 = 𝐸
(𝑅𝑇𝑓0) 20 Dimensionless activation energy

𝐵 = (−Δ𝐻)𝑐𝐴0𝛾󰜚𝐶𝑝𝑇𝑓0 7.0 Dimensionless heat of reaction

𝛽 = ℎ𝐴󰜚𝐶𝑝𝐹0 0.5 Dimensionless transfer coefficient

𝐹0 1.0 Nominal feed rate𝑇𝑓0 300 Nominal feed temperature
𝑐𝐴0 1.0 Nominal feed concentration
𝑥1 = 𝑐𝐴0 − 𝑐𝐴𝑐𝐴0 Outflow concentration

𝑥2 = 𝑇 − 𝑇𝑓0𝑇𝑓0 Outflow temperature

𝑚1 = 𝑇𝑐 − 𝑇𝑓0𝑇𝑓0 𝑇𝑐 ∈ [250, 350] Coolant temperature

𝑚2 = 𝐹 − 𝐹0𝐹0 𝑇𝑐 ∈ [0.5, 1.5] Input feed rate

𝑑1 = 𝑇𝑓 − 𝑇𝑓0𝑇𝑓0 𝑇𝑓 ∈ [295, 305] Feed temperature

𝑑2 = 𝑐𝐴0 − 𝑐𝐴𝑓𝑐𝐴0 𝑐𝐴𝑓 ∈ [0.9, 1.1] Feed concentration

Scaled inputs or outputs

𝑦1 = 𝑐𝐴 − 0.7550.65 𝑦1 ∈ [−1, 1] Outflow concentration

𝑦2 = 𝑇 − 317.165 𝑦2 ∈ [−1, 1] Outflow temperature

𝑢1 = 𝑇𝑐 − 30050 𝑢1 ∈ [−1, 1] Coolant temperature

𝑢2 = 𝐹 − 10.5 𝑢2 ∈ [−1, 1] Input feed rate

Table 3: Programmed plant tests for Case 2.
Schedules Set-point changes Disturbance changes Time

Nominal
(0.000, 0.000)

Δ 1y = (0.000, −0.150)Δ 2y = (−0.150, 0.000)
Δ 1d = (0.700, 0.000)Δ 2d = (−0.700, 0.000)Δ 3d = (0.000, 0.700)Δ 4d = (0.000, −0.700)

@Time = (50, 100)
@Time = (150, 200)
@Time = (250, 300)
@Time = (350, 400)

Maximum gain
(−0.303, 0.242) Δ 1y = (0.000, −0.150)Δ 2y = (−0.150, 0.000)

Δ 1d = (0.700, 0.000)Δ 2d = (−0.700, 0.000)Δ 3d = (0.000, 0.700)Δ 4d = (0.000, −0.700)
@Time = (50, 100)
@Time = (150, 200)
@Time = (250, 300)
@Time = (350, 400)

Sign change
(0.213, −0.245) Δ 1y = (0.000, −0.100)Δ 2y = (−0.100, 0.000)

Δ 1d = (0.700, 0.000)Δ 2d = (−0.700, 0.000)Δ 3d = (0.000, 0.700)Δ 4d = (0.000, −0.300)
@Time = (50, 100)
@Time = (150, 200)
@Time = (250, 300)
@Time = (350, 400)
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Figure 5: Performance of the gain-scheduling PI in Case 2: (a)–(c) Set-point tracking tests; (d)–(f) disturbance rejection tests. Set-points:
dashed blue line; system responses: black line; 𝑢1: black line; 𝑢2: blue dashed line.

Table 4: Summary of ISE for Case 2.

Conditions Set-point tracking Disturbance rejection
Nominal
(0.000, 0.000) 5.83𝑒 − 2 4.96𝑒 − 2
Maximum gain
(−0.303, 0.242) 6.5𝑒 − 3 7.78𝑒 − 2
Sign change
(0.213, −0.245) 1.97𝑒 − 3 2.08𝑒 − 2

neural model. These results have already been published in
a previous work [13] for a different model-based controller.

5. Conclusion

In this paper, the use of a gain-scheduling controller strategy
based on a dynamic neural network model was presented.
This technique was proposed to solve problems concerning
the control of highly nonlinear systems, without requiring a
controller structure unusual to industrial practice. Starting
from a GMC approach, the resulting algorithm is a PI
controller, with an adaptive gain based on the neural model.

The performance of the developed control technique was
tested in two different cases of nonisothermal CSTRs, in
which an exothermic, first-order reaction takes place. The
controller was applied to a wide range of set-point changes
because in this way the system is forced to operate at very
critical conditions, and the robustness of the control system
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can be verified. The proposed control scheme was also tested
in presence of disturbances in order to demonstrate the
capability of the net to properly adjust gain controller values.
Good results were obtained, indicating that the proposed
algorithm properly adjusts the constant gain value over a
wide range of operating conditions. This means that the
neural model is able to describe the essential features of the
process, and it captures the essential nonlinearities through
an effective linear description. This characteristic enhances
the adaptive controller robustness, because it performs well
in the neighbourhood of the nominal operating conditions
without incorporating a linear function in the neural network
model [7].
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wastewater treatment plant,” Journal of Process Control, vol. 35,
pp. 89–100, 2015.
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