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This paper is devoted to develop a new 8-node higher-order hybrid stress element (QH8) for free vibration and buckling analysis
based on theMindlin/Reissner plate theory. In particular, a simple explicit expression of a refinemethodwith an adjustable constant
is introduced to improve the accuracy of the analysis. A combined mass matrix for natural frequency analysis and a combined
geometric stiffness matrix for buckling analysis are obtained using the refined method. It is noted that numerical examples are
presented to show the validity and efficiency of the present element for free vibration and buckling analysis of plates. Furthermore,
satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for thin plate analysis and
can pass the nonzero shear stress patch test.

1. Introduction

It is well-known that the finite element method for free
vibration and buckling analysis of plates is highly significant
in civil, mechanical, and aerospace engineering applications.
The patch test [1], which can be used to examine the conver-
gence of the element and construct a convergence element,
has been seen as a criterion for assessing the convergence of
the finite element for a long time.

The potential energy function of Mindlin plate element
contains the displacements and the first-order derivatives of
the displacements. According to the 𝐶0 continuity condi-
tion, it is quite easy to establish interpolation functions of
deflection and rotation. Historically, the displacement-based
approach was the first attempt in the formulation of effective
Mindlin plate bending elements [2]. However, as we all know,
the original displacement element tends to cause the shear-
locking phenomenon which induces overstiffness as the plate
becomes progressively thinner for low-order interpolation
polynomials in the Mindlin elements. During this time, the
convergence characteristics of the Mindlin plate elements
were performed by means of numerical computation of pure

bending and pure torsion [3, 4]. In order to avoid shear lock-
ing, various numerical techniques and effectivemodifications
have been proposed and tested, such as the reduced integra-
tion and selective reduced integration schemes proposed by
Zienkiewicz et al. [5], Pugh et al. [6], and Hughes et al. [7];
assumed natural strain method introduced by Hughes and
Tezduyar [8]. It is acknowledged that the methods of reduced
integration and selective integration are efficient approaches
to prevent the appearance of the shear-locking phenomenon.
However, it is found that such elements often exhibit extra
zero-energy modes and also produce oscillatory results for
some problems. Moreover, these solutions are not applicable
to very thin plate; the thickness/span ratio of the plate is about
restricted to 10−6.

Later, Belytschko et al. [9] proposed the stabilization
procedure to remove the zero-energy modes by perturbing
the stiffness. In addition, several efficient 9-DOF triangular
elements based on the discrete Kirchhoff constraint and the
equilibrium conditions were developed by Batoz et al. [10, 11].
These elements can eliminate locking phenomenon and con-
verge towards the discrete Kirchhoff plate bending elements
when the thickness of the plate is very thin. On the other
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hand, no element is free of shear locking in theory. Bathe et
al. [12] introduced the MITC element and proposed strain
energy patch test function to evaluate the convergence. Based
on Timoshenko beam function, Soh et al. [13] proposed
a triangular 9-DOF plate bending element which can be
employed to analyze very thin plate (the thickness/span ratio
of the plate is about 10−11). Soon, Soh et al. [14] introduced a
quadrilateral 12-DOF plate bending element. At this time, the
progressively thinner platewhich has the thickness/span ratio10−20 can be calculated. Wanji and Cheung [15] proposed the
zero shear stress patch test functions. It is apparent that this
patch test ismore rigorous than the patch test using numerical
computation of pure bending and pure torsion of a small-
scale plate. Then, elements such as RDKQM [15], RDKTM
[16], AC-MQ4 [17], and QC-P4 [18] that can pass the above
patch test functions were proposed, indicating that the shear-
locking problem is solved. All these elements can be used to
solve the extremely thin plate problem (the thickness/span
ratio of the plate can reach to 10−30). In other words, these
elements can accurately converge to thin plate finite element
solution.

Chen proposed the enhanced patch test [19] and pre-
sented the zero shear deformation patch test and nonzero
constant shear deformation test functions of Mindlin plate
[20]. Current patch test for Mindlin plate only satisfies
the zero shear deformation condition. The patch test of
nonzero constant shear for Mindlin plate problem cannot
be performed. The convergence test should be performed
during the process of developing finite elementmethod. Only
passing the rigorous nonzero constant shear stress patch test,
the convergence can be completely guaranteed.The programs
of this commercial software have no proof of convergence.
The enhanced patch test is stronger than the original test;
the original constant stress patch test is just a special case of
it. This paper is devoted to establish Mindlin plate element
which can pass the strict constant shear patch test.

Different from the classical Timoshenko beam func-
tion, Jelenić and Papa [21] proposed a new arbitrary-order
Timoshenko beam function in 2011. So far, it is the only
function which can be used to construct the functions of
nonzero constant shear patch test for thick beam element.
Since beam function can be regarded as a function on the
boundary, the adopted hybrid stress method just requires the
boundary function rather compared to the domain function.
Because this beam function is arbitrary order, thus it has
high enough order to perform the nonzero constant shear
stress patch test. Since a complete cubic polynomial for the
element function to pass the constant shear stress patch test
is required, it was used to develop the higher-order hybrid
stress triangular Mindlin plate bending element named TH6
[22] and quadrilateral Mindlin plate bending element named
QH8 [23]. The results of static analysis have proved that the
TH6 element andQH8 element can pass the rigorous nonzero
constant shear stress patch test and its accuracy is quite high.
Only passing the rigorous nonzero constant shear stress patch
test, the convergence can be completely guaranteed.

Thepurpose of this paper is to develop an 8-nodeMindlin
plate bending finite element for free vibration analysis and
buckling analysis within an assumed stress formulation,

whose main feature is that passing the rigorous nonzero
constant shear stress enhanced patch test. To achieve this
objective, the following steps have been taken. The first step
concerns the choice of the variational framework with the
adoption of complementary energy principle.Then boundary
displacement interpolation function is established based on
the new arbitrary-order Timoshenko beam function. Since
the choice of the stress approximation is a crucial issue in
developing reliable hybrid finite element, selecting a suitable
stress approximation which satisfies the plate equilibrium
equations is not trivial. In order to improve the performance
of the constructed element, a refinedmass matrix for calcula-
tion of the natural frequency and a refined geometric stiffness
matrix for buckling analysis are developed by using refined
element method [24–26].

2. A Brief Introduction of the Higher-Order
Hybrid Stress Quadrilateral Mindlin Plate
Bending Element

2.1. Fundamental Equations of Mindlin Plate. Consider a
plate referred to as a Cartesian coordinate frame (𝑜, 𝑥, 𝑦, 𝑧),
with the origin 𝑜 on the mid-surface Ω and the 𝑧-axis in
the thickness direction, −ℎ/2 ≤ 𝑧 ≤ ℎ/2, where ℎ is the
plate thickness. Let 𝜕Ω be the boundary of Ω. The Reissner-
Mindlin theory, that is, the first-order shear deformable
theory, is employed. Thus it is assumed that𝑢 (𝑥, 𝑦, 𝑧) = 𝑧𝜃𝑦,

V (𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥,𝑤 (𝑥, 𝑦, 𝑧) = 𝑤 (𝑥, 𝑦) , (1)

where 𝑢, V, 𝑤 are displacements along the 𝑥-, 𝑦-, and 𝑧-axes,
respectively, 𝜃𝑥, 𝜃𝑦 are the rotations of the transverse normal
about the 𝑥- and 𝑦-axes, and𝑤 is the transverse displacement
field.

The geometric equations can be written as follows:

𝜒 = B𝑏𝜃,
𝛾 = B𝑠𝑤 + Î𝜃, (2)

where 𝜃, 𝜒, and 𝛾 are, respectively, the rotations, the curva-
tures, and the shear strains:

𝜃 = [𝜃𝑥𝜃𝑦] ,
𝜒 = [[[[

𝜒𝑥𝜒𝑦𝜒𝑥𝑦]]]] ,
𝛾 = [𝛾𝑥𝑧𝛾𝑦𝑧] ,

(3)
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and operators B𝑏, B𝑠 and Î are given by the following:

B𝑏 = [[[[[[[[[
0 𝜕𝜕𝑥−𝜕𝜕𝑦 0−𝜕𝜕𝑥 𝜕𝜕𝑦

]]]]]]]]]
,

B𝑠 = [[[[[
𝜕𝜕𝑥𝜕𝜕𝑦
]]]]] ,

Ι̂ = [ 0 1−1 0] .
(4)

The equilibrium equations can be obtained from the
strain energy in the following form:−B𝑇𝑏M + Î𝑇S = 0,

B𝑇𝑠 S = 0, (5)

where vectors M and S are, respectively, the moment and
shear resultants:

M = [[[[
𝑀𝑥𝑀𝑦𝑀𝑥𝑦]]]] ,

S = [𝑆𝑥𝑆𝑦] .
(6)

The boundary forces can be written as follows:

T = R[M
S
] ,

R = [[[
0 − sin𝛼 − cos𝛼 0 0

cos𝛼 0 sin𝛼 0 00 0 0 cos𝛼 sin𝛼]]] ,
(7)

where 𝛼 is the angle between the normal of edge and the local𝑥-axis of element.
For a linearly elastic material, the constitutive equations

can be written as follows:

M = D𝑏𝜒,
S = D𝑠𝛾, (8)

where D𝑏 and D𝑠 are the elasticity matrices of bending and
transverse shear moduli. In the isotropic case, the elasticity
matrices specialize as

D𝑏 = 𝐸ℎ312 (1 − 𝜇2) [[[[[
1 𝜇 0𝜇 1 00 0 1 − 𝜇2

]]]]] ,
D𝑠 = 𝜅𝐺ℎ[1 00 1] ,

(9)

where𝐸 is Young’smodulus,𝐺 the shearmodulus, 𝜇 Poisson’s
ration, and 𝜅 = 5/6 a correction factor to account for nonuni-
form distribution of shear stresses through the thickness.

2.2. Hybrid Stress Formulation. Based on a modified com-
plementary energy principle, the assumed stress hybrid
formulation pioneered by Pian [28, 29] can be used to avoid
the difficulty of forming the displacement field interpola-
tion functions, in particular, after the work of Malkus and
Hughes [30] on the equivalence between reduced integration
displacements and mixed/hybrid stress models. This kind of
approach based on hybrid stress element method became
very useful in recent years [31–36]. A good number of
effective elements which are free from shear locking have
been developed by authors such as Tong [37], Bathe and
Dvorkin [38], Ayad et al. [39], Brasile [40], and Li et al.
[22, 23].The higher-order hybrid stress quadrilateralMindlin
plate bending element QH8 is based on complementary
energy principle.The complementary energy principle can be
written as Π𝑒 = ∫

Ω𝑒

12𝜎𝑇D−1𝜎𝑑Ω − ∫
𝜕Ω𝑒

Τ𝑇u 𝑑𝑆, (10)

where𝜎 is the stress vector,D is the elasticitymatrices,Τ is the
vector of boundary force, u = [𝑤 𝜃𝑥 𝜃𝑦]𝑇 is the boundary
displacement vector,𝑤 is the transverse displacement, and 𝜃𝑥,𝜃𝑦 are the rotations of the transverse normal about the 𝑥- and𝑦-axes.

The approximation for stress and boundary displace-
ments can now be incorporated in the functional. The stress
field is described in the interior of the element as follows:[𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑆𝑥 𝑆𝑦]𝑇 = P𝛽, (11)

where P is matrix of stress interpolation functions and 𝛽 is
the unknown stress parameters.

The boundary force T can be represented as follows:

T = RP𝛽, (12)

where R is the combination of direction cosine for the
boundary normal.

The boundary displacement field is described by

u = [𝑤 𝜃𝑥 𝜃𝑦]𝑇 = Lq, (13)
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where L are interpolation functions and q is nodal displace-
ment parameters.

Substituting the stress equation (11), boundary force
equation (12), and displacement approximations equation
(13) into the functional (10),Π𝑒 = 12𝛽𝑇H𝛽 − 𝛽𝑇Gq, (14)

where

H = ∫
Ω𝑒

P𝑇D−1P 𝑑Ω
G = ∫

𝜕Ω𝑒

(RP)𝑇 L 𝑑𝑆. (15)

The form of (15) is directly amenable to numerical integration
(i.e., Gauss quadrature).

Then the internal strain energy can be expressed as
follows: 𝑈 = ∫

Ω𝑒

12𝜎𝑇D−1𝜎𝑑Ω = 12𝛽𝑇H𝛽. (16)

By means of 𝜕Π𝑒/𝜕𝛽, we obtained
H𝛽 = Gq. (17)

Consequently,

𝛽 = H−1Gq. (18)

Substitution of 𝛽 in (16), the internal strain energy
reduces to 𝑈 = 12q𝑇G𝑇H−1Gq. (19)

Compared with 𝑈 = (1/2)q𝑇Kq, the element stiffness matrix
can be taken as

K = G𝑇H−1G. (20)

The solution of the system yields the unknown nodal
displacement q. After q is determined, element stress or
internal forces can be recovered by use of (18) and (11). Thus

𝜎 = PH−1Gq. (21)

2.3. The Displacement Interpolation Function of QH8 Ele-
ment. Euler-Bernoulli beam function has been successfully
employed in the construction of refined thin plate elements. It
is well-known that when constructingMindlin plate element,
both thick and thin plates should be taken into account, and
it is necessary to eliminate shear-locking phenomenon. To
seek out such element displacement function is definitely
very difficult. Note that a closed form solution for both thick
and thin beams exists in the form of the Timoshenko beam
function, and it is possible to use it to derive more efficient
Mindlin plate elements [41]. However, the use of Timoshenko
beam function is capable of solving the problem of shear
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Figure 1: Eight-node quadrilateral plate element.

locking; it cannot solve the problem of passing the nonzero
constant shear patch test. This problem has not resolved for
many years. In 2011, Jelenić and Papa [21] presented a new
arbitrary-order Timoshenko beam function as follows:

𝑤 = 𝑛∑
𝑖=1

𝐼𝑖𝑤𝑖 − 𝐿𝑛 𝑛∏
𝑗=1

𝑁𝑗 𝑛∑
𝑖=1

(−1)𝑖−1 (𝑛 − 1𝑖 − 1) 𝜃𝑖𝜃 = 𝑛∑
𝑖=1

𝐼𝑖𝜃𝑖, (22)

where 𝐿 is the beam length, 𝑤𝑖 and 𝜃𝑖 are the values of the
displacements and the rotations at the 𝑛 nodes equidistantly
spaced between the beam ends, 𝐼𝑖 are the standard Lagrange
polynomials of order 𝑛 − 1, and 𝑁𝑗 = 𝑥/𝐿 for 𝑗 = 1 and𝑁𝑗 = 1 − (𝑛 − 1)/(𝑗 − 1)(𝑥/𝐿) otherwise, in which 𝑥 is the
coordinate along the beam.

An 8-node quadrilateral element was designed as given in
Figure 1. If any quadrilateral side is taken as a beam element,
take the 1-2 boundary as example and the deflection 𝑤 and
rotations 𝜃𝑥, 𝜃𝑦 can be derived as follows:𝑤 = 𝐼1𝑤1 + 𝐼2𝑤2 + 𝐼5𝑤5 − 𝐼0𝐿 (−𝜃𝑛,1 + 2𝜃𝑛,5 − 𝜃𝑛,2)= 𝐼1𝑤1 + 𝐼2𝑤2 + 𝐼5𝑤5 − 𝐼0 [(−𝜃𝑥,1 + 2𝜃𝑥,5 − 𝜃𝑥,2) 𝑏+ (−𝜃𝑦,1 + 2𝜃𝑦,5 − 𝜃𝑦,2) 𝑎]𝜃𝑥 = 𝐼1𝜃𝑥,1 + 𝐼2𝜃𝑥,2 + 𝐼5𝜃𝑥,5𝜃𝑦 = 𝐼1𝜃𝑦,1 + 𝐼2𝜃𝑦,2 + 𝐼5𝜃𝑦,5,

(23)

where 𝐼1 = 𝐿1(2𝐿1 − 1), 𝐼2 = 𝐿2(2𝐿2 − 1), 𝐼5 = 4𝐿1𝐿2, 𝐼0 =(1/3)𝐿1𝐿2(𝐿2 −𝐿1), 𝐿1 = 1− 𝑠/𝐿, 𝐿2 = 𝑠/𝐿, 𝐿 is the length of
1-2 boundary and 𝑠 is the coordinate along the 1-2 edge.

The displacement components u along the 1-2 boundary
was given as follows:
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u1-2 = [𝑤 𝜃𝑥 𝜃𝑦]𝑇 = L1-2q1-2, (24)

where

L1-2

= [[[
𝐼1 𝐼0𝑏 𝐼0𝑎0 𝐼1 00 0 𝐼1

𝐼2 𝐼0𝑏 𝐼0𝑎0 𝐼2 00 0 𝐼2
𝐼5 −2𝐼0𝑏 −2𝐼0𝑎0 𝐼5 00 0 𝐼5 ]]] (25)

and q1-2 = [q1 q2 q5]𝑇, q𝑖 = [𝑤𝑖 𝜃𝑥𝑖 𝜃𝑦𝑖]𝑇 (𝑖 = 1, 2, 5).
2.4. Assumed Stresses. In this section, a strategy to select
the stress approximation in a rational way is presented. In
practice, initial polynomials are usually assumed for the stress
after which the equilibrium equations are applied to these
polynomials yielding relations between the 𝛽’s and ultimately
the final form of P. The number of stress parameters, which
is the number of columns in P, must be at least equal to the
number of degrees of freedom of the element less the number
of degrees of freedomnecessary to prevent rigid bodymotion.

In a series of studies of hybrid element, there is a general
consensus on the selection of 𝛽 parameter that is 𝑁(𝛽) ≥𝑛𝑑 − 𝑛𝑟, while the optimal selection is 𝑁(𝛽) = 𝑛𝑑 − 𝑛𝑟,𝑛𝑑, 𝑛𝑟 being the degrees of freedom of the element and the
number of allowed rigid body motions, respectively. The
element has 24 DOF; therefore, a stress field with at least 21
parameters is needed to describe the stress field and without
spurious zero-energy modes. Numerical results show that
the stiffness matrix has spurious zero-energy modes and
converges slowly when 𝑁(𝛽) = 21. The finds that gradually
increasing the number of {𝛽𝑖} until 𝑁(𝛽) = 28, there
is a proper rank for the stiffness matrix and the absence
of spurious zero-energy modes. Moreover, the calculation
results are accurate and converged faster. And they are better
if the number of {𝛽𝑖} reaches 𝑁𝑏 = 39 (complete quartic
polynomial). Numerical experimentations [23] indicate that
this 39-parameter selection of stress field is somewhat more
accurate and has no spurious zero-energy modes. For this
reason, 39𝛽 are chosen as the assumed stress field.

The stress field is described in the interior of the element
as follows: [𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑄𝑥 𝑄𝑦]𝑇 = P𝛽, (26)

where P is matrix of stress interpolation functions as shown
in Table 1, and 𝛽 is the stress parameters.

From (12), the boundary force T can be expressed as

T = RP𝛽. (27)

Then, along the boundary 1-2, G can be obtained:

G12 = ∫
𝜕Ω(1-2)

(RP)𝑇 L1-2 𝑑𝑠. (28)
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Figure 2: Mass lumping at the nodes.

Similarly, along the other boundaries, G23, G34, G41 can also
be obtained by cyclic permutation.

3. The Refined Mass Matrix and Refined
Geometric Stiffness Matrix for Vibration
and Buckling Analysis of Plates

A refinedmethod has been developed by the authors [24, 25],
and the method has been applied to develop 12-DOF [15], 9-
DOF [16], and 5-DOF [49] Mindlin elements and so forth.
This method is applied here to formulate QH8-RCV with a
mass matrix called refined mass matrix for calculation of the
natural frequency and in the same way QH8-R with a refined
geometric stiffness matrix for buckling analysis.

3.1. Free Vibration Analysis. It is well-known that the equa-
tion of free vibration can be expressed as follows:(K − 𝜔2M)Φ = 0, (29)

where K is the global stiffness matrix, M is the global mass
matrix,Φ is themode shapes, and𝜔 is the natural frequencies.

The major complication of the standard eigenvalue prob-
lem introduced by the finite element method is the mass
matrix M. Two types of the mass matrix are of interest:
lumped mass matrix and consistent mass matrix.

3.1.1. The LumpedMass Matrix. To use the diagonal elements
of the consistent mass matrix and form a diagonal matrix by
scaling these entries so that the total mass of the element is
conserved, the method listed by Hinton et al. [50] produces
excellent results. For the cases of eight-node elements, the
method leads to the lumping schemes shown in Figure 2.The
figures at each node show the proportion of the total mass at
that node. For convenience, the total mass has been chosen
to be 36. Therefore the following lumped mass matrix will be
used to calculate the natural frequencies of plates:
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Table 1: Assumed stress function.𝑖 𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑄𝑥 𝑄𝑦
1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 𝑥 0 0 1 0

5 𝑦 0 0 0 0

6 0 𝑥 0 0 0

7 0 𝑦 0 0 1

8 0 0 𝑥 0 1

9 0 0 𝑦 1 0

10 𝑥2 0 −𝑥𝑦 𝑥 −𝑦
11 𝑥𝑦 0 0 𝑦 0

12 𝑦2 0 0 0 0

13 0 𝑥2 0 0 0

14 0 𝑥𝑦 0 0 𝑥
15 0 𝑦2 −𝑥𝑦 −𝑥 𝑦
16 0 0 𝑥2 0 2𝑥
17 0 0 𝑦2 2𝑦 0

18 𝑥3 0 −1.5𝑥2𝑦 1.5𝑥2 −3𝑥𝑦
19 𝑥2𝑦 0 −0.5𝑥𝑦2 𝑥𝑦 −0.5𝑦2
20 𝑥𝑦2 0 0 𝑦2 0

21 𝑦3 0 0 0 0

22 0 𝑥3 0 0 0

23 0 𝑥2𝑦 0 0 𝑥2
24 0 𝑥𝑦2 −0.5𝑥2𝑦 −0.5𝑥2 𝑥𝑦
25 0 𝑦3 −1.5𝑥𝑦2 −3𝑥𝑦 1.5𝑦2
26 0 0 𝑥3 0 3𝑥2
27 0 0 𝑦3 3𝑦2 0

28 𝑥4 −6𝑥2𝑦2 0 4𝑥3 −12𝑥2𝑦
29 𝑥3𝑦 0 −0.75𝑥2𝑦2 1.5𝑥2𝑦 −1.5𝑥𝑦2
30 𝑥𝑦3 0 0 𝑦3 0

31 𝑦4 0 0 0 0

32 0 𝑥4 0 0 0

33 0 𝑥3𝑦 0 0 𝑥3
34 0 𝑥𝑦3 −0.75𝑥2𝑦2 −1.5𝑥2𝑦 1.5𝑥𝑦2
35 −6𝑥2𝑦2 𝑦4 0 −12𝑥𝑦2 4𝑦3
36 0 0 𝑥4 0 4𝑥3
37 0 −3𝑥2𝑦2 𝑥3𝑦 𝑥3 −3𝑥2𝑦
38 −3𝑥2𝑦2 0 𝑥𝑦3 −3𝑥𝑦2 𝑦3
39 0 0 𝑦4 4𝑦3 0
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M𝑒lumped = 𝑚𝑒36 diag [1 0 0 1 0 0 1 0 0 1 0 0 8 0 0 8 0 0 8 0 0 8 0 0] , (30)

where𝑚𝑒 is the element mass.

3.1.2. The Refined Consistent Mass Matrix. In order to
improve the accuracy of the natural frequencies, the refined
mass matrix has been used in the eigenproblem of the
finite element method. We can give herein a new approach
for improving the consistent mass matrix which can be
obtained from a combination of the element displacement
interpolations.

As for free vibration analysis, 8-node shape function is
used to interpolate the displacement function components𝑤,𝜃𝑥, 𝜃𝑦 as 𝑤 = 8∑

𝑖=1

𝑁𝑖𝑤𝑖,
𝜃𝑥 = 8∑
𝑖=1

𝑁𝑖𝜃𝑥𝑖,
𝜃𝑦 = 8∑
𝑖=1

𝑁𝑖𝜃𝑦𝑖,
(31)

where𝑁𝑖 = 14 (1 + 𝜉𝑖𝜉) (1 + 𝜂𝑖𝜂) (𝜉𝑖𝜉 + 𝜂𝑖𝜂 − 1) , 𝑖 = 1, 2, 3, 4𝑁𝑖 = 12 (1 − 𝜉2) (1 + 𝜂𝑖𝜂) , 𝑖 = 5, 7𝑁𝑖 = 12 (1 − 𝜂2) (1 + 𝜉𝑖𝜉) , 𝑖 = 6, 8.
(32)

Another 4-node shape functions are used to interpolate
the deflection part of displacement function as

𝑤𝑏 = 4∑
𝑖=1

𝑁𝑖𝑤𝑖, (33)

where 𝑁𝑖 = 14 (1 + 𝜉𝑖𝜉) (1 + 𝜂𝑖𝜂) , 𝑖 = 1, 2, 3, 4. (34)

So the new deflection function part 𝑤∗ can be described
as 𝑤∗ = 𝑤 + 𝛼 (𝑤 − 𝑤𝑏) , (35)

where 𝛼 is an adjustable constant which is used to improve
the accuracy of the vibration analysis.

Based on (31), (33), and (35), the shape function of refined
consistent mass matrix is of the following form:[𝑤∗ 𝜃𝑥 𝜃𝑦]𝑇 = [𝑤 + 𝛼 (𝑤 − 𝑤𝑏) 𝜃𝑥 𝜃𝑦]𝑇 = Nq (36)

and the element consistent mass matrixM𝑒𝑐 can be expressed
as

M𝑒𝑐 = ∬
Ω
N𝑇mN 𝑑𝑥 𝑑𝑦, (37)

where m is the matrix containing the mass density of the
material 𝜌 and thickness 𝑡 as follows:

m = 𝜌(𝑡 0 00 𝑡312 00 0 𝑡312). (38)

3.2. Buckling Analysis Problem and RefinedGeometric Stiffness
Matrix. Consider a plate under an initial stress which may
induce instability. Similar to the free vibration problem of
plate, the equation of stability analysis can be expressed as(K − 𝜆K𝐺)Φ = 0, (39)

where K is the global stiffness matrix, K𝐺 is the geometric
stiffness matrix of the whole structure, 𝜆 is the critical load,
andΦ is the mode shape of buckling. The element geometric
stiffness matrix K𝑒𝐺 can be written as

K𝑒𝐺 = K𝑒𝐺1 + K𝑒𝐺2 + K𝑒𝐺3, (40)

where the terms of (40) are

K𝑒𝐺1 = 𝑡∫
Ω𝑒

[𝜕𝑤𝜕𝑥 𝜕𝑤𝜕𝑦 ] (𝜎0)𝑇[[[[[
𝜕𝑤𝜕𝑥𝜕𝑤𝜕𝑦

]]]]]𝑑𝑥𝑑𝑦
K𝑒𝐺2 = 𝑡312 ∫Ω𝑒 [𝜕𝜃𝑥𝜕𝑥 𝜕𝜃𝑥𝜕𝑦 ] (𝜎0)𝑇[[[[[

𝜕𝜃𝑥𝜕𝑥𝜕𝜃𝑥𝜕𝑦
]]]]]𝑑𝑥𝑑𝑦

K𝑒𝐺3 = 𝑡312 ∫Ω𝑒 [𝜕𝜃𝑦𝜕𝑥 𝜕𝜃𝑦𝜕𝑦 ] (𝜎0)𝑇[[[[[[
𝜕𝜃𝑦𝜕𝑥𝜕𝜃𝑦𝜕𝑦

]]]]]]𝑑𝑥𝑑𝑦
(41)
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Figure 3: Constant stress patch test.

and vector 𝜎0 = [ 𝜎0𝑥 𝜏0𝑥𝑦
𝜏0𝑥𝑦 𝜎

0
𝑦

] stands for the initial stress of plate,𝜎0𝑥, 𝜎0𝑦 are unit tractions in the direction of 𝑥 and 𝑦, and 𝜏0𝑥𝑦
is the unit shear stress.

Similarly, we can obtain the refined geometric stiffness
matrix from the following relation:

{{{{{{{{{
𝜕𝑤𝜕𝑥𝜕𝑤𝜕𝑦

}}}}}}}}} = {{{{{{{{{
𝜕𝑤𝜕𝑥𝜕𝑤𝜕𝑦

}}}}}}}}} + 𝛼0({{{{{{{{{
𝜕𝑤𝜕𝑥𝜕𝑤𝜕𝑦

}}}}}}}}} − { 𝜃𝑦−𝜃𝑥})
+ 𝛼0({{{{{{{{{

𝜕𝑤𝜕𝑥𝜕𝑤𝜕𝑦
}}}}}}}}} −{{{{{{{{{

𝜕𝑤𝑏𝜕𝑥𝜕𝑤𝑏𝜕𝑦
}}}}}}}}}),

(42)

where 𝛼0 is an adjustable constant used to improve the accu-
racy of the stability analysis, the displacement interpolation
functions𝑤, 𝜃𝑥, 𝜃𝑦 are the same as 8-node shape function (31),
and 𝑤𝑏 is in terms of (33).

Based on (42), we only modify the interpolation function𝑤 and geometric stiffness matrix part K𝑒𝐺1 as

K𝑒𝐺1 = 𝑡∫
Ω𝑒

[𝜕𝑤𝜕𝑥 𝜕𝑤𝜕𝑦 ] (𝜎0)𝑇[[[[[
𝜕𝑤𝜕𝑥𝜕𝑤𝜕𝑦

]]]]]𝑑𝑥𝑑𝑦. (43)

The refined geometric stiffness matrix can be written as

K𝑒𝐺 = K𝑒𝐺1 + K𝑒𝐺2 + K𝑒𝐺3. (44)

4. Numerical Examples

To investigate the accuracy and reliability of the proposed
QH8 element for free vibration analysis and buckling anal-
ysis, several numerical examples with different geometry
and boundary condition are calculated in this section. For
convenience, the boundaries of plates are denoted as follows:
clamped supported (C), hard-type simply supported (S), soft-
type simply supported (S∗), and free (F), so a boundary
condition can be written as CCCC, SSSS, CFFF, SCSC, SFSF,
and so on for a rectangular plate. For example, the symbol,
SFCF, represents simply supported edge along 𝑥 = 0, a free
edge along 𝑦 = 0, a clamped edge along 𝑥 = 𝑎, and a free
edge along 𝑦 = 𝑏.
4.1. Patch Test: Consistency Assessment. Consistency of the
developed elements is tested for the constant strain and stress
states on the patch example with five elements, covering a
rectangular domain of a plate as shown in Figure 3. The size
of the domain is 0.24×0.12.Themechanical properties of the
plate are chosen as 𝐸 = 103, 𝜇 = 0.25, 𝜅 = 5/6.

For zero shear deformation patch test, the test function
[20, 23] can be written as follows:𝑤 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥2 + 𝑎4𝑥𝑦 + 𝑎5𝑦2𝜃𝑥 = 𝑎2 + 𝑎4𝑥 + 2𝑎5𝑦𝜃𝑦 = −𝑎1 − 2𝑎3𝑥 − 𝑎4𝑦. (45)
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Table 2: Numerical results of constant bending patch test (at node (0.04, 0.02)).𝑤 𝜃𝑥 𝜃𝑦 𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑆𝑥 𝑆𝑦𝑡 = 0.05
Mesh A 1.1528 3.440 −2.420 −0.12222 −0.15556 −0.041667 0 0
Mesh B 1.1528 3.440 −2.420 −0.12222 −0.15556 −0.041667 0 0
Mesh C 1.1528 3.440 −2.420 −0.12222 −0.15556 −0.041667 0 0
Exact 1.1528 3.440 −2.420 −0.12222 −0.15556 −0.041667 0 0𝑡 = 0.005
Mesh A 1.1528 3.440 −2.420 −0.0001222 −0.0001556 −0.000041667 0 0
Mesh B 1.1528 3.440 −2.420 −0.0001222 −0.0001556 −0.000041667 0 0
Mesh C 1.1528 3.440 −2.420 −0.0001222 −0.0001556 −0.000041667 0 0
Exact 1.1528 3.440 −2.420 −0.0001222 −0.0001556 −0.000041667 0 0

Table 3: Numerical results of nonzero constant shear stress patch test (at node (0.04, 0.02)).𝑤 𝜃𝑥 𝜃𝑦 𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑆𝑥 𝑆𝑦𝑡 = 0.05
Mesh A 1.1537 3.529867 −2.51 −0.156667 −0.196667 −0.053 −0.66667 −0.84444
Mesh B 1.1537 3.529867 −2.51 −0.156667 −0.196667 −0.053 −0.66667 −0.84444
Mesh C 1.1537 3.529867 −2.51 −0.156667 −0.196667 −0.053 −0.66667 −0.84444
Exact 1.1537 3.529867 −2.51 −0.156667 −0.196667 −0.053 −0.66667 −0.84444𝑡 = 0.005
Mesh A 1.1537 3.479707 −2.4704 −0.0001567 −0.0001967 −0.000053 −0.00067 −0.000844
Mesh B 1.1537 3.479707 −2.4704 −0.0001567 −0.0001967 −0.000053 −0.00067 −0.000844
Mesh C 1.1537 3.479707 −2.4704 −0.0001567 −0.0001967 −0.000053 −0.00067 −0.000844
Exact 1.1537 3.479707 −2.4704 −0.0001567 −0.0001967 −0.000053 −0.00067 −0.000844

For nonzero shear deformation patch test, the test func-
tion can be expressed as follows:𝑤 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥2 + 𝑎4𝑥𝑦 + 𝑎5𝑦2 + 𝑎6𝑥3+ 𝑎7𝑥2𝑦 + 𝑎8𝑥𝑦2 + 𝑎9𝑦3𝜃𝑥 = ℎ23𝑘 (1 − 𝜇) (𝑎7 + 3𝑎9) + 𝑎2 + 𝑎4𝑥 + 2𝑎5𝑦 + 𝑎7𝑥2+ 2𝑎8𝑥𝑦 + 3𝑎9𝑦2𝜃𝑦 = − ℎ23𝑘 (1 − 𝜇) (3𝑎6 + 𝑎8) − 𝑎1 − 2𝑎3𝑥 − 𝑎4𝑦− 3𝑎6𝑥2 − 2𝑎7𝑥𝑦 − 𝑎8𝑦2,

(46)

where 𝑎𝑖, (𝑖 = 0, . . . , 9) are arbitrary constants. In the present
paper, we assume that 𝑎𝑖 = 𝑖 + 1.

The mesh of patch test is presented in Figure 3. The
displacements at the nodes on the boundaries are imposed
according to (45) and (46), given the displacements and
rotations at the boundary nodes (8 displacements and 16
rotations), while all the internal nodal displacements and
rotations are to be calculated by the finite element solution
procedure.

Test results show that the element QH8-39𝛽 passes both
the constant bending with zero shear stresses 𝑆𝑥, 𝑆𝑦 (Table 2)
and the strict patch test with nonzero constant shear stresses𝑆𝑥, 𝑆𝑦 (Table 3). No matter the inner element edges are
straight or curved, and no matter the shapes of the elements
are convex or concave, the exact results of the displacements
and stresses at inner node obtained using the present QH8-
39𝛽 element agree well with the test functions. This demon-
strates that the new element passes the strict constant stress
patch test, thus ensuring solution convergence.

4.2. Free Vibration Analysis. In this section, we examine the
efficiency and the applicability of the 8-node quadrilateral
hybrid stress element in analyzing natural frequencies of
plates. The proposed 8-node quadrilateral hybrid stress ele-
ments with lumped mass matrix (30) and refined consistent
mass matrix (37) in vibration analysis are denoted by QH8-
LV and QH8-RCV, respectively.

The effects of various slenderness ratios, skew angles, and
boundary conditions on the frequencies are also discussed.
Unless other stated, the following material parameters are
used throughout the paper: Young’s modulus 𝐸 = 2.0 × 1011,
Poisson’s ratio 𝜇 = 0.3, the mass density of the material𝜌 = 8000, and the shear correction factor 𝜅 = 5/6 is taken
if not specified otherwise.
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Table 4: The six lowest nondimensional frequency parameters of a CCCC thin square plate (𝑡/𝐿 = 0.001).
Element (𝛼) Mode sequence number

1 2 3 4 5 6
QH8-RCV(−1) 3.6742 7.5726 7.5726 11.2791 13.8025 13.8626
QH8-RCV(−0.5) 3.6602 7.5052 7.5052 11.1242 13.5707 13.6325
QH8-RCV(−0.25) 3.6532 7.4711 7.4711 11.0458 13.4531 13.5157
QH8-RCV(−0.08) 3.6484 7.4478 7.4478 10.9922 13.3726 13.4356
QH8-RCV(0) 3.6461 7.4368 7.4368 10.9669 13.3345 13.3978
QH8-LV 3.6460 7.4363 7.4363 10.9644 13.3318 13.3949
Reference [27] 3.646 7.436 7.436 10.964 13.332 13.395

Table 5: The six lowest nondimensional frequency parameters of a CCCC thick square plate (𝑡/𝐿 = 0.1).
Element (𝛼) Mode sequence number

1 2 3 4 5 6
QH8-RCV(−1) 3.3118 6.3402 6.3402 8.9003 10.4844 10.5761
QH8-RCV(−0.5) 3.3066 6.3332 6.3332 8.9090 10.5178 10.6160
QH8-RCV(−0.25) 3.3002 6.3038 6.3038 8.8443 10.4237 10.5216
QH8-RCV(−0.08) 3.2943 6.2743 6.2743 8.7752 10.3198 10.4162
QH8-RCV(0) 3.2912 6.2578 6.2578 8.7360 10.2604 10.3558
QH8-LV 3.3181 6.3688 6.3688 8.9622 10.5759 10.6670
Reference [27] 3.292 6.276 6.276 8.792 10.356 10.455

Table 6: The six lowest nondimensional frequency parameters of a SSSS thin square plate (𝑡/𝐿 = 0.001).
Element (𝛼) Mode sequence number

1 2 3 4 5 6
QH8-RCV(−1) 2.0129 5.0805 5.0805 8.2063 10.3226 10.3226
QH8-RCV(−0.5) 2.0064 5.0403 5.0403 8.1034 10.1616 10.1616
QH8-RCV(−0.25) 2.0032 5.0202 5.0202 8.0522 10.0813 10.0813
QH8-RCV(−0.08) 2.0010 5.0066 5.0066 8.0174 10.0268 10.0268
QH8-RCV(0) 2.0000 5.0002 5.0002 8.0010 10.0012 10.0012
QH8-LV 2.0000 5.0000 5.0000 7.9998 9.9999 9.9999
Reference [27] 2.000 5.000 5.000 8.000 10.000 10.000

In the numerical calculation, the dimensionless solutions
of natural frequencies with a multiplier 𝜋2/𝑏2√𝐷/𝜌 are
obtained. 𝑏 is the width of the edge, 𝐷 = 𝐸𝑡3/12(1 − 𝜇2).
Unless otherwise specified, the actual computations are done
using dimensionless units.

4.2.1. Square Plate. For the hybrid stress element with the
lumped mass matrix (QH8-LV) and refined mass matrix
(QH8-RCV), the fundamental natural frequencies or free
vibration problems of a square plate with different meshes
and different boundary conditions are calculated.

The parameter 𝛼 in (36) for the present element QH8-
RCV (8-node hybrid element with refined mass matrix) is
determined by comparison using numerical examples. A
square plate (the length of the plate 𝑎 and the width of the
plate 𝑏: 𝑎/𝑏 = 1) is divided into mesh of 16×16 elements.The
thickness-to-width aspect ratios 𝑡/𝑏 = 0.001, 0.1, boundary
conditions SSSS, CCCC, and 𝛼 = −1, −0.5, −0.25, −0.08, 0 are

chosen. The results of six lowest modes are given in Tables
4–7 and Figure 4, in which the exact solutions can be found
in [27]. We advise 𝛼 = −0.08 of the present QH8-RCV(𝛼) for
following numerical examples.

The convergence of frequencies results of thin and thick
square plates with SSSS and CCCC boundary conditions for
QH8-RCV(−0.08) and QH8-LV are shown in Table 8 and
Figure 5. The square plate is discretized by 𝑁 × 𝑁 uniform
meshes with 𝑁 = 4, 8, 16. The results agree well with [27]
when𝑁 = 8, 16.

Then, natural frequencies analyses are further carried on
the thin (𝑡/𝑏 = 0.001) and thick (𝑡/𝑏 = 0.1) square plate
with the meshes of 16 × 16 elements and various boundary
conditions such as SSFF, SFSF, SCSC, CFFF, CCFF, and CFCF.
The results are summarized in Table 9 and agree well with
[27]. The six lowest modes of clamped and simply supported
(CCCC, SSSS) thin square plate obtained by the QH8-RCV
are also investigated and plotted in Figure 6.
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Table 7: The six lowest nondimensional frequency parameters of a SSSS thick square plate (𝑡/𝐿 = 0.1).
Element (𝛼) Mode sequence number

1 2 3 4 5 6
QH8-RCV(−1) 1.9424 4.6599 4.6599 7.1742 8.7513 8.7513
QH8-RCV(−0.5) 1.9376 4.6420 4.6420 7.1505 8.7325 8.7325
QH8-RCV(−0.25) 1.9345 4.6229 4.6229 7.1032 8.6600 8.6600
QH8-RCV(−0.08) 1.9321 4.6062 4.6062 7.0581 8.5881 8.5881
QH8-RCV(0) 1.9308 4.5973 4.5973 7.0335 8.5482 8.5482
QH8-LV 1.9457 4.6784 4.6784 7.2173 8.8157 8.8157
Reference [27] 1.931 4.605 4.605 7.064 8.605 8.605

Table 8: Convergence of six lowest nondimensional frequency parameters (𝑡/ℎ = 0.001, 0.1 and SSSS, CCCC).𝑡/𝐿 Boundary Mesh Mode sequence number
1 2 3 4 5 6

(a) QH8 with modified consistent mass matrix (QH8-RCV, 𝛼 = −0.08)
0.001

SSSS

4 × 4 2.0208 5.1600 5.1600 8.5457 10.7782 10.77828 × 8 2.0044 5.0290 5.0290 8.0832 10.1251 10.125116 × 16 2.0010 5.0066 5.0066 8.0174 10.0268 10.0268
Ref. sol 2.000 5.000 5.000 8.000 10.000 10.000

CCCC

4 × 4 3.6986 7.7478 7.7478 11.8207 14.7803 14.90438 × 8 3.6563 7.4895 7.4895 11.1031 13.5317 13.594316 × 16 3.6484 7.4478 7.4478 10.9922 13.3726 13.4356
Ref. sol 3.646 7.436 7.436 10.964 13.332 13.395

0.1

SSSS

4 × 4 1.9440 4.6822 4.6822 7.3572 8.9607 8.96078 × 8 1.9335 4.6062 4.6062 7.0516 8.5663 8.566316 × 16 1.9321 4.6062 4.6062 7.0581 8.5881 8.5881
Ref. sol 1.931 4.605 4.605 7.064 8.605 8.605

CCCC

4 × 4 3.3008 6.3401 6.3401 9.0667 10.7861 10.86778 × 8 3.2925 6.2555 6.2555 8.7327 10.2492 10.340016 × 16 3.2943 6.2743 6.2743 8.7752 10.3198 10.4162
Ref. sol 3.292 6.276 6.276 8.792 10.356 10.455

(b) QH8 with lumped mass matrix (QH8-LV)

0.001

SSSS

4 × 4 1.9997 4.9970 4.9970 7.9691 9.9694 9.96948 × 8 2.0000 4.9999 4.9999 7.9986 10.0001 10.000116 × 16 2.0000 5.0000 5.0000 7.9998 9.9999 9.9999
Ref. sol 2.000 5.000 5.000 8.000 10.000 10.000

CCCC

4 × 4 3.6452 7.4121 7.4121 10.8713 12.9885 13.04688 × 8 3.6461 7.4365 7.4365 10.9637 13.3312 13.393516 × 16 3.6460 7.4363 7.4363 10.9644 13.3318 13.3949
Ref. sol 3.646 7.436 7.436 10.964 13.332 13.395

0.1

SSSS

4 × 4 1.9427 4.6385 4.6385 7.0569 8.5511 8.55118 × 8 1.9452 4.6710 4.6710 7.1895 8.7670 8.767016 × 16 1.9457 4.6784 4.6784 7.2173 8.8157 8.8157
Ref. sol 1.931 4.605 4.605 7.064 8.605 8.605

CCCC

4 × 4 3.3019 6.2524 6.2524 8.6322 10.0169 10.09178 × 8 3.3155 6.3496 6.3496 8.9075 10.4886 10.577316 × 16 3.3181 6.3688 6.3688 8.9622 10.5759 10.6670
Ref. sol 3.292 6.276 6.276 8.792 10.356 10.455
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Figure 4: Error of six lowest nondimensional frequency parameters.

4.2.2. Free Vibration of Circular Plate. Free vibration of a
circular plate (Figure 7) of 𝑅 = 5 with the clamped boundary
is then studied in this subsection. The material parameters
of the circular plate are given as follows: the density mass𝜌 = 8000, Young’s modulus 𝐸 = 2.0×1011, and Poisson’s ratio𝜇 = 0.3.

60 proposed elements and 205 nodes as shown in
Figure 7, Mesh A, are used to discretize the whole plate for
S8R of Abaqus, QH8-RCV(−0.08) and QH8-LV, while the
compared solutions given by other elements employ even
finer meshes. The frequencies given by MIN3 and NS+ES-
FEM [51] employ a mesh of 394 elements and 222 nodes; the
solutions of NS-DSG and ES-FEM+DSG3 employ a much
finer mesh of 848 elements and 460 nodes and ANS4 [52]
using 432 quadrilateral plate elements (or 864 triangular
elements).

The first ten modes of thin (𝑡/2𝑅 = 0.01) and thick
(𝑡/2𝑅 = 0.1) circular plates are shown in Tables 10 and 11,

respectively. Figure 8 plots the results obtained from different
methods. It is observed that the QH8-RCV and QH8-LV are
good competitors to ANS4 and exact solutions [42, 43] and
is more accurate than MIN3, ES-FEM+DSG3, and NS+ES-
FEM.

First six lowest modes of this clamped circular obtained
fromQH8-RCVusing themesh of Figure 7MeshB are shown
in Figure 9, which exactly describes the real physical modes
of the circular plate.

4.2.3. Free Vibration of Triangular Plates. QH8-RCV (𝛼 =−0.08) and QH8-LV are then applied in the free vibration
analyses of a cantilever triangular plate (CFF) with various
shape geometries just as shown in Figure 10(a). The material
parameters of the triangular plate are given as follows: the
density mass 𝜌 = 8000, Young’s modulus 𝐸 = 2.0 × 1011, and
Poisson’s ratio 𝜇 = 0.3. The plate is discretized by the meshes
as shown in Figure 10 for QH8. The convergence study of
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Figure 5: Convergence of six lowest nondimensional frequency parameters (𝑡/ℎ = 0.001, 0.1, and SSSS, CCCC).

nondimensional frequency parameter𝜔 = 𝜔𝐿2√𝜌𝑡/𝐷/𝜋2 for
thin (𝑡/𝐿 = 0.001) and thick (𝑡/𝐿 = 0.2) triangular plates
against different skew angles 𝛼 = 0∘, 15∘, 30∘, 45∘, and 60∘ is
undertaken and shown in Tables 12 and 13, respectively. The
first four nondimensional frequency parameters for the thin
and thick triangular plates are plotted in Figures 11 and 12.

TheNS+ES-FEM [51] with the mesh of 170 triangular ele-
ments and 108 nodes and DSG3, MIN3, and ES-FEM+DSG3
are also used for comparison. The reference solution was
obtained by the ANS method [52] using a mesh of 796
triangular elements. For thick triangular plate, QH8-RCV’s
performance is the best, but QH8-LV provides worse result
when the angle becomes larger for the third and fourthmodes
in Figure 12, because of the mesh with small number of
elements (45∘, 26 elements and 60∘, 28 elements) in some
degree. For the thin triangular plate, QH8-LV is better than
DSG3 and MIN3 and competes well with NS+ES-FEM and
Rayleigh-Ritz [53]. QH8-RCV’s performance is still the best
and a strong competitor of Rayleigh-Ritz. Six lowestmodes of

cantilever triangular plates (CFF) obtained from QH8-RCV
are illustrated in Figure 13.

4.3. Critical Load of Buckling. In the following tests, we
perform a series of plate buckling analyses to assess the con-
vergence characteristics and accuracy of the developed QH8
element in predicting a critical buckling load. The results
are presented in terms of a nondimensional buckling load
intensity factor. 𝐾𝑏 = 𝜆𝑏2(𝜋2𝐷), (47)

with 𝑏 being the edge width of the plate that is used
throughout the paper and𝐷 = 𝐸𝑡3/12(1 − 𝜇2).
4.3.1. Rectangular Plates Subjected to an In-Plane Compressive
Load. The parameter 𝛼0 in (42) for the present element
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Table 9: Frequency parameters for square Mindlin plates with different boundary conditions.

Boundary 𝑡/𝑏 Element Mode sequence number

1 2 3 4 5 6

SSFF

0.001
QH8-RCV 0.3407 1.7530 1.9541 3.8675 5.1729 5.4231

QH8-LV 0.3405 1.7485 1.9504 3.8550 5.1471 5.4000

Ref. sol 0.341 1.754 1.955 3.872 5.171 5.419

0.1
QH8-RCV 0.3329 1.6780 1.8751 3.5579 4.7179 4.9445

QH8-LV 0.3335 1.6944 1.8922 3.6122 4.8227 5.0496

Ref. sol 0.333 1.677 1.874 3.557 4.718 4.945

SFSF

0.001
QH8-RCV 0.9759 1.6329 3.7170 3.9486 4.7357 7.1656

QH8-LV 0.9755 1.6303 3.7009 3.9431 4.7240 7.1313

Ref. sol 0.976 1.635 3.721 3.946 4.735 7.167

0.1
QH8-RCV 0.9567 1.5594 3.4297 3.6829 4.3331 6.2859

QH8-LV 0.9601 1.5703 3.4900 3.7305 4.4011 6.4372

Ref. sol 0.956 1.559 3.429 3.681 4.332 6.290

SCSC

0.001
QH8-RCV 2.9350 5.5542 7.0348 9.6060 10.3849 13.1192

QH8-LV 2.9333 5.5466 7.0242 9.5833 10.3566 13.0799

Ref. sol 2.933 5.547 7.024 9.583 10.356 13.080

0.1
QH8-RCV 2.7019 4.9725 5.9898 7.9621 8.7685 10.2141

QH8-LV 2.7212 5.0501 6.0804 8.1367 8.9997 10.4651

Ref. sol 2.700 4.971 5.990 7.972 8.787 10.249

CFFF

0.001
QH8-RCV 0.3516 0.8603 2.1563 2.7540 3.1315 5.4804

QH8-LV 0.3514 0.8590 2.1499 2.7427 3.1211 5.4505

Ref. sol 0.352 0.862 2.157 2.756 3.136 5.490

0.1
QH8-RCV 0.3476 0.8167 2.0353 2.5832 2.8610 4.8108

QH8-LV 0.3481 0.8205 2.0567 2.6220 2.8963 4.9106

Ref. sol 0.348 0.816 2.034 2.582 2.860 4.811

CCFF

0.001
QH8-RCV 0.7003 2.4197 2.6929 4.8226 6.3563 6.6444

QH8-LV 0.6997 2.4117 2.6870 4.8039 6.3216 6.6129

Ref. sol 0.701 2.422 2.694 4.828 6.353 6.640

0.1
QH8-RCV 0.6761 2.2434 2.5046 4.2523 5.5551 5.8093

QH8-LV 0.6777 2.2687 2.5294 4.3213 5.6786 5.9314

Ref. sol 0.676 2.242 2.503 4.251 5.557 5.812

CFCF

0.001
QH8-RCV 2.2459 2.6732 4.4127 6.2028 6.8074 8.0892

QH8-LV 2.2448 2.6689 4.3935 6.1928 6.7890 8.0240

Ref. sol 2.246 2.675 4.417 6.198 6.806 8.087

0.1
QH8-RCV 2.0899 2.4334 3.9032 5.3315 5.7707 6.9214

QH8-LV 2.0979 2.4508 3.9716 5.3982 5.8585 7.1420

Ref. sol 2.088 2.431 3.901 5.331 5.771 6.929
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Mode 1 Mode 2
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Mode 5 Mode 6

Figure 6: Shape of the six lowest modes of SSSS thin square plate obtained from QH8-RCV (𝛼 = −0.08, 𝑡/ℎ = 0.001).

Model Mesh A Mesh B

R = 5

Figure 7: Circular plate model and its discretization for QH8 element (Mesh A: 205 nodes, 60 elements; Mesh B: 321 nodes, 96 elements).
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Table 10: Ten lowest parameterized natural frequencies 𝜔 = 𝜔𝑅2√𝜌𝑡/𝐷 of a clamped circular plate with 𝑡/2𝑅 = 0.01.
Mode NS-ES-FEM S8R MIN3 ES-FEM+DSG3 ANS4 QH8-RCV QH8-LV Ref. sol [42]
1 10.2700 10.3095 10.4082 10.3109 10.2572 10.3613 10.3669 10.216
2 21.1535 21.4233 22.2198 21.6702 21.4981 21.6355 21.5152 21.260
3 21.1617 21.4283 22.2444 21.6900 21.4981 21.6356 21.5167 21.260
4 34.4423 35.2809 37.7461 36.3124 35.3941 35.6621 35.1192 34.880
5 34.4573 35.3685 37.7816 36.3816 35.5173 35.7071 35.2812 34.880
6 39.1472 40.1039 43.0344 41.3801 40.8975 40.7676 40.1565 39.771
7 49.6819 52.2399 57.8881 54.7796 52.2054 52.6337 51.3212 51.040
8 49.7157 52.2597 58.0836 54.8922 52.2054 52.6344 51.3358 51.040
9 58.8517 62.2179 68.7260 64.6300 63.2397 63.0358 61.0974 60.820
10 59.0184 62.2543 69.2354 65.1330 63.2397 63.0368 61.1017 60.820

Table 11: Ten lowest parameterized natural frequencies 𝜔 = 𝜔𝑅2√𝜌𝑡/𝐷 of a clamped circular plate with 𝑡/2𝑅 = 0.1.
Mode NS-ES-FEM S8R MIN3 ES-FEM+DSG3 ANS4 QH8-RCV QH8-LV Ref. sol [43]
1 9.2460 9.2539 9.9682 9.3262 9.2605 9.3380 9.4444 9.240
2 17.6424 17.8115 20.306 18.0461 17.9469 17.8602 18.1926 17.834
3 17.6461 17.8115 20.3256 18.0673 17.9469 17.8603 18.1938 17.834
4 26.5699 27.0923 32.7800 27.8438 27.0345 26.9746 27.5602 27.214
5 26.5740 27.1650 32.7905 27.8856 27.6566 26.9836 27.6854 27.214
6 29.7654 30.4101 37.1591 31.1280 30.3221 30.0846 30.8631 30.211
7 35.5595 33.8815 47.5437 38.6936 37.2579 36.5419 37.3990 37.109
8 35.5999 33.8848 47.5993 38.7042 37.2579 36.5431 37.4096 37.109
9 41.0560 37.0290 55.3530 44.1130 43.2702 41.8999 42.8445 42.409
10 41.1226 37.0324 55.6608 44.3286 43.2702 41.9011 42.8465 42.409
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(b) Thick circular plate (𝑡/2𝑅 = 0.1)

Figure 8: Ten lowest parameterized natural frequencies of a clamped circular plate.
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Figure 9: Shape of the six lowest modes of a clamped thick circular plate obtained from QH8-RCV (𝑡/2𝑅 = 0.1).
QH8-R (8-node hybrid element with refined geometric stiff-
ness matrix) is determined by comparison using numerical
examples. A square plate (𝑎/𝑏 = 1) compressed in one
direction or two perpendicular directions are divided into
different meshes 2 × 2, 4 × 4, 6 × 6, 8 × 8, 12 × 12, 16 ×16. Thickness-to-width aspect ratios 𝑡/𝑏 = 0.01, 0.1, 𝛼0 =−1, −0.75, −0.5, −0.3, −0.17, 0, and boundary conditions
SSSS, CCCC are chosen. The computational results of the
critical load are given in Tables 14 and 15 and Figure 14, in
which the exact solutions can be found in [44–46]. After

analysis of numerical examples, the present 8-node hybrid
stress element QH8-R(𝛼0) has higher accuracy when −0.4 ≤𝛼0 ≤ −0.1, and we advise 𝛼0 = −0.17 for following numerical
examples.

A shear-locking phenomenon is firmly involved when
using thick plate theories to analyze thin plates. The present
QH8 element is free of shear-locking in static calculation.
A square plate is considered for this purpose and all other
related parameters are taken exactly the same as above.
Various boundaries such as SSSS, SFSC, SFSS, and SFSF
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Table 12: The lowest six parameterized natural frequencies of triangular plates with 𝑡/𝐿 = 0.001.
Skew angle Method Mode sequence number

1 2 3 4 5 6

0∘

DSG3 0.6288 2.4399 3.4796 5.9913 8.3737 11.2081
MIN3 0.6272 2.4242 3.4344 5.9458 8.2460 11.0178

ES-FEM+DSG3 0.6241 2.3970 3.3631 5.7976 7.9696 10.5356
NS+ES-FEM 0.6253 2.3335 3.1888 5.4772 7.4350 9.2790
Rayleigh-Ritz 0.6240 2.3770 3.3080 5.6890 7.7430 —

ASN4 0.6240 2.3790 3.3170 5.7240 7.7940 10.2000
QH8-RCV 0.6232 2.3709 3.2980 5.6766 7.7627 10.0574
QH8-LV 0.6165 2.3143 3.1843 5.4810 7.5749 9.6271

15∘

DSG3 0.5915 2.2360 3.6467 5.5686 7.8875 11.1572
MIN3 0.5886 2.2229 3.5717 5.5286 7.7447 10.9544

ES-FEM+DSG3 0.5843 2.1979 3.4937 5.3893 7.4745 10.4532
NS+ES-FEM 0.5854 2.1449 3.2938 5.0391 7.0313 9.1652
Rayleigh-Ritz 0.5840 2.1810 3.4090 5.2800 7.2640 —

ASN4 0.5830 2.1810 3.4130 5.3030 7.2890 10.0950
QH8-RCV 0.5829 2.1759 3.3995 5.2687 7.2983 9.9691
QH8-LV 0.5750 2.1291 3.2332 5.0577 7.0972 9.4300

30∘

DSG3 0.5928 2.2293 3.9729 5.8523 7.8772 11.9930
MIN3 0.5866 2.2164 3.8656 5.8059 7.6697 11.5791

ES-FEM+DSG3 0.5795 2.1881 3.7620 5.6464 7.3608 10.9609
NS+ES-FEM 0.5801 2.1433 3.5402 5.2019 6.8932 9.6373
Rayleigh-Ritz 0.5760 2.1740 3.6390 5.5110 7.1080 —

ASN4 0.5750 2.1740 3.6380 5.5340 7.1390 10.4770
QH8-RCV 0.5763 2.1685 3.6379 5.4957 7.1296 10.3946
QH8-LV 0.5714 2.1368 3.5544 5.3345 6.9689 9.9234

45∘

DSG3 0.6265 2.4298 4.5709 6.9888 8.7055 13.4984
MIN3 0.6125 2.4038 4.4237 6.9194 8.3447 12.7848

ES-FEM+DSG3 0.6001 2.3557 4.2652 6.6442 7.9210 11.8923
NS+ES-FEM 0.6020 2.3189 4.0352 6.0299 7.3322 10.5988
Rayleigh-Ritz 0.5900 2.3290 4.1370 6.3810 7.6020 —

ASN4 0.5880 2.3240 4.1260 6.3810 7.6140 11.2240
QH8-RCV 0.5925 2.3290 4.1374 6.4133 7.6019 11.2205
QH8-LV 0.5858 2.3042 3.9784 6.1554 7.4240 10.8429

60∘

DSG3 0.6969 2.9282 6.0785 9.3379 11.8340 17.8590
MIN3 0.6631 2.8106 5.8343 8.9727 11.3197 16.3597

ES-FEM+DSG3 0.6371 2.6804 5.4909 8.1353 10.6516 14.5225
NS+ES-FEM 0.6546 2.6792 5.3330 7.3384 9.6825 12.9900
Rayleigh-Ritz 0.6170 2.5760 5.3760 7.5240 10.2850 —

ASN4 0.6130 2.5640 5.3530 7.4600 10.3060 12.9420
QH8-RCV 0.6234 2.5978 5.3502 7.5829 10.2623 13.0926
QH8-LV 0.6164 2.5712 5.1891 7.3141 9.8462 12.8085
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Table 13: The lowest six parameterized natural frequencies of triangular plates with 𝑡/𝐿 = 0.2.
Skew angle Method Mode sequence number

1 2 3 4 5 6

0∘

DSG3 0.5872 1.9529 2.4678 4.1305 5.2243 6.2886
MIN3 0.6042 2.1109 2.7737 4.6581 6.1311 7.3208

ES-FEM+DSG3 0.5856 1.9376 2.4411 4.0678 5.1289 6.1359
Rayleigh-Ritz 0.5820 1.9000 2.4080 3.9360 — —

ASN4 0.5820 1.9150 2.4280 3.9840 5.0180 5.9440
NS+ES-FEM 0.5821 1.8710 2.3600 3.8330 4.8217 5.5683
QH8-RCV 0.5821 1.8907 2.3931 3.8677 4.8701 5.6897
QH8-LV 0.5826 1.9628 2.5320 4.1115 5.2710 6.4029

15∘

DSG3 0.5478 1.8160 2.4429 3.8111 5.0253 6.0033
MIN3 0.5656 1.9555 2.7772 4.2851 5.8857 6.9977

ES-FEM+DSG3 0.5457 1.8018 2.4121 3.7529 4.9317 5.8327
Rayleigh-Ritz 0.5440 1.7710 2.3860 3.6280 — —

ASN4 0.5450 1.7640 2.4200 3.6080 4.8200 5.4310
NS+ES-FEM 0.5442 1.7466 2.3391 3.5289 4.6721 5.1901
QH8-RCV 0.5441 1.7644 2.3687 3.5813 4.7024 5.3504
QH8-LV 0.5427 1.8251 2.5244 3.8353 5.0144 6.1823

30∘

DSG3 0.5365 1.8126 2.4954 3.7549 4.9796 5.9219
MIN3 0.5582 1.9551 2.8595 4.2605 5.8273 6.9945

ES-FEM+DSG3 0.5329 1.7963 2.4552 3.6902 4.8717 5.6942
Rayleigh-Ritz 0.5330 1.7720 2.4190 3.5650 — —

ASN4 0.5320 1.7730 2.4370 3.5910 4.7650 5.3230
NS+ES-FEM 0.5336 1.7485 2.3730 3.4615 4.5927 4.9630
QH8-RCV 0.5331 1.7663 2.4045 3.5167 4.6384 5.1512
QH8-LV 0.5342 1.8391 2.7165 3.9146 4.9778 6.4454

45∘

DSG3 0.5448 1.9269 2.6246 3.9196 5.1474 5.9838
MIN3 0.5724 2.1044 3.0165 4.5535 6.0525 7.2736

ES-FEM+DSG3 0.5380 1.9002 2.5682 3.8239 4.9806 5.6000
Rayleigh-Ritz 0.5400 1.8850 2.4890 3.6740 — —

ASN4 0.5410 1.8840 2.5180 3.7480 4.7400 5.2920
NS+ES-FEM 0.5408 1.8634 2.4323 3.5593 4.4299 4.9328
QH8-RCV 0.5391 1.8765 2.4729 3.6337 4.5699 5.0583
QH8-LV 0.5389 1.9562 2.9904 4.2186 5.2159 6.9240

60∘

DSG3 0.5691 2.1281 2.7093 4.3427 5.3437 6.5278
MIN3 0.6017 2.3742 3.2377 5.1762 6.5578 8.1003

ES-FEM+DSG3 0.5569 2.0692 2.5955 4.1109 4.7967 6.0192
Rayleigh-Ritz 0.5590 2.0590 2.3960 3.5900 — —

ASN4 0.5590 2.0950 2.4830 3.9100 4.5170 5.7630
NS+ES-FEM 0.5611 2.0446 2.3276 3.5969 4.2312 5.3615
QH8-RCV 0.5574 2.0455 2.3807 3.6046 4.2131 5.2640
QH8-LV 0.5573 2.1170 3.8244 4.6656 6.2099 7.7794
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L = 10



(a) Triangular plate (b) 0∘, 28 elements and 106
nodes

(c) 15∘, 26 elements and 103 nodes (d) 30∘, 27 elements and 106 nodes

(e) 45∘, 26 elements and 105 nodes (f) 60∘, 28 elements and 107 nodes

Figure 10: Triangular plate model with various shape geometries and its discretization meshes (𝜃 = 0∘, 15∘, 30∘, 45∘, 60∘).
Table 14:The factor of uniaxial buckling loads along the 𝑥-axis of rectangular plates with length-to-width aspect ratios 𝑎/𝑏 = 1 and thickness-
to-width aspect ratios 𝑡/𝑏 = 0.01.
Boundary condition Element (𝛼0) Mesh2 × 2 4 × 4 6 × 6 8 × 8 12 × 12 16 × 16
SSSS

QH8-R(−1) 3.1427 3.4982 3.7191 3.8183 3.8982 3.9293(−0.75) 4.0364 3.8502 3.9045 3.9338 3.9588 3.9691(−0.5) 4.7314 4.0776 4.0190 4.0043 3.9961 3.9940(−0.3) 4.8659 4.1389 4.0521 4.0258 4.0084 4.0027(−0.17) 4.7097 4.1161 4.0444 4.0225 4.0079 4.0031(0) 4.2694 4.0139 4.0002 3.9980 3.9972 3.9971
Reference [44] 4

CCCC

QH8-R(−1) 5.3071 7.4051 8.3520 8.9070 9.4027 9.6049(−0.75) 8.2670 9.1692 9.4445 9.6292 9.7956 9.8651(−0.5) 10.9935 10.6774 10.2199 10.1074 10.0459 10.0304(−0.3) 12.9592 11.1920 10.4649 10.2587 10.1293 10.0885(−0.17) 13.6765 11.0371 10.4113 10.2349 10.1247 10.0896(0) 13.6316 10.2573 10.0875 10.0576 10.0482 10.0472
Reference [44] 10.0738

Note. 𝜅 = 5/6.

are investigated. Several thickness-span aspect ratios 𝑡/𝑏 =0.1, 0.2 (moderately thick plate) and 𝑡/𝑏 = 0.001, 0.05
(thin plate) are considered, respectively, and the results are
shown in Table 16 and Figure 15, which are compared with

the analytical solutions [45] and other existing numerical
approaches such as the SSM [54] and the shear-locking-free
and mesh-free method (Shear-MK, MK) [55]. The element
S8R and QH8-R use a regular pattern of 11×11 element (408
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Figure 11: Convergence study of the lowest four parameterized natural frequencies of triangular plates with 𝑡/𝐿 = 0.001.
Table 15:The factor of uniaxial buckling loads along the 𝑥-axis of rectangular plates with length-to-width aspect ratios 𝑎/𝑏 = 1 and thickness-
to-width aspect ratios 𝑡/𝑏 = 0.1.
Boundary Element (𝛼0) Mesh2 × 2 4 × 4 6 × 6 8 × 8 12 × 12 16 × 16
SSSS

QH8-R(−1) 2.3811 2.4760 2.7861 3.0392 3.3424 3.4914(−0.75) 3.3240 3.0601 3.2413 3.3983 3.5815 3.6689(−0.5) 4.1951 3.5827 3.6110 3.6676 3.7403 3.7756(−0.3) 4.4995 3.8245 3.7755 3.7778 3.7917 3.8002(−0.17) 4.3933 3.8501 3.7970 3.7869 3.7845 3.7850(0) 3.9119 3.6966 3.7056 3.7146 3.7232 3.7266
Reference [45] 3.7864

CCCC

QH8-R(−1) 3.4293 4.0301 4.6232 5.2042 6.1652 6.7926(−0.75) 5.9999 5.8082 6.0193 6.4602 7.1856 7.6362(−0.5) 8.7108 7.7026 7.4918 7.6519 7.9938 8.2101(−0.3) 10.4843 8.8128 8.3089 8.2536 8.3146 8.3741(−0.17) 10.9492 8.8625 8.3903 8.2963 8.2811 8.2936(0) 9.9368 7.5669 7.5101 7.5613 7.6923 7.7874
Reference [46] 8.2917

Note. 𝜅 = 5/6.
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Figure 12: Convergence study of the lowest four parameterized natural frequencies of triangular plates with 𝑡/𝐿 = 0.2.
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Figure 13: The six lowest modes of a CFF thin triangular plate obtained from QH8-RCV (𝜃 = 15∘).
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Figure 14: The factor of uniaxial buckling loads (𝜎𝑥0) along the 𝑥-axis of rectangular plates for QH8-R (𝛼0) element.

nodes) and MK, Shear-MK use a regular pattern of 21 × 21
elements (441 nodes). A shear correction factor 𝜅 = 𝜋2/12 is
used here for a proper comparison.

Through the achieved results shown in Table 16 and
Figure 15, the shear-locking phenomenon, on the one side, is
found very clearly because of losing the accuracy significantly
when the standard MK is applied to deal with thin plates,
that is, 𝑡/𝑏 = 0.001, 0.05, but conversely matches well with
thick plates, that is, 𝑡/𝑏 = 0.1, 0.2. Higher buckling loads by
the standard MK are obtained because the plates may exhibit
highly stiffer behavior. On the other hand, a good agreement
and free of shear-locking are foundwhen the Shear-MK, S8R,
and the present QH8-R are used.

The results of uniaxial buckling loads (𝜎𝑦0) along the y-
axis and the biaxial in-plane compression load (𝜎𝑥0 = 𝜎𝑦0)
are shown in Tables 17 and 18 and Figures 16 and 17 associated

with five different densities of regular elements such as 2 × 2
(21 nodes), 4×4 (65 nodes), 6×6 (133 nodes), 8×8 (225 nodes),
and 10 × 10 (341 nodes).

We also consider simply supported plates (SSSS) with
various thickness-to-width ratios, 𝑡/𝑏 = 0.05, 0.1, 0.2, and
length-to-width ratios, 𝑎/𝑏 = 0.5, 1.0, 1.5, 2.0, 2.5.

Table 19 and Figure 18 show the buckling factors using
the element QH8-R with regular mesh of 9 × 9 rectangular
elements (280 nodes) when 𝑎/𝑏 = 1.0. The QH8-R results
are also compared to the DSG3 and ES-DSG3 [47] (mesh of16×16 elements and 289 nodes), S8R (mesh of 9×9 elements
and 280 nodes), mesh-free method [48], and the pb-2 Ritz
[46]. It is seen that theQH8-R exhibits a good agreementwith
the pb-2 Ritz method, and S8R is not suitable for plate 𝑡/𝑏
= 0.2. Figure 19 also depicts the uniaxial buckling modes of
simply supported rectangular plates with thickness-to- width
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Figure 15: Normalized uniaxial buckling load factors along the 𝑥-axis (𝜎𝑥0) versus the thickness-span aspect ratio 𝑡/𝑏 = 0.001, 0.05, 0.1, 0.2
with various boundaries.

ratios 𝑡/𝑏 = 0.01 and various length-to-width ratios, 𝑎/𝑏 = 1.0,
1.5, 2.0, 2.5.

4.3.2. Compression Buckling Behavior of Skew Plates. The
buckling problem of skew plate has also been considered
by Kitipornchai et al. [46] and Wang et al. [56] using the
pb-2 Ritz method. Skew plates, as shown in Figure 20, with
skew angle, 𝜃, thickness-to-width ratio, 𝑡/𝑏, and different
combinations of edge support conditions, are examined. The
plate is modelled with 6 × 6, 9 × 9 and 16 × 16 distributed
particles for QH8-R (𝛼0 = −0.17) element.

Numerical results for thick plateswith thickness-to-width
ratios, 𝑡/𝑏 = 0.05, 0.1, skew angles, 𝛼 = 0∘, 15∘, 30∘, 45∘, and
various boundary conditions of S∗S∗S∗S∗, CCCC, CFCF, and
S∗FS∗F, are compared with those of mesh-free method [48]
(with 17×17 distributed particles) andKitipornchai et al. [46]
in Table 20. S∗, C, and F denote soft-type simply supported,
clamped, and free boundary conditions, respectively. Based

on the favorable comparisons observed in Table 8, it can be
concluded that the plate buckling load intensity factors are
well approximated by the QH8-R (𝛼0 = −0.17) element.

4.3.3. A Square Plate with a Hole Subjected to Different In-
Plane Loads. Lastly we consider a hard-type simply sup-
ported (SSSS) and clamped (CCCC) square plate with a hole.
For the purpose of the comparison, the material parameters
are taken the same as in the above example but the length𝑎 = 𝑏 = 10 and the thickness 𝑡 = 1 are employed instead.
The irregularly scattered pattern of 84 elements and 308
nodes shown in Figure 21 is used. The plate is subjected
to three different in-plane load cases, namely, an uniaxial
compressive load in 𝑥-direction, 𝜎0𝑥, pure shear load, and
biaxial compressive loads in 𝑥 and 𝑦 directions, where 𝜎𝑥0 =𝜎𝑦0, respectively.

The results of the normalized buckling load factor cal-
culated for those loads with different boundary conditions
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Figure 16: Normalized axial buckling load factors along the 𝑦-axis (𝜎𝑦0) versus the thickness-span aspect ratio 𝑡/𝑏 = 0.001, 0.05, 0.1, 0.2 with
various boundaries.

are shown in Table 21. The results agree very well with
those computed by the EFG [57] involving both the third-
order shear deformation plate theory (TSDT) and the FSDT.
And the Shear-MK [55] with 400 nodes is also used for
comparison. Additionally, it is also interesting to view the
buckling modes of the problem and, thus, Figure 22 presents
the first buckling modes under the three types of buckling
loads for four different boundary conditions.

5. Conclusions

The higher-order hybrid stress quadrilateral Mindlin plate
element QH8 for solving free vibration and buckling analysis
problems is formulated in this paper.Due to numerical results
given above, some concluding remarks can be drawn as
follows.

The QH8 element is an efficiency method for solving the
free vibration problems and buckling analysis of plate due to
its high accuracy. It is free of shear locking and can pass both
the constant bending with zero shear stresses and the strict

patch test with nonzero constant shear stresses, nomatter the
element edges are straight or curved and nomatter the shapes
of the elements are convex or concave.

The refined nonconforming element method is a very
efficient method, which can be used to improve the accuracy
of nonconforming elements. It has been used to construct the
QH8 element successfully. With the refined mass matrix and
refined geometric stiffness matrix, the accuracy of vibration
and stability analysis has been improved just by changing the
value of 𝛼 and 𝛼0, and it really works.

From the numerical results, the present plate element has
performedwell inmost situations. It is shown that the present
plate element is applicable to either thin or thick situations
with enough accuracy.
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(a) 𝑎/𝑏 = 1.0 (b) 𝑎/𝑏 = 1.5

(c) 𝑎/𝑏 = 2.0 (d) 𝑎/𝑏 = 2.5

Figure 19: Axial bucklingmodes of simply supported rectangular plates with thickness-to-width ratios 𝑡/𝑏 = 0.01 and various length-to-width
ratios 𝑎/𝑏.
Table 16: The factor of uniaxial buckling loads (𝜎𝑥0) along the x-axis of rectangular plates (𝑎/𝑏 = 1) with various boundary conditions and
various thickness-to-width ratios (𝑡/𝑏).
Boundary Method 𝑡/𝑏

0.001 0.05 0.1 0.2

SSSS

SSM 4.000 3.944 3.784 3.256
Shear-MK 4.0243 3.9153 3.7895 3.2748

MK 5.467 5.0111 3.7905 3.2799
Exact [45] 4.000 3.9437 3.7838 3.2558

S8R 3.997 3.9445 3.7866 1.7025
QH8-R 4.0132 3.9478 3.7827 3.2464

SFSC

SSM 1.653 1.620 1.556 1.370
Shear-MK 1.6552 1.6211 1.5658 1.3765

MK 2.5876 2.1778 1.5699 1.3612
Exact [45] 1.6522 1.6197 1.5558 1.3701

S8R 1.6560 1.6202 1.5570 1.2532
QH8-R 1.6522 1.6209 1.5549 1.3669

SFSS

SSM 1.402 1.378 1.327 1.173
Shear-MK 1.4211 1.3877 1.3795 1.2700

MK 2.2456 2.0323 1.3791 1.2755
Exact [45] 1.4014 1.3813 1.3707 1.2138

S8R 1.4017 1.3816 1.3415 1.2158
QH8-R 1.4022 1.3827 1.3410 1.2133

SFSF

SSM 0.9523 0.9412 0.9146 0.8274
Shear-MK 0.9676 0.9455 0.9231 0.8575

MK 1.7644 1.6578 0.9344 0.8654
Exact [45] 0.95225 0.94314 0.92187 0.85011

S8R 0.9524 0.9433 0.9223 0.8325
QH8-R 0.9532 0.9442 0.9227 0.8519

Note. QH8-R (𝛼0 = −0.17). Shear correction factor 𝜅 = 𝜋2/12.
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Table 17: The factor of uniaxial buckling loads (𝜎𝑦0) along the y-axis of rectangular plates (𝑎/𝑏 = 1) with various boundary conditions and
various thickness-to-width ratios (𝑡/𝑏).
Boundary Element 𝑡/𝑏

0.001 0.05 0.1 0.2

SSSS

2 × 2 4.7132 4.6261 4.3905 3.67714 × 4 4.1193 4.0431 3.8479 3.24556 × 6 4.0476 3.9751 3.7949 3.22318 × 8 4.0257 3.9564 3.785 3.232110 × 10 4.0161 3.9495 3.7829 3.2422

Exact [45] 4.0000 3.9437 3.7838 3.2558

SFSC

2 × 2 2.5834 2.5216 2.3678 1.95834 × 4 2.3993 2.3194 2.1530 1.75806 × 6 2.3821 2.2898 2.1191 1.72888 × 8 2.3797 2.2794 2.1079 1.721310 × 10 2.3799 2.2743 2.1031 1.7190

Exact [45] 2.3901 2.2667 2.1010 1.7200

SFSS

2 × 2 2.5626 2.502 2.3511 1.94804 × 4 2.3741 2.2965 2.1346 1.74836 × 6 2.3567 2.2672 2.1010 1.71958 × 8 2.3541 2.2569 2.0901 1.712210 × 10 2.3542 2.2518 2.0853 1.7099

Exact [45] 2.3639 2.2442 2.0829 1.7105

SFSF

2 × 2 2.1000 2.058 1.9553 1.67754 × 4 2.0327 1.9737 1.8516 1.55676 × 6 2.0286 1.9589 1.8315 1.53588 × 8 2.0295 1.9531 1.8244 1.530110 × 10 2.0309 1.9500 1.8212 1.5282

Exact [45] 2.0413 1.9457 1.8216 1.5333
Note. QH8-R (𝛼0 = −0.17). Shear correction factor 𝜅 = 𝜋2/12.
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Figure 20: Skew plate under uniaxial in-plane loading.
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Table 18: The factor of biaxial buckling loads (𝜎𝑥0 = 𝜎𝑦0) for rectangular plates (𝑎/𝑏 = 1) with various boundary conditions and various
thickness-to-width ratios (𝑡/𝑏).
Boundary Element 𝑡/𝑏

0.001 0.005 0.05 0.1

SSSS

2 × 2 2.3774 2.3770 2.3377 2.22774 × 4 2.0671 2.0667 2.0334 1.94326 × 6 2.0275 2.0272 1.9954 1.91088 × 8 2.015 2.0147 1.984 1.902310 × 10 2.0095 2.0091 1.9793 1.8992
Exact [45]a 2.0000 1.9997 1.9718 1.8919

SFSC

2 × 2 1.1820 1.1818 1.1652 1.12054 × 4 1.1474 1.1472 1.1261 1.07676 × 6 1.1427 1.1424 1.1184 1.06798 × 8 1.1416 1.1413 1.1155 1.064910 × 10 1.1414 1.1410 1.1140 1.0636
Exact [45]b 1.1431 1.1412 1.1119 1.0641

SFSS

2 × 2 1.0925 1.0923 1.0794 1.04394 × 4 1.0606 1.0605 1.0445 1.00606 × 6 1.0558 1.0556 1.0378 0.99868 × 8 1.0546 1.0543 1.0352 0.996210 × 10 1.0541 1.0538 1.0340 0.9952
Exact [45]b 1.0548 1.0535 1.0322 0.99541

SFSF

2 × 2 0.9671 0.9670 0.9583 0.93344 × 4 0.9400 0.9399 0.9302 0.90536 × 6 0.9351 0.9349 0.9247 0.90028 × 8 0.9335 0.9333 0.9228 0.898610 × 10 0.9328 0.9326 0.9219 0.8979
Exact [45]b 0.93209 0.9316 0.92071 0.89774

Note. QH8-R (𝛼0 = −0.17).
aShear correction factor 𝜅 = 0.823045. bShear correction factor 𝜅 = 5/6.

Table 19: The factor of uniaxial buckling loads along the 𝑥-axis of rectangular plates (SSSS) with various length-to-width ratios and various
thickness-to-width ratios.𝑎/𝑏 𝑡/𝑏 S8R ES-DSG3 [47] Mesh-free [48] QH8-R pb-2 Ritz [46]

0.5
0.05 6.0376 5.9873 6.0405 6.0822 6.0372
0.1 5.4779 5.3064 5.3116 5.5071 5.4777
0.2 1.9525 3.720 3.7157 3.9754 3.9963

1
0.05 3.9441 3.9412 3.9293 3.9528 3.9444
0.1 3.7861 3.7402 3.7270 3.7855 3.7865
0.2 2.0444 3.1263 3.1471 3.2427 3.2637

1.5
0.05 4.2576 4.2852 4.2116 4.2745 4.2570
0.1 4.0255 3.9844 3.8982 4.0332 4.0250
0.2 2.0132 3.1461 3.1032 3.2966 3.3048

2
0.05 3.9440 3.9811 3.8657 3.9528 3.9444
0.1 3.7860 3.7711 3.6797 3.7855 3.7865
0.2 1.9486 3.1415 3.0783 3.2427 3.2637

2.5
0.05 4.0673 4.1691 3.9600 4.0795 4.0645
0.1 3.8700 3.8924 3.7311 3.8737 3.8683
0.2 1.8697 3.1234 3.0306 3.2338 3.2421
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Table 20: Buckling load intensity factor of skew plates having S∗S∗S∗S∗, CCCC, CFCF, and S∗FS∗F boundary conditions subject to uniaxial
loads (𝜎𝑥0).
Boundary 𝑡/𝑏 Skew angle Mesh-free [48] 6 × 6 9 × 9 16 × 16 pb-2 Ritz [46]

S∗S∗S∗S∗

0.05

0∘ — 3.8057 3.7905 3.7815 3.7835
15∘ — 4.1583 4.1380 4.1276 4.1314
30∘ 5.3874 5.4755 5.4304 5.4109 5.4182
45∘ 8.6926 8.9757 8.8002 8.7247 8.7328

0.1

0∘ — 3.5111 3.5007 3.4965 3.4950
15∘ — 3.8234 3.8094 3.8047 3.8027
30∘ 4.8534 4.9813 4.9475 4.9370 4.9324
45∘ 7.6106 7.9388 7.7931 7.7430 7.7236

CCCC

0.05

0∘ 9.5418 9.8091 9.6238 9.5647 9.5588
15∘ 10.2123 10.5549 10.3209 10.2430 10.2312
30∘ 12.5225 13.2413 12.7803 12.6114 12.5711
45∘ 17.8211 19.9900 18.6615 18.1211 17.9652

0.1

0∘ 8.1849 8.3903 8.2836 8.2936 8.2917
15∘ 8.7560 8.9338 8.7863 8.7845 8.7741
30∘ 10.3273 10.8235 10.4883 10.4238 10.3760
45∘ 13.2881 15.2116 14.2092 13.8638 13.6909

CFCF

0.05

0∘ 3.7984 3.8724 3.8281 3.8082 3.8007
15∘ 4.1310 4.2202 4.1688 4.1460 4.1387
30∘ 5.3510 5.4976 5.4102 5.3720 5.3660
45∘ 7.3658 7.9413 7.6341 7.4986 7.4670

0.1

0∘ 3.5063 3.5523 3.5262 3.5185 3.5077
15∘ 3.7684 3.8441 3.8135 3.8049 3.7937
30∘ 4.7773 4.8862 4.8316 4.8168 4.8043
45∘ 6.3092 6.6886 6.4547 6.3680 6.3311

S∗FS∗F

0.05

0∘ — 0.9459 0.9436 0.9424 0.9421
15∘ — 1.0535 1.0513 1.0501 1.0501
30∘ — 1.4612 1.4594 1.4583 1.4603
45∘ — 2.5333 2.5317 2.5311 2.5450

0.1

0∘ — 0.9227 0.9210 0.9202 0.9199
15∘ — 1.0215 1.0199 1.0191 1.0189
30∘ — 1.3892 1.3878 1.3873 1.3887
45∘ — 2.3192 2.3187 2.3190 2.3316

Note. 6 × 6, 9 × 9, 16 × 16: the meshes for element QH8-R(−0.17).

Table 21: The uniaxial, biaxial, and pure shear buckling load factor for a square plate with a circular hole and different boundary conditions.

Buckling load Boundary EFG (FSDT) EFG (TSDT) Shear-MK HQ8-R

Uniaxial CCCC 7.995 8.097 8.0777 8.0543
SSSS 1.986 1.969 1.9544 2.0580

Biaxial CCCC 4.781 4.860 4.9878 4.8477
SSSS 1.032 1.021 1.0511 1.0696

Pure shear CCCC 12.669 13.357 13.5252 12.6976
SSSS 7.867 7.873 8.1544 7.8971
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Figure 21: Square plate with a circular hole and the distributions (308 nodes, 84 elements).

(a) Uniaxial SSSS (b) Uniaxial CCCC

(c) Biaxial SSSS (d) Biaxial CCCC

(e) Pure shear SSSS (f) Pure shear CCCC

Figure 22: The first uniaxial, biaxial, and pear shear buckling modes of the plate with a circular hole associated with different boundaries as
SSSS, CCCC (thickness 𝑡 = 1.0).
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