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The computation problem is discussed for the stochastic chance-constrained linear programming,
and a novel direct algorithm, that is, simplex algorithm based on stochastic simulation, is
proposed. The considered programming problem in this paper is linear programming with chance
constraints and random coefficients, and therefore the stochastic simulation is an important
implement of the proposed algorithm. By theoretical analysis, the theory basis of the proposed
algorithm is obtained and, by numerical examples, the feasibility and validness of this algorithm
are illustrated. The detailed algorithm procedure is given, which is easily converted into the
executable codes of software tools. Then, we compare it with some algorithms to verify its
superiority. Finally, a practical example is presented to show its practicability.

1. Introduction

In the late 1950s, stochastic linear programming (SLP) appeared with the further application
of linear programming. SLP is a special kind of linear programming problem in which a
part or all of coefficients are random variables with joint probability distribution. Generally
speaking, there are two sorts of SLP models, one of which can be described as “wait-and-see”
model based on the hypothesis that the decision maker can wait until the random variables
come true and another one is called “here-and-now”model in which the decisionmaker must
make decision before the random variables come true.

Stochastic chance-constrained programming (SCP), firstly proposed by Charnes and
Cooper [1], offers a powerful means of modeling stochastic decision and control systems
(see, e.g., [2, 3]). SCP is mainly concerned with the problem that the decision maker must
give his solution before the random variables come true. In this problem, the made decision
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may not satisfy the constraints in some degree, but the probability of decision satisfying the
constraints cannot be less than some given confidence level α. Stochastic chance-constrained
linear programming (SCLP) is an important part of SCP.

As we know the traditional method to solve SCLP is converting it into an equivalent
deterministic linear programming and then obtaining the optimal solution by some
deterministic algorithms [4]. However, this method is only effective for some special cases.
Generally, SCLP cannot be converted into some deterministic linear programming and
convex programming, see the work of Kall and Wallace in [5]. However, for those which
can be converted to deterministic problem, it is usually a difficult work to convert and one
can always obtain a complicated nonlinear programming which is traditional hard problem.
Therefore, it is necessary and urgent to find the direct and effective algorithm to solve SCLP.
Luckily, with the rapid development of computer, genetic algorithms based on stochastic
simulation were designed for SCP, see, for example, [6–8]. These intelligent algorithms are
more direct and effective than the method of converting SCP to deterministic programming.
However, the disadvantages of these genetic algorithms are obvious. That is, they are always
designed aiming to solve every specified problem, depending on experiment and lacking the
common theory basis. Therefore, it is a necessary and urgent task to find a better algorithm,
which gives rise to the motivation for the present study in this paper.

Summarizing the above discussion, we aim to develop a novel direct and universal
algorithm to solve the computation problem of the stochastic chance-constrained linear
programming. The main contribution of this paper can be given as follows: (i) several simple
approaches are illustrated to be ineffective or limited to SCLP by numerical example; (ii)
a novel and direct algorithm, that is, simplex algorithm based on stochastic simulation,
is proposed; (iii) the theory basis of the proposed algorithm is proved; (iv) the detailed
procedures of the simplex algorithm are given. By numerical examples, our algorithm is
compared with the traditional methods and genetic algorithm based on stochastic simulation
and verified to be feasible, valid, and better than the traditional ones and intelligent
technique. Finally, a real-world example is given to illustrate the practicability of the
developed algorithm.

2. Research Model and Computation Problem of SCLP

In this paper, unless otherwise specified, (Ω,F, P) denotes a complete probability space,
whereΩ is a nonempty sample space, F is the power set ofΩ, and P is a probability measure
on F, and a random variable is defined as a function from the probability space (Ω,F, P) to
the set of F.

2.1. Stochastic Linear Programming (SLP) Model

Firstly, introduce the following SLP model

min CTX

s.t. AX ≤ b

X ≥ 0,

(2.1)
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where X is an n dimensional vector to be determined, and A = (aij(ω))m×n, b =
(bi(ω))m×1, C = (cj(ω))n×1, with ai,j(ω), bi(ω), cj(ω) (i = 1, . . . , m, j = 1, . . . , n) being
random variables and ω ∈ Ω.

2.2. Stochastic Chance-Constrained Linear Programming (SCLP) Model

SCLP usually includes two sorts of models which can be formulated as follows:

min CTX

s.t. P(AX ≤ b) ≥ α

X ≥ 0,

(2.2)

min CTX

s.t. P(AiX ≤ bi) ≥ αi, i = 1, 2, . . . , m

X ≥ 0,

(2.3)

where Ai is the ith row of A, bi is the ith element of b, and αi is the ith confidence level of the
constraints.

2.3. Computation Problem of SCLP

In this subsection, by solving a numerical example of SLP, the computation problem of SCLP
is analyzed and several possible approaches are tried to obtain the optimal solution to the
example.

Example 2.1. Let (a, b) be the random variables with uniform distribution in rectangle {1 ≤
a ≤ 4, 1/3 ≤ b ≤ 1} and consider the following SLP problem:

min x1 + x2

s.t. ax1 + x2 ≥ 7

bx1 + x2 ≥ 4

x1 ≥ 0, x2 ≥ 0.

(2.4)

Solution 1. In (2.4), the expectations of the random variables a and b are easily derived.
Therefore, a very simple idea is to replace the stochastic parameters a and b by their
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expectations, respectively, and solve the corresponding deterministic linear programming
problem described as follows:

min x1 + x2

s.t.
5
2
x1 + x2 ≥ 7

2
3
x1 + x2 ≥ 4

x1 ≥ 0, x2 ≥ 0.

(2.5)

From (2.5), by deterministic linear programming algorithms, it is easy to derive the
unique optimal solution x∗

1 = 18/11, x∗
2 = 32/11.

Now, in order to analyze the feasibility of this approach, we assume θ∗ =
(18/11, 32/11), and, from the example, we can easily know the feasible region D = {(x1, x2) |
ax1 + x2 ≥ 7, bx1 + x2 ≥ 4}. Then

P(θ∗ ∈ D) = P

(
18
11

a +
32
11

≥ 7,
18
11

b +
32
11

≥ 4
)

= P

(
a ≥ 5

2
, b ≥ 2

3

)
= 0.25.

(2.6)

That is, the probability of the solution θ∗ taking value in the feasible region D is only 0.25,
which verifies that the method of directly replacing random parameters by their expectations
is invaluable.

Solution 2. It is well known that the samples of random variables are also easily obtained;
therefore, another simple technique is to produce some random samples of these random
parameters and solve all the deterministic linear programming problems corresponding to
the samples, and then we choose the best solution as the optimal solution. Now, produce 10
samples of a and b in (2.4):

a : (1.99, 2.02, 2.47, 3.23, 2.56, 3.78, 1.68, 3.95, 2.33, 3.65),

b : (0.63, 0.62, 0.41, 0.58, 0.85, 0.59, 0.47, 0.80, 0.57, 0.62).
(2.7)

From Table 1, it is easy to see that the largest probability P(θ∗ ∈ D) is no more than 0.5.
Consequently, this approach is almost useless for any practical problems.

To further testify the above conclusion about the technique in Solution 2, we consider
the following stochastic chance-constrained programming, which relaxes the constraints in
(2.4):

min x1 + x2

s.t. P{ax1 + x2 ≥ 7, bx1 + x2 ≥ 4} ≥ 0.95 × 0.95

xi ≥ 0, i = 1, 2.

(2.8)
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Table 1: The solutions and their probabilities θ∗ ∈ D.

Number Solution (x1, x2) x1 + x2 P(θ∗ ∈ D)
1 (2.20, 2.62) 4.82 0.37
2 (2.13, 2.68) 4.81 0.38
3 (1.46, 3.40) 4.86 0.45
4 (1.13, 3.34) 4.48 0.16
5 (1.75, 2.50) 4.26 0.11
6 (0.95, 3.44) 4.39 0.05
7 (3.18, 1.66) 4.84 0.37
8 (0.95, 3.23) 4.19 0.00
9 (1.70, 3.03) 4.74 0.36
10 (0.99, 3.39) 4.81 0.38

Generate 10000 samples of (a, b), replace (a, b) by the samples, and calculate all the
deterministic programming problems. We can find that there is almost no solution satisfying
the constraints of (2.8) among 10000 solutions.

Solution 3. In the following, we analyze a traditional but indirect approach, which is to
convert SLP into an equivalent deterministic programming problem and obtain the optimal
solution by some deterministic programming algorithms.

From the constraints in (2.8), we have

P{ax1 + x2 ≥ 7, bx1 + x2 ≥ 4} = P

{
a ≥ 7 − x2

x1
, b ≥ 4 − x2

x1

}

= P{a ≥ a∗, b ≥ b∗}

= [(4 − a∗)(1 − b∗)] ÷
(
3 × 2

3

)
,

(2.9)

where a∗ = (7 − x2)/x1, b
∗ = (4 − x2)/x1.

Therefore, the constraints in (2.8) are equivalent to

[(
4 − 7 − x2

x1

)
×
(
1 − 4 − x2

x1

)]
÷
(
3 × 2

3

)
≥ 0.9025,

(
4 − 7 − x2

x1

)
÷ 3 ≥ 0.9025,

(
1 − 4 − x2

x1

)
÷ 2
3
≥ 0.9025,

(2.10)
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and then the SCLP model (2.8) is equivalent to the following deterministic nonlinear
programming:

min x1 + x2

s.t. 1.805x2
1 − (4x1 + x2 − 7)(x1 + x2 − 4) ≤ 0

0.9025x1 − 4x1 − (7 − x2)
3

≤ 0

0.9025x1 − x1 − (4 − x2)
2/3

≤ 0

x1 ≥ 0, x2 ≥ 0.

(2.11)

Setting the initial value X0 = (0, 0), then the optimal solution θ∗ and the optimal value
f∗ of this nonlinear programming model are

θ∗ = (3.36, 2.84)T , f∗ = 6.19, (2.12)

and we can have the probability P(θ∗ ∈ D) = 0.9025.

From the above calculation and analysis of the threemethods, we can conclude that the
former two are not feasible regardless of their simpleness and the third one is valid. However,
the third measure is indirect and the obtained equivalent deterministic programming is
usually a nonlinear programming whose calculation is difficult and sometimes impossible.
Therefore, it is necessary to find some novel direct computationmethod. Recently, a direct and
effective algorithm, that is, genetic algorithms, has been put forward and rapidly developed
to solve the stochastic chance-constrained linear programming, see, for example, the work
of Liu in [9], of Ding et al. in [10], and of Ding and Sun in [11]. However, they are always
designed aiming to solve every specified problem, depending on experiment and lacking the
common theory basis.

In next section, we propose a direct and universal algorithm of SCLP, simplex
algorithm based on stochastic simulation, and build its theory basis. Then we design the
detailed procedures of the algorithm, which are easily changed into the executable codes of
software.

3. Simplex Algorithm Based on Stochastic Simulation

In SCLP model, on one hand, the meaning of “min” is not clear because of C being random
vector; on the other hand, it is difficult to judge the convexity of SCLP which is required by
optimization theory. Therefore, the computation problem of the SCLP is very difficult. In this
section, we propose a satisfying algorithm, that is, simplex algorithm based on stochastic
simulation, to overcome this difficulty. Firstly, several problems in SCLP are handled by
stochastic simulation. Then, we build the theory basis of this algorithm by theoretical
analysis. Finally, the detailed procedures of this algorithm are designed.
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According to the theory of stochastic chance-constrained linear programming, we can
transform (2.2) into the following programming model:

min f

s.t. P
(
CTX ≤ f

)
≥ β

P(AX ≤ b) ≥ α

X ≥ 0,

(3.1)

where f is the target function and α, β are the confidence levels of the target function and
constraint, respectively.

Similarly, model (2.3) can be transformed into

min f

s.t. P
(
CTX ≤ f

)
≥ β

P(AiX ≤ bi) ≥ αi, i = 1, 2, . . . , m

X ≥ 0.

(3.2)

3.1. Stochastic Simulation

3.1.1. Judging the Chance Constraint

Consider the chance constraints in (3.1):

P{AX ≤ b} ≥ α, (3.3)

where the random matrix A and the random vector b have a known joint probability
distribution Φ(A, b). Then we check whether the chance constraint holds or not if we have a
solution X by applying the stochastic simulation method (the Monte Carlo simulation). The
algorithm is as follows.

Algorithm 3.1. Chance constraint judging algorithm.

Step 1. Set N ′ = 0.

Step 2. Sample a random vector {(ak
i,j , b

k
i ), i = 1, 2, . . . , m, j = 1, 2, . . . , n} according to the

joint probability distribution of Φ(A, b).

Step 3. Calculate AX; if AX ≤ b, then N ′ + +.

Step 4. Repeat Step 2 to Step 3 N times.

Step 5. IfN ′/N ≥ α, return FEASIBLE, or else return INFEASIBLE.
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3.1.2. Handling the Target Function

Consider the target function with the random parameter vector C:

P
(
CTX ≤ f

)
≥ β. (3.4)

For any given vector X, the minimum objective function f can always be found by
stochastic simulation, and the algorithm is as follows.

Algorithm 3.2. Minimum target function searching algorithm.

Step 1. Sample a random vector {Ck, k = 1, 2, . . . ,N} according to the probability distribution
of Φ(C).

Step 2. Compute {CT
k
X, k = 1, 2, . . . ,N} and arrange the results according to the ascending

order.

Step 3. Set N ′ as the integer part of βN.

Step 4. Return the N ′th largest element in the set {CT
k
X, k = 1, 2, . . . ,N} as the estimation of

f .

3.1.3. Checking the Estimation Number

In order to check the estimate of probability, we test and return the random variable tj , such
that

P
{
ω ∈ Ω | tj − ĉj > 0

} ≥ γ, (3.5)

where tj is a random variable, ĉj is a deterministic number, and γ is a prescribed confidence
level.

Algorithm 3.3. Estimation number checking algorithm.

Step 1. Set N ′ = 0.

Step 2. Sample random vectors {t(k)j , k = 1, 2, . . . ,N} according to the probability distribution
of Φ(tj).

Step 3. If tj − ĉj > 0, then N ′ + +.

Step 4. Repeat Step 2 to Step 3 N times.

Step 5. IfN ′/N ≥ γ , return FEASIBLE and execute Step 6.

Step 6. Letting K′ be the integer part of γN, array {tj − ĉj , k = 1, 2, . . . ,N} according to
ascending order, return the (N −K′ + 1)′th element.

Step 7. Otherwise return INFEASIBLE.
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3.2. Theoretical Analysis

In this subsection, we aim to build the theory basis of simplex algorithm based on stochastic
simulation by theoretical analysis. To begin with, we recall the basic principle of deterministic
linear programming. According to the convexity of deterministic linear programming, the
programming has optimal solution if the feasible solutions are finite, and the optimal solution
must be in the range of the feasible solutions (see the work of Zhang and Xu in [12]). Based
on this theory, the simplex method is designed. Specifically, the basic principles of simplex
method can be formulated as follows. First of all, find a feasible solution stochastically and
check whether it is optimal; if it is not optimal, then we find another feasible solution which
can improve the target function and check this solution again; repeat the above process until
we find the optimal solution and the corresponding target value, or we can confirm that the
programming does not have the optimal solution. According to these principles, we further
consider the stochastic chance-constrained linear programming (3.1).

In (3.1), replace AX ≤ b by AX + Y = b with Y ≥ 0 according to the slack variable
method and assume H = (A,EY ), where EY is an m × m unit matrix. Then the constraint is
equivalent to

P(HZ = b) ≥ α, (3.6)

where Z = (XT YT )T . Still mark (CT 0TY )
T as CT , where 0Y is am × 1 zero vector, and then we

have CTX = CTZ.
Based on the above assumption, the main principle of simplex algorithm based on

stochastic simulation can be described as follows. Firstly, find a base matrix from H by
random sample or Big M method (Big M method is the most direct method and the base
matrix is deterministic unit matrix). Secondly, search a feasible basic solution satisfying the
chance constraint according to stochastic simulation, calculate the corresponding b (denoted
by b̂), then check whether it is the optimal solution by the sample value of C (denoted by
Ĉ), which is calculated by stochastic simulation method; if it is not optimal, according to the
improvement principle, we can find the sample value of H (denoted by Ĥ). Thirdly, solve
the deterministic programming defined by Ĥ, b̂ and Ĉ by simplex algorithm, and we can
obtain a solution X which can improve the value of target function. Fourthly, check whether
the solution satisfies the constraint. If it does not, change Ĥ, b̂, and Ĉ and check once more
until we derive an improved solution satisfying the constraint. Repeat the above steps until
we find the optimal solution or are sure that there is no optimal solution (infinite optimal
solutions).

Assume Z, B, b̂, U (H = (B,U)) are the initial feasible solution, the feasible base, a
sample value of b (b̂ is determined by checking whether B−1b̂ satisfies the constraint through
stochastic simulation), and the nonbase matrix, respectively, and then we have

Z =

(
B−1b̂

0

)
=

(
b

0

)
,

CTZ =
(
CT

B CT
U

)(b

0

)
= CT

Bb,

(3.7)
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with CB and CU being corresponding to the base variable and the nonbase variable of C,
respectively.

Computing the value of target function by stochastic simulation and chance constraint

P

(
CT

(
b

0

)
≤ f

)
≥ β, (3.8)

it is easy to obtain the sample value Ĉ of C and the target value f = ĈT
Bb.

Set Z = (ZT
B ZT

U)
T as being any feasible solution and consider the following stochastic

chance constrained programming:

min f = ĈTZ

s.t. P
(
HZ = b̂

)
≥ α

Z =
(
XT YT

)T ≥ 0.

(3.9)

From (3.9) and the above discussion, we have

P
(
ZB = B−1b̂ − B−1UZU

)
≥ α,

f = ĈTZ = ĈT
BZB + ĈT

UZU.

(3.10)

therefore,

P
(
f = ĈT

Bb −
(
ĈT

BB
−1U − ĈT

U

)
ZU

)
≥ α. (3.11)

Let H = (h1, h2, . . . , hn) and JU be the lower label set of nonbase variables and

tj − ĉj = ĈT
BB

−1hj − ĉj , j ∈ JU, (3.12)

where tj − ĉj is defined as the estimation number. Then we can derive

P

⎛
⎝f = f −

∑
j∈JU

(
tj − ĉj

)
zj

⎞
⎠ ≥ α. (3.13)
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Then, the programming (3.9) is converted into

min f = ĈTZ

s.t. P

⎛
⎝f = f −

∑
j∈JU

(
tj − ĉj

)
zj

⎞
⎠ ≥ α

P
(
ZB = B−1b̂ − B−1UZU

)
≥ α

Z =
(
XT YT

)T ≥ 0,

(3.14)

where f = ĈT
BB

−1b̂ with b̂ and Ĉ being obtained by stochastic simulation in (3.1).
If the feasible base solutions in programming (3.14) are nondegenerative, from the

above discussion, we can have the following theorem.

Theorem 3.4. If P(tj − ĉj ≤ 0, ∀j ∈ JU) ≥ α, then Z is the optimal solution of SCLP (3.14) and is
denoted as Z∗.

Proof. Since P(tj − ĉj ≤ 0) ≥ α holds for all j ∈ JU, there is no new feasible solution satisfying
the constraint and reducing target function value. Therefore Z must be the optimal solution.

Given a probability space (Ω,F, P), assume

Ω1 =
{
ω ∈ Ω | tj − ĉj ≤ 0, ∀j ∈ JU

}
,

Ω2 =
{
ω ∈ Ω | tj − ĉj > 0, ∀j ∈ JU

}
.

(3.15)

Then it is easy to know that Ω = Ω1
⋃
Ω2, Ω1

⋂
Ω2 = ∅, and P(Ω1) + P(Ω2) = 1. According to

Theorem 3.4, if P(Ω1) ≥ α does not hold, there may be other new feasible solutions satisfying
the constraint and reducing the target function value. Since P(Ω1) < α is equivalent to
P(Ω2) ≥ α, we can compute estimation number P(Ω2) ≥ 1 − α by stochastic simulation and
return some sample values of tj and also obtain some sample values of hj which is denoted
as Ĥ. Then we can derive a feasible solution by solving the following deterministic linear
programming by simplex method (see the work of Zhang and Xu in [12]).

min ĈTZ

s.t. ĤZ = b̂

Z ≥ 0.

(3.16)

Now, we can begin solve the SCLP problem (3.1) by simplex algorithm based on stochastic
simulation, and the steps are as follows.

Firstly, check the initial feasible solution Z. If all of the estimation numbers tj − ĉj ≤ 0
hold, then Z is the optimal solution; if tj − ĉj > 0 and B−1hk ≤ 0, there is no optimal solution;
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otherwise, if tj − ĉj > 0 and some of elements of B−1hk are positive, there must be a new
feasible solution Ẑ to reduce the target function value.

Secondly, check whether Ẑ satisfies the constraint of (3.1) by stochastic simulation. If
it does, continue to check whether it is the optimal one; if it does not, change a new Ĥ and
the corresponding new b̂ and repeat the above checking.

Finally, repeat the above two steps. The number of basic feasible solutions is finite;
therefore, it is sure that we can find an optimal solution or the programming problem has no
optimal solution.

In order to find a new basic feasible solution Ẑ, let the vector hk (k is the biggest
estimation number of tk − ĉk) enter the base vector and change the nonbase vector into a base
vector. Set

zk = min

{
bi

hik

| hik > 0

}
∧=

bi

hik

, i = 1, 2, . . . , m (3.17)

and let zBr = 0. Then we obtain a new basic feasible solution

Ẑ = (ẑB1 , . . . , ẑBr−1 , 0, ẑBr+1 , . . . , ẑBm , 0, . . . , zk, . . . , 0)
T , (3.18)

where ẑBi = bi −hikzk ≥ 0, (i = 1, . . . , r −1, r +1, . . . , m) and ẑBr = zk > 0. This is to say ẐB ≥ 0.
Then, check whether Ẑ satisfies the constraints by stochastic simulation. If it does, we figure
out a new feasible solution.

3.3. Computation Procedure

In this subsection, we design the detailed steps for the simplex algorithm based on stochastic
simulation according to the above algorithm analysis. These procedures can easily be
converted into the executable codes of some software tools.

Algorithm 3.5. Simplex algorithm based on stochastic simulation.

Step 1. Find an initial feasible base B.

Step 2. Find a basic feasible solution satisfying the chance constraints and the corresponding
sample value of b (denoted by b̂).

Step 3. Computing ZB = B−1b̂ ∧= b and the target function value f = ĈT
Bb by stochastic

simulation, return the sample value Ĉ.

Step 4. Check P(tj − ĉj > 0) > 1−α by stochastic simulation, and return sample value tj which
satisfies the constraint. Produce a group of Ĥ by stochastic simulation.

Step 5. Select an Ĥ, and calculate the estimation number by tj − ĉj = ĈT
BB

−1ĥj − ĉj . Determine
the lower label k by tk − ĉk = max{tj − ĉj | j = 1, 2, . . . , n}, and then let zk enter the base vector.
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Step 6. If tk − ĉk ≤ 0, end the procedure. Then, the basic feasible solution is the optimal one
and the target function can be calculated as f = ĈT

Bb, or else, go to Step 7.

Step 7. Calculate hk = B−1ĥk; if hk ≤ 0, end the steps. We can get the programming is infinite,
or else, go to Step 8.

Step 8. Calculate the ratio

zk = min

{
bi

hik

| hik > 0

}
∧=

bi

hik

(3.19)

to find the lower label r, and set ẑBr = 0.

Step 9. Replace ĥBr by hk, and we have a new base. Then, compute the new basic feasible
solution Ẑ.

Step 10. Check whether Ẑ satisfies the chance constraints by stochastic simulation. If it does,
go to Step 2; otherwise, go to Step 5. If, for all of Ĥ obtained in Step 4, Ẑ does not satisfy the
chance constraint, go to Step 2 to find a new b̂.

4. A Numerical Example

In this section, a simulation example is presented to illustrate the feasibility and effectiveness
of the simplex algorithm based on stochastic simulation developed in this paper.

Example 4.1. Consider the stochastic chance-constrained linear programming (2.8) again.
According to Big M method, (2.8) is equivalent to

min (x1 + x2 +Mx3 +Nx4)

s.t. P

{
ax1 + x2 + x3 − x5 = 7
bx1 + x2 + x4 − x6 = 4

}
≥ 0.95 × 0.95

xi ≥ 0, i = 1, 2, . . . , 6,

(4.1)

where x4 and x5 are slack variables.
According to Algorithm 3.5, the above SCLP (4.1) can be solved by using MATLAB

toolbox and the optimal solution and optimal target function value can be obtained as
follows:

X∗ = (3.2010, 2.9245)T , f∗ = 6.1255. (4.2)

Moreover, we can find that, for the above optimal solution,

P{ax1 + x2 ≥ 7, bx1 + x2 ≥ 4} = 0.9035 ≥ 0.95 × 0.95. (4.3)
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Table 2: The solutions and their probabilities θ∗ ∈ D.

Number Solution (x1, x2) f∗ P(θ∗ ∈ D)
1 (3.2802, 2.8907) 6.1709 0.9091
2 (3.2708, 2.8899) 6.1607 0.9061
3 (3.4615, 2.8299) 6.2914 0.9252

Remark 4.2. In SCLP, the coefficients,X and f , are all random variables; therefore, the optimal
solution may be different for different computation. In Table 2, we obtain three couples of
optimal solutions by executing Algorithm 3.5 three times.

From the above results, we can know that every optimal solution satisfies the
constraints, and there is a different confidence level corresponding to the optimal solution.

Remark 4.3. From Solution 2 of Example 2.1, it is very difficult to obtain an effective result
even if 10000 random samples are utilized. But we can obtain a satisfactory optimal solution
using less than 20 samples in our experiment by simplex algorithm based on stochastic
simulation. So it is clear that Algorithm 3.5, that is, simplex algorithm based on stochastic
simulation, is effective and much better than the method in Solution 2 to Example 2.1.

Remark 4.4. Apparently, simplex algorithm based on stochastic simulation is a direct method
and can be applied to any SCLP problem. Thereby, Algorithm 3.5 is also better than the
traditional approach in Solution 3 to Example 2.1, which is indirect measure and only
effective for some special cases.

Example 4.5. In this example, we consider a typical optimal decision problem in oil refinery
production (Kall and Wallace [5]). An oil refinery factory refines two kinds of crude oil
(denoted by raw1 and raw2) and provides gas (denoted by prod1) for the gas company
and burning oil (denoted by prod2) for power company. A plan is needed one week before
production. Assume that the yield π(raw1,prod1) of gas by raw1 and yield π(raw2,prod2) of
burning oil by raw2 are random and yields of other products are deterministic. Therefore, set

π
(
raw1,prod1

)
= 2 + ξ1, π

(
raw1,prod2

)
= 3,

π
(
raw2,prod1

)
= 6, π

(
raw2,prod2

)
= 3.4 + ξ2,

(4.4)

where ξ1is uniform distribution U(−0.8, 0.8) and ξ2is exponential distribution EXP(0.4). And
let the requirement h1 of gas and h2 of burning oil be also random variables

h1 = 180 + η1, h2 = 162 + η2, (4.5)

where η1is normal distribution N(0,
√
12) and η2is normal distribution N(0, 3).

The amount of expending raw1 and raw2 are denoted as x1 and x2, respectively, and
the unit prices of raw1 and raw2 are c1 = 2 and c2 = 3, receptively. Therefore, the total cost is
2x1 +3x2. Again assume the production capability (the largest amount of raw consumed) per
week is 100, that is, the constraint

x1 + x2 ≤ 100. (4.6)
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This problem has been dealt with by using a two-stage complement model in [5], and now
we solve it by our simplex algorithm based on stochastic simulation developed in this paper.

As we know that the decision (x1, x2) is made a week before production and cannot be
changed during the next week. Moreover, in these decisions, confidence levels are necessary;
these are

P
(
(2 + ξ1)x1 + 6x2 ≥ 180 + η1

) ≥ α1,

P
(
3x1 + (3.4 − ξ2)x2 ≥ 162 + η2

) ≥ α2.
(4.7)

According to the decision principles: satisfying customer and minimizing loss, we can have
the following SCLP problem:

min f = 2x1 + 3x2

s.t. P
(
(2 + ξ1)x1 + 6x2 ≥ 180 + η1

) ≥ α1

P
(
3x1 + (3.4 − ξ2)x2 ≥ 162 + η2

) ≥ α2

x1 + x2 ≤ 100

x1, x2 ≥ 0.

(4.8)

If the confidence levels α1 and α2 are 0.8 and 0.7, respectively, by our simplex algorithm based
on stochastic simulation, we can obtain an optimal solution

X∗ = (33.0944, 21.7716)T , f∗ = 131.5035,

P
(
(2 + ξ1)x1 + 6x2 ≥ 180 + η1

) ≥ 0.8149,

P
(
3x1 + (3.4 − ξ2)x2 ≥ 162 + η2

) ≥ 0.715.

(4.9)

Remark 4.6. In this SCLP problem, the random variables ξ1, ξ2, η1, and η2 obey uniform,
exponential and normal distributions, respectively; therefore the joint distribution of them is
so complicated that it is nearly impossible to find Φ−1. Therefore the programming problem
is difficult to be solved by using the approach in Solution 3 to Example 2.1.

Remark 4.7. Genetic algorithm based on stochastic simulation has been put forward by
Iwamura and Liu [6] for SCL problems, which is also a direct and effective method.
Supposing the scale popsize = 30, the cross probability Pc = 0.5, the mutation probability
Pm = 0.05, and the parameter in the rank-based evaluation function α = 0.05, after running
500 generations, we obtain an optimal solution

X∗ = (31.95, 22.65)T , f∗ = 131.85,

P
(
(2 + ξ1)x1 + 6x2 ≥ 180 + η1

) ≥ 0.8859,

P
(
3x1 + (3.4 − ξ2)x2 ≥ 162 + η2

) ≥ 0.6849.

(4.10)
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Comparing (4.9) and (4.10), we can see both of them satisfying all of the constraints.
However, (4.9) can obtain a less minimum value; this is a better result than (4.10). We should
notice that their confidence levels are different. So simplex algorithm based on stochastic
simulation is a practicable method.

5. Conclusion

This paper has studied the computation problem of stochastic chance-constrained linear
programming and proposed a novel algorithm, simplex algorithm based on stochastic
simulation. By a numerical example, several simple approaches have been tried to solve the
SCLP problem, and the disadvantages of these methods have been analyzed. By theoretical
analysis, the theory basis of the simplex algorithm based on stochastic simulation has been
built and a theorem has been proved. Then the detailed procedures of the proposed algorithm
have been designed, which are easily executed by some software tools. Finally, by two
examples, the introduced algorithm has been verified to be better than the approaches used
in Example 2.1 and be more effective than genetic algorithm based on stochastic simulation.

Based on the algorithm proposed in this paper, some possible further research topics
include (i) the direct and universal algorithm for uncertain programming, such as fuzzy
programming and nonlinear stochastic programming, see, for example, [10, 13, 14]; (ii) the
control and state estimate problems, see, for example, [3, 15–19] and the references therein.
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