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Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT)
system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon
nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed.
The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive
axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular
excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on
the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT.
Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption
are formulated.The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA), which can be applied
to suppress excessive vibrations of corresponding SWCNT systems.

1. Introduction

Carbon nanotubes (CNTs) are becoming increasingly prom-
ising materials for modern technology applications (nano-
composites, nanodevices, nanoelectronics, and nanomedi-
cine) due to their exceptional thermomechanical, chemical,
and optoelectronic properties. The superior strength and
unusual deformability of CNTs have been a subject of numer-
ous recent studies. For example, the classical Euler and Tim-
oshenko elastic-beam models have been used effectively to
study the deformation of CNTs, including static deflections,
column buckling, resonant frequencies, andmodes, as well as
wave propagation such asWong et al. [1], Poncharal et al. [2],
Yoon et al. [3], Li and Chou [4], Ru [5], Wang and Hu [6],
Zhang et al. [7], and Wang et al. [8].

Recently, carbon nanotube (CNT) filled with fluids has
been of a great interest. This is because CNTs promise many
new applications in nanobiological devices and nanomechan-
ical systems such as fluid conveyance and drug delivery.

Chang and Lee [9] studied the free vibration of a single-
walled carbon nanotube containing a fluid flow by using the
Timoshenko beam model. They analyzed the effects of the
flow velocity and the aspect ratio of length to diameter on the
vibration frequency and mode shape of the SWCNT. Their
results showed the effects of rotary inertia and transverse
shear deformation result in a reduction of the vibration
frequencies, especially for higher modes of vibration and
short nanotubes.

The systems connected by an elastic layer constitute one
group of such mechanical structures which are commonly
encountered in mechanical, construction, and aeronautical
industry. Such systems are important as they give the initial
approximation of the solution and dynamic behavior of
the system at slight motion. The problem of two elastically
connected beams joined by theWinkler elastic layer emerged
in order to determine the conditions for the behavior of the
system acting as a dynamic absorber in technical practice.
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A mathematical model was developed by Seelig and
Hoppmann [10].They investigated the problem of an impulse
load effect on a beam and produced a system of partial differ-
ential equations describing its vibration. The obtained theo-
retical and experimental results confirmed a sound approxi-
mation of an analytical solution obtained for slender beams
at small transverse motions using the Euler-Bernoulli theory.

Oniszczuk [11, 12] analyzed the problemof free and forced
vibration of two elastically connected Euler-Bernoulli beams.
He determined analytical solutions for eigenfrequencies,
amplitudinous functions, and vibration modes. He discussed
the effect of stiffness which the elastic interlayer had on
the frequencies and amplitudes of the system. Also, the
conditions for the occurrence of resonance and the behavior
of the system as a dynamic absorber are determined.

The analysis of the system composed of two connected
beams was carried on by Zhang et al. [13, 14]. In their work,
free and forced vibrations by two elastically connected Euler-
Bernoulli beams affected by axial compression forces are
investigated. They presented analytical solutions for natural
frequencies of the system in the function of axial compression
force impact and their effect on the vibration amplitude.They
determined the codependency between the system’s critical
force and the Euler critical load in the function of an axial
force of the other beam.

Stojanović et al. [15] analyzed free vibration and static
stability of two elastically connected beams with Winkler
elastic layer in-between with the influence of rotary inertia
and transverse shear.They described themotion of the system
by a homogeneous set of two partial differential equations.
Also, they determined the natural frequencies and associated
amplitude ratios of an elastically connected double-beam
complex system and the analytical solution of the critical
buckling load.

Stojanović and Kozić [16] discussed the case of forced
vibration of two elastically connected beams with Winkler
elastic layer in-between and the effect of axial compression
force on the amplitude ratio of system vibration for three
types of external forcing (arbitrarily continuous harmonic
excitation, uniformly continuous harmonic excitation, and
concentrated harmonic excitation).They determined general
conditions of resonance and dynamic vibration absorption.
In the other paper, Stojanović et al. [17] discussed the
analytic analysis of static stability of a system consisting of
three elastically connected Timoshenko beams on an elastic
foundation.They provided expressions for critical force of the
system under the influence of elastic Winkler layers.

In an attempt to find a physically close and mathemati-
cally simple representation of an elastic foundation for these
materials, Pasternak proposed a foundationmodel consisting
of a Winkler foundation with shear interactions.This may be
accomplished by connecting the ends of the vertical springs to
a beam consisting of incompressible vertical elements, which
deforms only by transverse shear.

2. The Beam Model for SWCNTs

TheRayleigh beam theory, which has taken rotary inertia into
account, is applied to analyze forced transverse vibration of
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Figure 1: Double single-walled carbon nanotube system.
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Figure 2: Deflected differential Rayleigh beam element with Paster-
nak layer in-between.

a closed double SWCNT system containing a fluid with effect
of compressive axial load with Pasternak interlayer.

Figure 1 shows a double SWCNT system containing a
fluidwith a Pasternak layer in-betweenwith length of 𝑙, which
was subjected to axial compressions𝐹

1
and𝐹
2
that are positive

in compression, which do not change with time and arbitrar-
ily distributed transverse continuous loads 𝑓

1
and 𝑓

2
that are

positive when they act downward.
An element of deflected differential Rayleigh beam of

length 𝑑𝑥 with Pasternak layer between two cross sections is
shown in Figure 2.
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Let the functions of longitudinal and transverse motion
of the Rayleigh beam system be as follows: 𝑢

𝑅1
(𝑦, 𝑥, 𝑡),

𝑤
𝑅1

(𝑦, 𝑥, 𝑡), 𝑢
𝑅2

(𝑦, 𝑥, 𝑡), and 𝑤
𝑅2

(𝑦, 𝑥, 𝑡). We have

𝑢
𝑅1

(𝑦, 𝑥, 𝑡) = 𝑢
0

𝑅1
(𝑥, 𝑡) − 𝑦

𝜕𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥
,

𝑤
𝑅1

(𝑦, 𝑥, 𝑡) = 𝑤
0

𝑅1
(𝑥, 𝑡) ,

𝑢
𝑅2

(𝑦, 𝑥, 𝑡) = 𝑢
0

𝑅2
(𝑥, 𝑡) − 𝑦

𝜕𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥
,

𝑤
𝑅2

(𝑦, 𝑥, 𝑡) = 𝑤
0

𝑅2
(𝑥, 𝑡) .

(1)

Deformation in the 𝑥 direction in the function of motion and
the stress-deformation relation according to Hooke’s law are
as follows:

𝜀
𝑥1

(𝑦, 𝑥, 𝑡) =
𝜕𝑢
0

𝑅1
(𝑥, 𝑡)

𝜕𝑧
− 𝑦

𝜕
2
𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑧2
,

𝜀
𝑥2

(𝑦, 𝑥, 𝑡) =
𝜕𝑢
0

𝑅2
(𝑥, 𝑡)

𝜕𝑧
− 𝑦

𝜕
2
𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑧2
,

𝜎
𝑥1

(𝑦, 𝑥, 𝑡) = 𝐸𝜀
𝑥1

(𝑦, 𝑥, 𝑡) ,

𝜎
𝑥2

(𝑦, 𝑥, 𝑡) = 𝐸𝜀
𝑥2

(𝑦, 𝑥, 𝑡) .

(2)

Virtual work of inertial forces is expressed as

𝛿𝑊
𝑖𝑛1

= − (𝜌
𝐶1

+ 𝜌
𝑓1

)

⋅ 𝑏
1

∫

𝑙

0

∫

ℎ
1
/2

−ℎ
1
/2

[
𝜕
2
𝑤
𝑅1

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑤
𝑅1

(𝑦, 𝑥, 𝑡)

+
𝜕
2
𝑢
𝑅1

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑢
𝑅1

(𝑦, 𝑥, 𝑡)] 𝑑𝑦 𝑑𝑥,

𝛿𝑊
𝑖𝑛2

= − (𝜌
𝐶2

+ 𝜌
𝑓2

)

⋅ 𝑏
2

∫

𝑙

0

∫

ℎ
2
/2

−ℎ
2
/2

[
𝜕
2
𝑤
𝑅2

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑤
𝑅2

(𝑦, 𝑥, 𝑡)

+
𝜕
2
𝑢
𝑅2

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑢
𝑅2

(𝑦, 𝑥, 𝑡)] 𝑑𝑦 𝑑𝑥.

(3)

Virtual work of internal forces is

𝛿𝑊
𝑉1

= −𝑏
1

∫

𝑙

0

∫

ℎ
1
/2

−ℎ
1
/2

𝜎
𝑥1

(𝑥, 𝑡) 𝛿𝜀
𝑥1

(𝑥, 𝑡) 𝑑𝑦 𝑑𝑥,

𝛿𝑊
𝑉2

= −𝑏
2

∫

𝑙

0

∫

ℎ
2
/2

−ℎ
2
/2

𝜎
𝑥2

(𝑥, 𝑡) 𝛿𝜀
𝑥2

(𝑥, 𝑡) 𝑑𝑦 𝑑𝑥.

(4)

Virtual work of external forces is given by

𝛿𝑊
𝑒𝑥1

= ∫

𝑙

0

[𝛿𝑤
0

𝑅1
(𝑥, 𝑡) 𝐾 (𝑤

0

𝑅2
(𝑥, 𝑡) − 𝑤

0

𝑅1
(𝑥, 𝑡))

− 𝐺
0

(
𝜕𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

−
𝜕𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥
) + 𝐹
1

𝜕𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

⋅
𝜕𝛿𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥
] 𝑑𝑥,

𝛿𝑊
𝑒𝑥2

= ∫

𝑙

0

[𝛿𝑤
0

𝑅2
(𝑥, 𝑡) 𝐾 (𝑤

0

𝑅1
(𝑥, 𝑡) − 𝑤

0

𝑅2
(𝑥, 𝑡))

− 𝐺
0

(
𝜕𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

−
𝜕𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥
) + 𝐹
2

𝜕𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

⋅
𝜕𝛿𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥
] 𝑑𝑥.

(5)

Based on the principle of virtual work 𝛿𝑊
𝑖𝑛𝑖

+𝛿𝑊
𝑉𝑖

+𝛿𝑊
𝑒𝑥𝑖

=

0, 𝑖 = 1, 2, and (3) to (5), we have

− 𝑏
1

∫

𝑙

0

∫

ℎ
1
/2

−ℎ
1
/2

𝜎
𝑥1

(𝑥, 𝑡) 𝛿𝜀
𝑥1

(𝑥, 𝑡) 𝑑𝑦 𝑑𝑥 − (𝜌
𝐶1

+ 𝜌
𝑓1

)

⋅ 𝑏
1

∫

𝑙

0

∫

ℎ
1
/2

−ℎ
1
/2

[
𝜕
2
𝑤
𝑅1

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑤
𝑅1

(𝑦, 𝑥, 𝑡)

+
𝜕
2
𝑢
𝑅1

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑢
𝑅1

(𝑦, 𝑥, 𝑡)] 𝑑𝑦 𝑑𝑥

+ ∫

𝑙

0

[𝛿𝑤
0

𝑅1
(𝑥, 𝑡) 𝐾 (𝑤

0

𝑅2
(𝑥, 𝑡) − 𝑤

0

𝑅1
(𝑥, 𝑡))

− 𝐺
0

(
𝜕𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

−
𝜕𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥
) + 𝐹
1

𝜕𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

⋅
𝜕𝛿𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥
] 𝑑𝑥 = 0,

− 𝑏
2

∫

𝑙

0

∫

ℎ
2
/2

−ℎ
2
/2

𝜎
𝑥2

(𝑥, 𝑡) 𝛿𝜀
𝑥2

(𝑥, 𝑡) 𝑑𝑦 𝑑𝑥 − (𝜌
𝐶2

+ 𝜌
𝑓2

)

⋅ 𝑏
2

∫

𝑙

0

∫

ℎ
2
/2

−ℎ
2
/2

[
𝜕
2
𝑤
𝑅2

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑤
𝑅2

(𝑦, 𝑥, 𝑡)

+
𝜕
2
𝑢
𝑅2

(𝑦, 𝑥, 𝑡)

𝜕𝑡2
𝛿𝑢
𝑅2

(𝑦, 𝑥, 𝑡)] 𝑑𝑦 𝑑𝑥
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+ ∫

𝑙

0

[𝛿𝑤
0

𝑅2
(𝑥, 𝑡) 𝐾 (𝑤

0

𝑅1
(𝑥, 𝑡) − 𝑤

0

𝑅2
(𝑥, 𝑡))

− 𝐺
0

(
𝜕𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅1
(𝑥, 𝑡)

𝜕𝑥

−
𝜕𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

𝜕𝛿𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥
) + 𝐹
2

𝜕𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥

⋅
𝜕𝛿𝑤
0

𝑅2
(𝑥, 𝑡)

𝜕𝑥
] 𝑑𝑥 = 0.

(6)

By successive application of Green’s theorem on expressions
(6), we obtain the set of coupled differential equations of
forced transverse vibration of a double SWCNT system
containing a fluid with effect of compressive axial load with
Pasternak layer in-between:

𝐸𝐼
1

𝜕
4
𝑤
1

𝜕𝑥4
+ (𝜌
𝐶1

+ 𝜌
𝑓1

) 𝐴
1

𝜕
2
𝑤
1

𝜕𝑡2

− (𝜌
𝐶1

+ 𝜌
𝑓1

) 𝐼
1

𝜕
4
𝑤
1

𝜕𝑥2𝜕𝑡2
+ 𝐹
1

𝜕
2
𝑤
1

𝜕𝑥2
+ 𝐾 (𝑤

1
− 𝑤
2
)

− 𝐺
0

(
𝜕
2
𝑤
1

𝜕𝑥2
−

𝜕
2
𝑤
2

𝜕𝑥2
) = 𝑓

1
(𝑥, 𝑡) ,

𝐸𝐼
2

𝜕
4
𝑤
2

𝜕𝑥4
+ (𝜌
𝐶2

+ 𝜌
𝑓2

) 𝐴
2

𝜕
2
𝑤
1

𝜕𝑡2

− (𝜌
𝐶2

+ 𝜌
𝑓2

) 𝐼
2

𝜕
4
𝑤
2

𝜕𝑥2𝜕𝑡2
+ 𝐹
2

𝜕
2
𝑤
2

𝜕𝑥2
+ 𝐾 (𝑤

2
− 𝑤
1
)

− 𝐺
0

(
𝜕
2
𝑤
2

𝜕𝑥2
−

𝜕
2
𝑤
1

𝜕𝑥2
) = 𝑓

2
(𝑥, 𝑡) ,

(7)

where

𝐴
𝑖
= 𝜋𝑑𝑡

𝐶
,

𝐼
𝑖
=

𝜋𝑑
3
𝑡
𝐶

8
,

𝑖 = 1, 2.

(8)

If we introduce 𝐺
0

= 0 in the equations, the effect of shear
foundation will be omitted and we can obtain the vibration
equations of a double SWCNT system containing a fluid with
Winkler elastic layer in-between.

Equations (7) can be reduced to fourth-order partial dif-
ferential equations for forced vibration of a double SWCNT
system model:

𝐶
2

𝑏1

𝜕
4
𝑤
1

𝜕𝑥4
+

𝜕
2
𝑤
1

𝜕𝑡2
− 𝐶
2

𝑟1

𝜕
4
𝑤
1

𝜕𝑥2𝜕𝑡2
+ 𝑚
1

(𝐹
1

− 𝐺
0
)

𝜕
2
𝑤
1

𝜕𝑥2

+ 𝑚
1
𝐺
0

𝜕
2
𝑤
2

𝜕𝑥2
+ 𝐻
1

(𝑤
1

− 𝑤
2
) = 𝑚

1
𝑓
1

(𝑥, 𝑡) ,

(9)

𝐶
2

𝑏2

𝜕
4
𝑤
2

𝜕𝑥4
+

𝜕
2
𝑤
2

𝜕𝑡2
− 𝐶
2

𝑟2

𝜕
4
𝑤
2

𝜕𝑥2𝜕𝑡2
+ 𝑚
2

(𝐹
2

− 𝐺
0
)

𝜕
2
𝑤
2

𝜕𝑥2

+ 𝑚
2
𝐺
0

𝜕
2
𝑤
1

𝜕𝑥2
+ 𝐻
2

(𝑤
2

− 𝑤
1
) = 𝑚

2
𝑓
2

(𝑥, 𝑡) ,

(10)

where

𝑚
𝑖
=

1

(𝜌
𝐶𝑖

+ 𝜌
𝑓𝑖

) 𝐴
𝑖

,

𝐻
𝑖
=

𝐾

(𝜌
𝐶𝑖

+ 𝜌
𝑓𝑖

) 𝐴
𝑖

,

𝐶
𝑏𝑖

= √
𝐸𝐼
𝑖

(𝜌
𝐶𝑖

+ 𝜌
𝑓𝑖

) 𝐴
𝑖

,

𝐶
𝑟𝑖

= √
𝐼
𝑖

𝐴
𝑖

,

𝑖 = 1, 2.

(11)

The initial conditions in general form and boundary condi-
tions for simply supported SWCNT of the same length 𝑙 are
assumed as follows:

𝑤
𝑖
(𝑥, 0) = 𝑤

𝑖0
(𝑥) ,

�̇�
𝑖
(𝑥, 0) = V

𝑖0
(𝑥) ,

(12)

𝑤
𝑖
(0, 𝑡) = 𝑤



𝑖
(0, 𝑡) = 𝑤

𝑖
(𝑙, 𝑡) = 𝑤



𝑖
(𝑙, 𝑡) = 0,

𝑖 = 1, 2.

(13)

3. Solution of Equations

Equations (9) and (10) represent forced vibrations of a double
SWCNT system.Thenatural frequencies and the correspond-
ing mode shapes of the system should be obtained by solving
the undamped free vibration with appropriate boundary
conditions. Assuming time harmonic motion and using sep-
aration of variables, the solutions to (9) and (10) with the gov-
erning boundary conditions (13) can be written in the form

𝑤
𝑖
(𝑥, 𝑡) =

∞

∑

𝑛=1

𝑋
𝑛

(𝑥) 𝑇
𝑛𝑖

(𝑡) , (14)

where

𝑋
𝑛

(𝑥) = sin (𝑘
𝑛
𝑥) ,

𝑘
𝑛

=
𝑛𝜋

𝑙
,

𝑛 = 1, 2, 3, . . . .

(15)
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Substitution of (14) into (9) and (10) yields ordinary differ-
ential equations for the double SWCNT system

∞

∑

𝑛=1

[𝐽
1

𝑑
2
𝑇
𝑛1

𝑑𝑡2
+ (𝑁
1

− 𝐹
1
𝜂
1

+ 𝐺
0
𝜂
1
) 𝑇
𝑛1

− (𝐻
1

+ 𝐺
0
𝜂
1
) 𝑇
𝑛2

] 𝑋
𝑛

= 𝑚
1
𝑓
1
,

∞

∑

𝑛=1

[𝐽
2

𝑑
2
𝑇
𝑛2

𝑑𝑡2
+ (𝑁
2

− 𝐹
2
𝜂
2

+ 𝐺
0
𝜂
2
) 𝑇
𝑛2

− (𝐻
2

+ 𝐺
0
𝜂
2
) 𝑇
𝑛1

] 𝑋
𝑛

= 𝑚
2
𝑓
2
,

(16)

where

𝜂
1

=
𝑘
2

𝑛

𝜌𝐴
1

,

𝜂
2

=
𝑘
2

𝑛

𝜌𝐴
2

,

𝐽
1

= 1 + 𝐶
2

𝑟1
𝑘
2

𝑛
,

𝐽
2

= 1 + 𝐶
2

𝑟2
𝑘
2

𝑛
,

𝑁
1

= 𝐶
2

𝑏1
𝑘
4

𝑛
+ 𝐻
1
,

𝑁
2

= 𝐶
2

𝑏2
𝑘
4

𝑛
+ 𝐻
2
.

(17)

4. Forced Vibration of a Double
SWCNT System

First, we should solve the undamped free vibration of the
double SWCNT system

𝐽
1

𝑑
2
𝑇
𝑛1

𝑑𝑡2
+ (𝑁
1

− 𝐹
1
𝜂
1

+ 𝐺
0
𝜂
1
) 𝑇
𝑛1

− (𝐻
1

+ 𝐺
0
𝜂
1
) 𝑇
𝑛2

= 0,

𝐽
2

𝑑
2
𝑇
𝑛1

𝑑𝑡2
+ (𝑁
2

− 𝐹
2
𝜂
2

+ 𝐺
0
𝜂
2
) 𝑇
𝑛2

− (𝐻
2

+ 𝐺
0
𝜂
2
) 𝑇
𝑛1

= 0.

(18)

The solutions of (18) can be assumed to have the following
forms:

𝑇
𝑛1

= 𝐶
𝑛
𝑒
𝑖𝜔
𝑛
𝑡
,

𝑇
𝑛2

= 𝐷
𝑛
𝑒
𝑖𝜔
𝑛
𝑡
.

(19)

Substituting (19) into (18) results in the following system
of homogeneous algebraic equations for the unknown con-
stants:

(𝑁
1

− 𝐹
1
𝜂
1

+ 𝐺
0
𝜂
1

− 𝐽
1
𝜔
2

𝑛
) 𝐶
𝑛

− (𝐻
1

+ 𝐺
0
𝜂
1
) 𝐷
𝑛

= 0,

− (𝐻
2

+ 𝐺
0
𝜂
2
) 𝐶
𝑛

+ (𝑁
2

− 𝐹
2
𝜂
2

+ 𝐺
0
𝜂
2

− 𝐽
2
𝜔
2

𝑛
) 𝐷
𝑛

= 0.

(20)

When the determinant of the coefficients in (20) vanishes,
nontrivial solutions for the constants 𝐶

𝑛
and 𝐷

𝑛
can be

obtained,which yield the following frequency (characteristic)
equation:

𝐽
1
𝐽
2
𝜔
4

𝑛
− (𝑁
1
𝐽
2

+ 𝑁
2
𝐽
1

− 𝐹
1
𝜂
1
𝐽
2

− 𝐹
2
𝜂
2
𝐽
1

+ 𝐺
0
𝜂
1
𝐽
2

+ 𝐺
0
𝜂
2
𝐽
1
) 𝜔
2

𝑛
+ (𝑁
1

− 𝐹
1
𝜂
1
) (𝑁
2

− 𝐹
2
𝜂
2
) − 𝐻
1
𝐻
2

− 𝐺
0

(𝐻
1
𝜂
2

+ 𝐻
2
𝜂
1

− 𝑁
1
𝜂
2

− 𝑁
2
𝜂
1

+ 𝐹
1
𝜂
1
𝜂
2

+ 𝐹
2
𝜂
1
𝜂
2
) = 0.

(21)

The roots of (21) are

𝜔
2

𝑛𝐼

=
𝐽
2

(𝑁
1

− 𝐹
1
𝜂
1
) + 𝐽
1

(𝑁
2

− 𝐹
2
𝜂
2
) + 𝐺
0

(𝜂
1
𝐽
2

+ 𝜂
2
𝐽
1
)

2𝐽
1
𝐽
2

−
1

2𝐽
1
𝐽
2

√𝐷,

𝜔
2

𝑛𝐼𝐼

=
𝐽
2

(𝑁
1

− 𝐹
1
𝜂
1
) + 𝐽
1

(𝑁
2

− 𝐹
2
𝜂
2
) + 𝐺
0

(𝜂
1
𝐽
2

+ 𝜂
2
𝐽
1
)

2𝐽
1
𝐽
2

+
1

2𝐽
1
𝐽
2

√𝐷,

(22)

where

𝐷 = [𝐽
2

(𝑁
1

− 𝐹
1
𝜂
1
) − 𝐽
1

(𝑁
2

− 𝐹
2
𝜂
2
)]
2

+ 4𝐽
1
𝐽
2
𝐻
1
𝐻
2

+ 𝐺
2

0
(𝜂
1
𝐽
2

+ 𝜂
2
𝐽
1
)
2

+ 2𝐽
2

2
𝐺
0
𝜂
1

(𝑁
1

− 𝐹
1
𝜂
1
)

+ 2𝐽
2

1
𝐺
0
𝜂
2

(𝑁
2

− 𝐹
2
𝜂
2
) + 2𝐽

1
𝐽
2
𝐺
0

(2𝐻
1
𝜂
2

+ 2𝐻
2
𝜂
1

− 𝑁
1
𝜂
2

− 𝑁
2
𝜂
1

+ 𝐹
1
𝜂
1
𝜂
2

+ 𝐹
2
𝜂
1
𝜂
2
) .

(23)

For each of the natural frequencies, the associated amplitude
ratio of vibration modes of the two beams is given by

𝛼
−1

𝑛𝑖
=

𝐶
𝑛

𝐷
𝑛

=
𝐻
1

+ 𝐺
0
𝜂
1

𝑁
1

− 𝐹
1
𝜂
1

+ 𝐺
0
𝜂
1

− 𝐽
1
𝜔2
𝑛𝑖

=
𝑁
2

− 𝐹
2
𝜂
2

+ 𝐺
0
𝜂
2

− 𝐽
2
𝜔
2

𝑛𝑖

𝐻
2

+ 𝐺
0
𝜂
2

, 𝑖 = 𝐼, 𝐼𝐼.

(24)
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Applying the classical modal expansion method, the
forced vibrations of a double SWCNT system subjected to
arbitrarily distributed continuous loads can be determined.
Following the above analysis for the undamped free trans-
verse vibration, particular solutions of nonhomogeneous dif-
ferential equations (9) and (10) representing forced vibrations
of a double SWCNT system model can be assumed in the
following:

𝑤
1

(𝑥, 𝑡) =

∞

∑

𝑛=1

[𝑋
𝑛

(𝑥)

𝐼𝐼

∑

𝑖=𝐼

𝑆
𝑛𝑖

(𝑡)] , (25)

𝑤
2

(𝑥, 𝑡) =

∞

∑

𝑛=1

[𝑋
𝑛

(𝑥)

𝐼𝐼

∑

𝑖=𝐼

𝛼
𝑛𝑖

𝑆
𝑛𝑖

(𝑡)] . (26)

Introduction of (25) and (26) into (9) and (10) results in

∞

∑

𝑛=1

{𝑋
𝑛

(𝑥)

⋅

𝐼𝐼

∑

𝑖=𝐼

[𝐽
1

̈𝑆
𝑛𝑖

+ (𝑁
1

− 𝜂
1
𝐹
1

+ 𝐺
0
𝜂
1

− 𝜂
1
𝐺
0
𝛼
𝑛𝑖

− 𝐻
1
𝛼
𝑛𝑖

) 𝑆
𝑛𝑖

]}

= 𝑚
1
𝑓
1
,

(27)

∞

∑

𝑛=1

{𝑋
𝑛

(𝑥)

⋅

𝐼𝐼

∑

𝑖=𝐼

[𝐽
2

̈𝑆
𝑛𝑖

+ (𝑁
2

− 𝜂
2
𝐹
2

+ 𝐺
0
𝜂
2

− 𝜂
2
𝐺
0
𝛼
−1

𝑛𝑖
− 𝐻
2
𝛼
−1

𝑛𝑖
) 𝑆
𝑛𝑖

]

⋅𝛼
𝑛𝑖

} = 𝑚
2
𝑓
2
.

(28)

By multiplying relations (27) and (28) by the eigenfunction
𝑋
𝑚
and then integrating them with respect to 𝑥 from 0 to 𝑙

and using orthogonality condition

∫

𝑙

0

𝑋
𝑚

𝑋
𝑛
𝑑𝑥 = ∫

𝑙

0

sin (𝑘
𝑛
𝑥) sin (𝑘

𝑚
𝑥) 𝑑𝑥 = 𝑐𝛿

𝑚𝑛
, (29)

where

𝑐 = ∫

𝑙

0

𝑋
2

𝑛
= ∫

𝑙

0

[sin (𝑘
𝑛
𝑥)]
2

𝑑𝑥 =
𝑙

2
, (30)

now we have

𝐼𝐼

∑

𝑖=𝐼

[𝐽
1

̈𝑆
𝑛𝑖

+ (𝑁
1

− 𝜂
1
𝐹
1

+ 𝐺
0
𝜂
1

− 𝜂
1
𝐺
0
𝛼
𝑛𝑖

− 𝐻
1
𝛼
𝑛𝑖

) 𝑆
𝑛𝑖

]

=
2𝑚
1

𝑙
∫

𝑙

0

𝑋
𝑛
𝑓
1
𝑑𝑥,

𝐼𝐼

∑

𝑖=𝐼

[𝐽
2

̈𝑆
𝑛𝑖

+ (𝑁
2

− 𝜂
2
𝐹
2

+ 𝐺
0
𝜂
2

− 𝜂
2
𝐺
0
𝛼
−1

𝑛𝑖
− 𝐻
2
𝛼
−1

𝑛𝑖
) 𝑆
𝑛𝑖

] 𝛼
𝑛𝑖

=
2𝑚
2

𝑙
∫

𝑙

0

𝑋
𝑛
𝑓
2
𝑑𝑥.

(31)

From (24) and (31) after some algebra we obtain
𝐼𝐼

∑

𝑖=𝐼

( ̈𝑆
𝑛𝑖

+ 𝜔
2

𝑛𝑖
𝑆
𝑛𝑖

) =
2𝑚
1

𝐽
1
𝑙

∫

𝑙

0

𝑋
𝑛
𝑓
1
𝑑𝑥,

𝐼𝐼

∑

𝑖=𝐼

( ̈𝑆
𝑛𝑖

+ 𝜔
2

𝑛𝑖
𝑆
𝑛𝑖

) 𝛼
𝑛𝑖

=
2𝑚
2

𝐽
2
𝑙

∫

𝑙

0

𝑋
𝑛
𝑓
2
𝑑𝑥.

(32)

From (32), we obtain
̈𝑆
𝑛𝑖

+ 𝜔
2

𝑛𝑖
𝑆
𝑛𝑖

= 𝑍
𝑛𝑖

(𝑡) , 𝑖 = 𝐼, 𝐼𝐼, (33)

where
𝑍
𝑛𝐼

(𝑡)

=
2

𝛼
𝑛𝐼𝐼

− 𝛼
𝑛𝐼

∫

𝑙

0

(𝑀
1
𝛼
𝑛𝐼𝐼

𝑓
1

− 𝑀
2
𝑓
2
) sin (𝑘

𝑛
𝑥) 𝑑𝑥,

𝑍
𝑛𝐼𝐼

(𝑡)

=
2

𝛼
𝑛𝐼

− 𝛼
𝑛𝐼𝐼

∫

𝑙

0

(𝑀
1
𝛼
𝑛𝐼

𝑓
1

− 𝑀
2
𝑓
2
) sin (𝑘

𝑛
𝑥) 𝑑𝑥.

(34)

Also, 𝑀
1

= 𝑚
1
/𝐽
1
𝑙 and 𝑀

2
= 𝑚
2
/𝐽
2
𝑙. By combining (25),

(26), and (33), the forced vibrations of a double SWCNT
system with Pasternak layer in-between which contains a
fluid can be described by

𝑤
1

(𝑥, 𝑡) =

∞

∑

𝑛=1

{sin (𝑘
𝑛
𝑥)

⋅

𝐼𝐼

∑

𝑖=𝐼

1

𝜔
𝑛𝑖

∫

𝑡

0

𝑍
𝑛𝑖

(𝑠) sin [𝜔
𝑛𝑖

(𝑡 − 𝑠)] 𝑑𝑠} ,

(35)

𝑤
2

(𝑥, 𝑡) =

∞

∑

𝑛=1

{sin (𝑘
𝑛
𝑥)

⋅

𝐼𝐼

∑

𝑖=𝐼

𝛼
𝑛𝑖

𝜔
𝑛𝑖

∫

𝑡

0

𝑍
𝑛𝑖

(𝑠) sin [𝜔
𝑛𝑖

(𝑡 − 𝑠)] 𝑑𝑠} .

(36)

Now these general solutions (35) and (36) are used to find the
vibrations of a double SWCNT system containing a fluid.

In the following, we conduct an analysis of forced vibra-
tions for the case of uniformly distributed continuous har-
monic load. For simplicity of further analysis, it is assumed
that only one of the two carbon nanotubes is subjected to
the exciting load. Without loss of generality, we suppose (see
Figure 3)

𝑓
1

(𝑥, 𝑡) = 𝑞 sin (Ω𝑡) ,

𝑓
2

(𝑥, 𝑡) = 0.

(37)
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w
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Figure 3: Double single-walled carbon nanotube system subjected
to harmonic uniform distributed continuous load.

Substituting (37) into (34), we obtain

𝑍
𝑛𝐼

(𝑡) =
𝛼
𝑛𝐼𝐼

𝛼
𝑛𝐼𝐼

− 𝛼
𝑛𝐼

𝑀
𝑅𝑛

sin (Ω𝑡) , 𝑛 = 1, 3, 5, . . . , (38)

𝑍
𝑛𝐼𝐼

(𝑡) =
𝛼
𝑛𝐼

𝛼
𝑛𝐼

− 𝛼
𝑛𝐼𝐼

𝑀
𝑅𝑛

sin (Ω𝑡) , 𝑛 = 1, 3, 5, . . . , (39)

where

𝑀
𝑅𝑛

= 𝑀
1

4𝑙𝑞

𝑛𝜋
, 𝑛 = 1, 3, 5, . . . . (40)

Substituting (38) and (39) into (35) and (36) gives

𝑤
1

(𝑥, 𝑡)

=

∞

∑

𝑛=1

sin (𝑘
𝑛
𝑥) [𝐴

𝑛1
sin (Ω𝑡) +

𝐼𝐼

∑

𝑖=𝐼

𝐵
𝑛𝑖
sin (𝜔

𝑛
𝑡)] ,

𝑛 = 1, 3, 5, . . . ,

𝑤
2

(𝑥, 𝑡)

=

∞

∑

𝑛=1

sin (𝑘
𝑛
𝑥) [𝐴

𝑛2
sin (Ω𝑡) +

𝐼𝐼

∑

𝑖=𝐼

𝛼
𝑛𝑖

𝐵
𝑛𝑖
sin (𝜔

𝑛
𝑡)] ,

𝑛 = 1, 3, 5, . . . ,

(41)

where

𝐴
𝑛1

=
𝑀
𝑅𝑛

𝛼
𝑛𝐼𝐼

− 𝛼
𝑛𝐼

(
𝛼
𝑛𝐼𝐼

𝜔2
𝑛𝐼

− Ω2
−

𝛼
𝑛𝐼

𝜔2
𝑛𝐼𝐼

− Ω2
) ,

𝐴
𝑛2

=
𝑀
𝑅𝑛

𝛼
𝑛𝐼𝐼

− 𝛼
𝑛𝐼

(
𝛼
𝑛𝐼

𝛼
𝑛𝐼𝐼

𝜔2
𝑛𝐼

− Ω2
−

𝛼
𝑛𝐼

𝛼
𝑛𝐼𝐼

𝜔2
𝑛𝐼𝐼

− Ω2
) ,

𝐵
𝑛𝐼

= 𝑀
𝑅𝑛

𝛼
𝑛𝐼𝐼

𝛼
𝑛𝐼𝐼

− 𝛼
𝑛𝐼

[
Ω

𝜔
𝑛𝐼

(Ω2 − 𝜔2
𝑛𝐼

)
] ,

𝐵
𝑛𝐼𝐼

= 𝑀
𝑅𝑛

𝛼
𝑛𝐼

𝛼
𝑛𝐼𝐼

− 𝛼
𝑛𝐼

[
Ω

𝜔
𝑛𝐼𝐼

(𝜔2
𝑛𝐼𝐼

− Ω2)
] .

(42)
Ignoring the free response, the forced vibrations of the double
SWCNT system can be obtained by

𝑤
1

(𝑥, 𝑡) = sin (Ω𝑡)

∞

∑

𝑛=1

𝐴
𝑛1
sin (𝑘
𝑛
𝑥) ,

𝑛 = 1, 3, 5, . . . ,

𝑤
2

(𝑥, 𝑡) = sin (Ω𝑡)

∞

∑

𝑛=1

𝐴
𝑛2
sin (𝑘
𝑛
𝑥) ,

𝑛 = 1, 3, 5, . . . .

(43)

The following fundamental conditions of resonance and
dynamic vibration absorption have practical significance:

(1) Resonance
Ω = 𝜔

𝑛𝑖
, 𝑛 = 1, 3, 5, . . . . (44)

(2) Dynamic vibration absorption
𝐴
𝑛1

= 0,

Ω
2

=
𝛼
𝑛𝐼𝐼

𝜔
2

𝑛𝐼𝐼
− 𝛼
𝑛𝐼

𝜔
2

𝑛𝐼

𝛼
𝑛𝐼𝐼

− 𝛼
𝑛𝐼

,

𝐴
𝑛2

= 𝑀
𝑅𝑛

𝛼
𝑛𝐼

− 𝛼
𝑛𝐼𝐼

𝜔2
𝑛𝐼

− 𝜔2
𝑛𝐼𝐼

.

(45)

5. Numerical Results and Discussion

For simplicity, it is assumed that both SWCNTs are geomet-
rically and physically identical and the elastic interlayer is
Winkler. We assumed that the fluid in the SWCNT is water.
The values of the parameters characterizing properties of the
system are shown in Table 1:

𝐻
1

= 𝐻
2
,

𝜂
1

= 𝜂
2
,

𝐹
2

= 𝜁𝐹
1
, 0 ≤ 𝜁 ≤ 1.

(46)

If the axial compressions vanish, for the double SWCNT
system we have

(𝜔
0

𝑛𝐼
)
2

=
𝐽
2
𝑁
1

+ 𝐽
1
𝑁
2

+ 𝐺
0

(𝜂
1
𝐽
2

+ 𝜂
2
𝐽
1
)

2𝐽
1
𝐽
2

−
1

2𝐽
1
𝐽
2

√𝐷,

(𝜔
0

𝑛𝐼𝐼
)
2

=
𝐽
2
𝑁
1

+ 𝐽
1
𝑁
2

+ 𝐺
0

(𝜂
1
𝐽
2

+ 𝜂
2
𝐽
1
)

2𝐽
1
𝐽
2

+
1

2𝐽
1
𝐽
2

√𝐷,

(47)
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Table 1: Values of the parameters characterizing properties of the system.

𝑙 𝐸 𝐴 𝐾 𝐺
0

13.56 nm 5.5 TNm−2 0.140 n2m2 2 × 105Nm−2 0
𝜌
𝑐

𝐼 𝑑 𝑡
𝐶

𝜌
𝑓

2300 kgm−3 8.077 × 10−3 n4m4 0.678 nm 0.066 nm 1000 kgm−3

where

𝐷


= [𝐽
2
𝑁
1

− 𝐽
1
𝑁
2
]
2

+ 4𝐽
1
𝐽
2
𝐻
1
𝐻
2

+ 𝐺
2

0
(𝜂
1
𝐽
2

+ 𝜂
2
𝐽
1
)
2

+ 2𝐽
2

2
𝐺
0
𝜂
1
𝑁
1

+ 2𝐽
2

1
𝐺
0
𝜂
2
𝑁
2

+ 2𝐽
1
𝐽
2
𝐺
0

(2𝐻
1
𝜂
2

+ 2𝐻
2
𝜂
1

− 𝑁
1
𝜂
2

− 𝑁
2
𝜂
1
) .

(48)

Also,

(𝛼
0

𝑛𝐼
)
−1

=
𝐻
1

+ 𝐺
0
𝜂
1

𝑁
1

+ 𝐺
0
𝜂
1

− 𝐽
1

(𝜔0
𝑛𝐼

)
2

=
𝑁
2

+ 𝐺
0
𝜂
2

− 𝐽
2

(𝜔
0

𝑛𝐼
)
2

𝐻
2

+ 𝐺
0
𝜂
2

,

(𝛼
0

𝑛𝐼𝐼
)
−1

=
𝐻
1

+ 𝐺
0
𝜂
1

𝑁
1

+ 𝐺
0
𝜂
1

− 𝐽
1

(𝜔0
𝑛𝐼𝐼

)
2

=
𝑁
2

+ 𝐺
0
𝜂
2

− 𝐽
2

(𝜔
0

𝑛𝐼𝐼
)
2

𝐻
2

+ 𝐺
0
𝜂
2

.

(49)

To determine the effect of compressive axial load on the
steady-state vibration amplitudes 𝐴

𝑛1
and 𝐴

𝑛2
of the system,

the results under compressive axial load and those without
axial load are compared. We introduce the relation

𝜑
1

=
𝐴
𝑛1

𝐴0
𝑛1

,

𝜑
2

=
𝐴
𝑛2

𝐴0
𝑛2

.

(50)

We use nondimensional ratio

𝑠 =
𝐹
1

𝑃
, (51)

where 𝑃 = 𝐸𝐼𝜋
2
/𝑙
2 is the smallest load at which the SWCNT

ceases to be in stable equilibrium under axial compression.
With the vibration mode number 𝑛 = 3 and the exciting
frequency Ω = 0.6𝜔

𝑛𝐼𝐼
, the effects of compressive axial

load on the steady-state vibration amplitudes 𝐴
𝑛1

and 𝐴
𝑛2

of the SWCNT are represented by the ratios 𝜑
1
and 𝜑

2
,

shown in Figures 4 and 5, respectively. As can be seen, the
ratio 𝜑

1
decreases with the increase of the axial compression,

which implies that themagnitude of the steady-state vibration
amplitude 𝐴

𝑛1
becomes smaller when the axial compression

increases, and the ratio 𝜑
2
increases with the increase of the

axial compression, which implies that the magnitude of the
steady-state vibration amplitude 𝐴

𝑛2
becomes larger when

the axial compression increases.

1

1.05

1.1

1.15

1.2

1.25

0 0.2 0.4 0.6 0.8 1

𝜁 = 0.1

𝜁 = 0.5
𝜁 = 0.9

𝜑
1

S

Figure 4: Relationship between ratio 𝜑
1
and dimensionless param-

eter 𝑠 for different axial compression ratio 𝜁.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 0.2 0.4 0.6 0.8 1

𝜁 = 0.1

𝜁 = 0.5
𝜁 = 0.9

S

𝜑
2

Figure 5: Relationship between ratio 𝜑
2
and dimensionless param-

eter 𝑠 for different axial compression ratio 𝜁.

Numerical values of the ratios 𝜑
1
and 𝜑

2
for different

axial compression ratio 𝜁 of the two SWCNTs are shown in
Table 2. It can be observed that the effect of compressive axial
load on the magnitude of 𝐴

𝑛1
is almost independent of the

axial compression ratio 𝜁 of the two SWCNTs whereas it is
significantly dependent on the magnitude of 𝐴

𝑛2
.
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Table 2: Steady-state vibration amplitudes ratios 𝜑
1
and 𝜑

2
of

SWCNT for different compressive axial ratio 𝜁.

𝑠

0 0.2 0.4 0.6 0.8 1
𝜑
1

(𝜁 = 0.1) 1 1.0359 1.0744 1.1158 1.1604 1.2085
𝜑
1

(𝜁 = 0.5) 1 1.0357 1.0736 1.1139 1.1567 1.2024
𝜑
1

(𝜁 = 0.9) 1 1.0356 1.0729 1.1121 1.1533 1.1967
𝜑
2

(𝜁 = 0.1) 1 1.0395 1.0819 1.1275 1.1766 1.2297
𝜑
2

(𝜁 = 0.5) 1 1.0539 1.1118 1.1739 1.2408 1.3129
𝜑
2

(𝜁 = 0.9) 1 1.0686 1.1427 1.2230 1.3100 1.4044

1

1.05

1.1

1.15

1.2

1.25

n = 3

n = 5
n = 7

𝜑
1

0 0.2 0.4 0.6 0.8 1
S

Figure 6: Relationship between ratio 𝜑
1
and dimensionless param-

eter 𝑠 for different mode number 𝑛.

On the other hand, with the axial compression ratio
𝜁 = 0.5 and the exciting frequency Ω = 0.6𝜔

𝑛𝐼𝐼
, steady-state

vibration amplitudes 𝐴
𝑛1

and 𝐴
𝑛2

are shown in Figures 6
and 7 for different mode shape number 𝑛, respectively. It can
be seen that, with the same axial compression, the ratios 𝜑

1

and 𝜑
2
diminish with the increasing vibration mode number

𝑛, which implies that the magnitudes of the steady-state
vibration amplitudes 𝐴

𝑛1
and 𝐴

𝑛2
get smaller when the

vibration mode number 𝑛 becomes larger.
Table 3 shows the effects of compressive axial load on the

difference between the steady-state vibration amplitude ratios
𝜑
1
and 𝜑

2
of the SWCNT for different mode number 𝑛. It

can be observed that the differences between ratios 𝜑
1
and

𝜑
2
of the SWCNT increase with increasing the dimensionless

parameter 𝑠.
Table 4 shows the effects of length of SWCNT on the

difference between the steady-state vibration amplitude ratios
𝜑
1
and 𝜑

2
of the SWCNT for mode number 𝑛 = 5 and

axial compression ratio 𝜁 = 0.5. It can be observed that the
differences between ratios 𝜑

1
and 𝜑

2
of the SWCNT decrease

with increasing of length of SWCNT.
We accounted the results for three cases of shear foun-

dation modulus of Pasternak layer 𝐺
0

= 0, 100, 1000. With
the vibration mode number 𝑛 = 3 and the exciting frequency

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

n = 3

n = 5
n = 7

0 0.2 0.4 0.6 0.8 1
S

𝜑
2

Figure 7: Relationship between ratio 𝜑
2
and dimensionless param-

eter 𝑠 for different mode number 𝑛.

Table 3: Steady-state vibration amplitudes ratios 𝜑
1
and 𝜑

2
for

different mode shape number 𝑛.

𝑠

0 0.2 0.4 0.6 0.8 1
𝜑
1

(𝑛 = 3) 1 1.0357 1.0736 1.1139 1.1567 1.2024
𝜑
1

(𝑛 = 5) 1 1.0126 1.0255 1.0387 1.0521 1.0659
𝜑
1

(𝑛 = 7) 1 1.0064 1.0129 1.0194 1.0261 1.0327
𝜑
2

(𝑛 = 3) 1 1.0539 1.1118 1.1739 1.2408 1.3129
𝜑
2

(𝑛 = 5) 1 1.0190 1.0384 1.0584 1.0789 1.0999
𝜑
2

(𝑛 = 7) 1 1.0096 1.0194 1.0293 1.0392 1.0494

Table 4: Steady-state vibration amplitudes ratios 𝜑
1
and 𝜑

2
for

different length of SWCNT, 𝑙.

𝑠

0 0.2 0.4 0.6 0.8 1
𝜑
1

(𝑙
1

= 𝑙) 1 1.0126 1.0255 1.0387 1.0521 1.0659
𝜑
1

(𝑙
1

= 5𝑙) 1 1.0126 1.0255 1.0386 1.0521 1.0658
𝜑
1

(𝑙
1

= 10𝑙) 1 1.0125 1.0252 1.0382 1.0515 1.0650
𝜑
2

(𝑙
1

= 𝑙) 1 1.0190 1.0384 1.0584 1.0789 1.0999
𝜑
2

(𝑙
1

= 5𝑙) 1 1.0190 1.0384 1.0583 1.0787 1.0997
𝜑
2

(𝑙
1

= 10𝑙) 1 1.0188 1.0380 1.0577 1.0778 1.0984

Ω = 0.6𝜔
𝑛𝐼𝐼
, the effects of Pasternak layer on the steady-state

vibration amplitudes 𝐴
𝑛1

and 𝐴
𝑛2

of the Rayleigh beam are
represented by the ratios 𝜑

1
and 𝜑

2
, shown in Table 5.

Numerical values of the ratios 𝜑
1
and 𝜑

2
for different

shear foundation modulus of Pasternak layer with different
axial compression ratio 𝜁 of the two beams are shown in
Table 5. Numerical results of the ratios 𝜑

1
and 𝜑

2
show

that the difference with ratios 𝜑
1
and 𝜑

2
decreases with

the increase of shear modulus of the Pasternak layer for
different axial compression ratio 𝜁, but it can be observed
that the effect of shear foundation modulus of Pasternak



10 Shock and Vibration

Table 5: Effects of shear foundation modulus of Pasternak layer on
the steady-state vibration amplitudes ratios 𝜑

1
and 𝜑

2
for different

compressive axial ratio 𝜁.

𝑠

0 0.2 0.4 0.6 0.8 1
𝜑
1

(𝜁 = 0.1)

(𝐺
0

= 0) 1 1.0351 1.0723 1.112 1.1544 1.1999
(𝐺
0

= 100) 0.9999 1.035 1.0723 1.1119 1.1543 1.1998
(𝐺
0

= 1000) 0.9993 1.0343 1.0715 1.111 1.1533 1.1987
𝜑
1

(𝜁 = 0.5)

(𝐺
0

= 0) 1 1.0351 1.0722 1.1112 1.1526 1.1965
(𝐺
0

= 100) 0.9999 1.0351 1.0721 1.1111 1.1525 1.1963
(𝐺
0

= 1000) 0.9993 1.0343 1.0713 1.1102 1.1515 1.1952
𝜑
1

(𝜁 = 0.9)

(𝐺
0

= 0) 1 1.0352 1.072 1.1107 1.1513 1.194
(𝐺
0

= 100) 0.9999 1.0351 1.072 1.1106 1.1512 1.1938
(𝐺
0

= 1000) 0.9993 1.0344 1.0711 1.1097 1.1501 1.1927
𝜑
2

(𝜁 = 0.1)

(𝐺
0

= 0) 1 1.0386 1.0796 1.1232 1.1699 1.22
(𝐺
0

= 100) 0.9925 1.0308 1.0714 1.1147 1.1611 1.2108
(𝐺
0

= 1000) 0.9255 0.9611 0.999 1.0393 1.0824 1.1287
𝜑
2

(𝜁 = 0.5)

(𝐺
0

= 0) 1 1.0528 1.109 1.169 1.2332 1.302
(𝐺
0

= 100) 0.9925 1.0448 1.1006 1.1602 1.2238 1.2921
(𝐺
0

= 1000) 0.9255 0.9742 1.0261 1.0816 1.1408 1.2044
𝜑
2

(𝜁 = 0.9)

(𝐺
0

= 0) 1 1.0673 1.1398 1.2181 1.3028 1.3944
(𝐺
0

= 100) 0.9925 1.0592 1.1312 1.2089 1.2929 1.3839
(𝐺
0

= 1000) 0.9255 0.9876 1.0546 1.1269 1.2051 1.2897

layer on the magnitude of 𝐴
𝑛1

is almost independent of the
axial compression ratio 𝜁 of the two beams whereas it is
significantly dependent on the magnitude of 𝐴

𝑛2
.

6. Conclusions

Based on the Rayleigh beam theory, the forced transverse
vibrations of a closed double single-walled carbon nanotube
(SWCNT) system containing a fluid with a Pasternak layer
in-between, under compressive axial loading for one case
of particular excitation loading, are studied. The dynamic
responses of the system caused by arbitrarily distributed
continuous loads are obtained.The effect of compressive axial
load and length of SWCNT on the forced vibrations of the
double single-walled carbon nanotube system is discussed
for one case of particular excitation loading. The magnitudes
of the steady-state vibration amplitudes of the beam are
dependent on the axial compression and length of SWCNT.
The effect of compressive axial load on the magnitude of
𝐴
𝑛1

is almost independent of the axial compression ratio 𝜁

of the two SWCNTs whereas it is significantly dependent
on the magnitude of 𝐴

𝑛2
. Also, it is shown with the same

axial compression that the ratios 𝜑
1
and 𝜑

2
diminish with

the increasing vibration mode number 𝑛, which implies that

the magnitudes of the steady-state vibration amplitudes 𝐴
𝑛1

and 𝐴
𝑛2

get smaller when the vibration mode number 𝑛

becomes larger.The ratio𝜑
1
decreases with the increase of the

axial compression, which implies that the magnitude of the
steady-state vibration amplitude 𝐴

𝑛1
becomes smaller when

the axial compression increases, and the ratio 𝜑
2
increases

with the increase of the axial compression, which implies that
the magnitude of the steady-state vibration amplitude 𝐴

𝑛2

becomes larger when the axial compression increases. The
differences between ratios 𝜑

1
and 𝜑

2
of the SWCNT decrease

with increasing of length of SWCNT. The SWCNT-type
dynamic absorber is a new concept of a dynamic vibration
absorber (DVA), which can be applied to suppress excessive
vibrations of corresponding SWCNT systems. At a given
vibration amplitude, increase of the nanotube length leads to
decrease of the frequencies. Also we concluded that the ratios
𝜑
1
and 𝜑

2
decrease with increasing of the shear foundation

modulus of Pasternak layer (𝐺
0
).

Nomenclature

𝑤 = 𝑤(𝑥, 𝑡): Transverse displacements of the carbon
nanotubes

𝜕𝑤/𝜕𝑥: Global rotation of the cross section
𝑇
𝑛𝑖

(𝑡): Unknown time function
𝑋
𝑛
(𝑥): Known mode shape function for simply

supported carbon nanotube
𝑆
𝑛𝑖

(𝑡) (𝑖 = 𝐼, 𝐼𝐼): Unknown time function corresponding
to the natural frequencies 𝜔

𝑛𝑖

𝛿
𝑚𝑛
: Kronecker delta function

𝑋
𝑚
: Eigenfunction

𝑞(𝑥): Amplitude of the load
Ω: Exciting frequency of the load
𝐴
0

𝑛1
, 𝐴0
𝑛2
: Steady-state vibration amplitudes of the

two carbon nanotubes without axial
compression

𝜔
𝑛
: Natural frequencies of the system

𝐴: Cross section area of the hollow
cylindrical nanotube

𝐸: Young’s modulus
𝐼: Second moment of inertia of the

nanotube
𝜌
𝐶
: Mass density of the carbon nanotube

𝜌
𝑓
: Mass density of the fluid

𝐾: Winkler foundation modulus
𝐺
0
: Shear foundation modulus

𝑑: Inner diameter
𝑡
𝐶
: Thickness.
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