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The two-Higgs-doublet model (2HDM), as one of the simplest extensions of the Standard Model (SM), is obtained by adding
another scalar doublet to the SM and is featured by a pair of charged Higgs, which could affect many low-energy processes. In the
“Higgs basis” for a generic 2HDM, only one scalar doublet gets a nonzero vacuum expectation value and, under the criterion of
minimal flavor violation, the other one is fixed to be either color-singlet or color-octet, which are named as type III and type C
2HDM, respectively. In this paper, we study the charged-Higgs effects of these two models on the𝐾0 −𝐾0 mixing, an ideal process
to probe New Physics (NP) beyond the SM. Firstly, we perform a complete one-loop computation of the box diagrams relevant
to the 𝐾0 − 𝐾0 mixing, keeping the mass and momentum of the external strange quark up to the second order. Together with the
up-to-date theoretical inputs, we then give a detailed phenomenological analysis, in the cases of both real and complex Yukawa
couplings of the charged Higgs to quarks. The parameter spaces allowed by the current experimental data on the mass differenceΔ𝑚�퐾 and the CP-violating parameter 𝜖�퐾 are obtained and the differences between these two 2HDMs are investigated, which are
helpful to distinguish them from each other from a phenomenological point of view.

1. Introduction

The SM of particle physics has been proved to be successful
because of its elegance and predictive capability. Almost
all predictions in the SM are in good agreement with the
experimental measurements, especially for the discovery
of a Higgs boson with its mass around 125GeV [1, 2].
The discovery of a SM-like Higgs boson suggests that the
electroweak symmetry breaking (EWSB) is probably realized
by the Higgs mechanism implemented via a single scalar
doublet. However, the EWSB is not necessarily induced by
just one scalar. It is interesting to note that many NP models
are equipped with an extended scalar sector; for example,
theminimal supersymmetric standardmodel requires at least
two Higgs doublets [3]. Moreover, the SM does not provide
enough sources of CP violation to generate the sufficient size
of baryon asymmetry of the universe (BAU) [4–6].

One of the simplest extensions of the SM scalar sector is
the so-called 2HDM [7], in which a second scalar doublet

is added to the SM field content. The added scalar doublet
can provide additional sources of CP violation besides that
from the Cabibbo-Kobayashi-Maskawa (CKM) [8, 9] matrix,
making it possible to explain the BAU [4].

It is known that, within the SM, the flavor-changing
neutral current (FCNC) interactions are forbidden at tree
level and are also highly suppressed at higher orders, due to
theGlashow-Iliopoulos-Maianimechanism [10]. To avoid the
experimental constraints on the FCNCs, the natural flavor
conservation (NFC) [11] andminimal flavor violation (MFV)
[12–15] hypotheses have been proposed (the NFC and MFV
hypotheses are not the only alternatives to avoid constraints
from FCNCs; models with controlled FCNCs have also been
addressed in the literature [16–20].). In the NFC hypothesis,
the absence of dangerous FCNCs is guaranteed by limiting
the number of scalar doublets coupling to a given type of
right-handed fermion to be atmost one.This can be explicitly
achieved by applying a discrete Z2 symmetry to the two
scalar doublets differently, leading to four types of 2HDM
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(usually named as types I, II, X, and Y) [21, 22], which
have been studied extensively for many years. In the MFV
hypothesis, to control the flavor-violating interactions, all the
scalar Yukawa couplings are assumed to be composed of the
SM ones 𝑌�푈 and 𝑌�퐷. In the “Higgs basis” [23], in which
only one doublet gets a nonzero vacuum expectation value
(VEV) and behaves the same as the SM one, the allowed
SU(3) × SU(2) × 𝑈(1) representation of the second scalar
doublet is fixed to be either (1, 2)1/2 or (8, 2)1/2 [24], which
implies that the second scalar doublet can be either color-
singlet or color-octet. For convenience, they are referred as
type III and type C model [25], respectively. Examples of
the color-singlet case include the aligned 2HDM (A2HDM)
[26, 27] and the four types of 2HDM reviewed in [21, 22].
In the color-octet case, the scalar spectrum contains one
CP-even, color-singlet Higgs boson (the usual SM one), and
three color-octet particles, oneCP-even, oneCP-odd, and one
electrically charged [24].

Although the scalar-mediated flavor-violating interac-
tions are protected by the MFV hypothesis, type III and type
C models can still bring in many interesting phenomena in
some low-energy processes, especially due to the presence of
a charged-Higgs boson [24, 25, 28–32]. The neutral-meson
mixings are of particular interest in this respect, because the
charged-Higgs contributions to these processes arise at the
same order as does the 𝑊 boson in the SM, indicating that
the NP effects might be significant. For example, the charged-
Higgs effects of these two models on the 𝐵0�푠 − 𝐵0�푠 mixing
have been studied in [28]. In this paper, we shall explore the
𝐾0 −𝐾0 mixing within these twomodels and pursue possible
differences between their effects. The general formula for
𝐾0 − 𝐾0 mixing, including the charged-Higgs contributions,
could be found, for example, in [33].

Our paper is organized as follows. In Section 2, we review
briefly the 2HDMs under the MFV hypothesis and give the
theoretical framework for the 𝐾0 − 𝐾0 mixing. In Section 3,
we perform a complete one-loop computation of the Wilson
coefficients for the process within these two models. In
Section 4, numerical results and discussions are presented in
detail. Finally, our conclusions are made in Section 5. Explicit
expressions for the loop functions appearing in the 𝐾0 − 𝐾0

mixing are collected in the appendix.

2. Theoretical Framework

2.1. Yukawa Sector. Specifying to the “Higgs basis” [23], in
which only one doublet gets a nonzero VEV, we can write the
most general Lagrangian of Yukawa couplings between the
two Higgs doublets, Φ1 andΦ2, and quarks as [24, 25]

−L�푌 = 𝑞0�퐿Φ̃1𝑌�푈𝑢0�푅 + 𝑞0�퐿Φ1𝑌�퐷𝑑0�푅 + 𝑞0�퐿Φ̃(�푎)
2 𝑇(�푎)

�푅 𝑌�푈𝑢0�푅
+ 𝑞0�퐿Φ(�푎)

2 𝑇(�푎)
�푅 𝑌�퐷𝑑0�푅 + h.c., (1)

where Φ̃�푗 = 𝑖𝜎2Φ∗
�푗 (𝑗 = 1, 2)with 𝜎2 the Pauli matrix, and 𝑞0�퐿,𝑢0�푅, and 𝑑0�푅 are the quark fields given in the interaction basis.𝑇(�푎)

�푅 is the SU(3) color generator which determines the color

nature of the secondHiggs doublet (depending onwhich type
of 2HDM we are considering, the second Higgs doublet can
be either color-singlet or color-octet). 𝑌�푈,�퐷 and 𝑌�푈,�퐷 are the
Yukawa couplings and are generally complex 3 × 3 matrices
in the quark flavor space.

According to the MFV hypothesis, the transformation
properties of the Yukawa coupling matrices 𝑌�푈,�퐷 and 𝑌�푈,�퐷

under the quark flavor symmetry group SU(3)�푄𝐿 ⊗ SU(3)�푈𝑅 ⊗
SU(3)�퐷𝑅 are required to be the same.This can be achieved by
requiring 𝑌�푈,�퐷 to be composed of pairs of 𝑌�푈,�퐷 [25]:

𝑌�푈 = 𝐴∗
�푢 (1 + 𝜖∗�푢𝑌�푈𝑌�푈† + ⋅ ⋅ ⋅) 𝑌�푈,

𝑌�퐷 = 𝐴�푑 (1 + 𝜖�푑𝑌�푈𝑌�푈† + ⋅ ⋅ ⋅) 𝑌�퐷. (2)

Transforming the Lagrangian in (1) from the interaction
basis to the mass basis, one can obtain the Yukawa interac-
tions of charged Higgs with quarks in the mass-eigenstate
basis, which are given by [25, 28]

L�퐻+

= 𝑔√2𝑚�푊

3∑
�푖,�푗=1

𝑢�푖𝑇(�푎)
�푅 (𝐴�푖

�푢𝑚�푢𝑖
𝑃�퐿 − 𝐴�푖

�푑𝑚�푑𝑗
𝑃�푅)𝑉�푖�푗𝑑�푗𝐻+

(�푎)

+ h.c.,
(3)

where𝐴�푖
�푢,�푑 are family-dependent Yukawa coupling constants

[25, 28, 34]:

𝐴�푖
�푢,�푑 = 𝐴�푢,�푑 (1 + 𝜖�푢,�푑𝑚

2
�푡

V2
𝛿�푖3) , (4)

with V = ⟨Φ0
1⟩ = 174GeV. For simplicity, we consider only the

family universal coupling case inwhich the family-dependent
Yukawa couplings, 𝐴�푖

�푢,�푑, can be simplified to 𝐴�푖
�푢,�푑 = 𝐴�푢,�푑.

2.2. 𝐾0 − 𝐾0 Mixing. Both within the SM and in the
2HDMs with MFV, the neutral kaon mixing occurs via the
box diagrams depicted in Figure 1 (these Feynman diagrams
are drawn with the LaTeX package TikZ-Feynman [35]).
As demonstrated in [36], the correction from the external
momenta and quark masses is not negligible for the𝐾0 − 𝐾0

mixing.Thus, unlike the traditional calculation performed in
the limit of vanishing external momenta and external quark
masses, we shall keep the external strange-quark momentum
and mass to the second order; this is essential to guarantee
the final result gauge-independent [34].

Calculating the one-loop box diagrams and following the
standard procedure of matching [36], we obtain the effective
Hamiltonian responsible for the𝐾0 − 𝐾0 mixing:

Heff = 𝐺
2
�퐹𝑚2

�푊16𝜋2 [𝐶VLL (𝜇)𝑄VLL + 𝐶SLL (𝜇)𝑄SLL

+ CTLL (𝜇)𝑄TLL] + h.c.,
(5)
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Figure 1: Box diagrams for the 𝐾0 − 𝐾0 mixing in the unitary gauge both within the SM (a) and in the 2HDMs with MFV (b)–(d). Crossed
diagrams, which are related to the original ones by interchanging the external lines, have also been taken into account.

where𝐺�퐹 is the Fermi coupling constant,𝑚�푊 is the𝑊-boson
mass, and 𝐶�푖(𝜇) is the scale-dependent Wilson coefficients of
the four-quark operators 𝑄�푖, which are defined, respectively,
as follows (there are totally eight four-quark operators for
the most general case [37], but we have written out only the
operators that exist in our calculation):

𝑄VLL = 𝑠�훼𝛾�휇 (1 − 𝛾5) 𝑑�훼𝑠�훽𝛾�휇 (1 − 𝛾5) 𝑑�훽,
𝑄SLL = 𝑠�훼 (1 − 𝛾5) 𝑑�훼𝑠�훽 (1 − 𝛾5) 𝑑�훽,
𝑄TLL = 𝑠�훼𝜎�휇] (1 − 𝛾5) 𝑑�훼𝑠�훽𝜎�휇] (1 − 𝛾5) 𝑑�훽,

(6)

with 𝛼 and 𝛽 being the color indices and 𝜎�휇] = (1/2)[𝛾�휇, 𝛾]].
Note that we include the QCD corrections only to the SM
Wilson coefficient𝐶VLL, but not to theNP ones.The hadronic
matrix elements of these operators can be written as [37]

⟨𝐾0 | 𝑄VLL | 𝐾0⟩ = 43𝑚�퐾𝐹2�퐾𝐵VLL1 (𝜇) ,
⟨𝐾0 | 𝑄SLL | 𝐾0⟩ = −56𝑅 (𝜇)𝑚�퐾𝐹2�퐾𝐵SLL1 (𝜇) ,
⟨𝐾0 | 𝑄TLL | 𝐾0⟩ = −2𝑅 (𝜇)𝑚�퐾𝐹2�퐾𝐵SLL2 (𝜇) ,

(7)

where 𝑚�퐾 is the kaon mass and 𝐹�퐾 the kaon decay constant.𝐵�푗�푖 (𝜇) is the scale-dependent bag parameters, and 𝑅(𝜇) is
defined as [37]

𝑅 (𝜇) = ( 𝑚�퐾𝑚�푠 (𝜇) + 𝑚�푑 (𝜇))
2 . (8)

It should be noted that the SM and NP contributions
to the Wilson coefficients 𝐶�푖(𝜇) cannot be summed directly
because they are given at different initial scales, 𝜇�푊 for the
SM and 𝜇�퐻± for the 2HDM in particular. In order to sum
these two contributions, they must be firstly run down to the
lattice scale at which the bag parameters 𝐵�푗�푖 (𝜇) are evaluated.
The explicit expressions for these Wilson coefficients will be
presented in Section 3.

For the𝐾0−𝐾0 mixing, there exist two observables which
can be calculated from the effective Hamiltonian given by (5)
[37]:

Δ𝑚�퐾 = 2Re⟨𝐾0 |Heff | 𝐾0⟩ , (9)

𝜖�퐾 = exp (𝑖𝜋/4)√2Δ𝑚�퐾

Im⟨𝐾0 |Heff | 𝐾0⟩ . (10)

The above equations are the most general formulae for
these two observables. It should be noted that Δ𝑚�퐾 and𝜖�퐾 receive both short-distance (SD) and long-distance (LD)
contributions. With the LD contribution included, the mass
difference Δ𝑚�퐾 can be decomposed as [38]

Δ𝑚�퐾 = Δ𝑚SD
�퐾 + Δ𝑚LD

�퐾

󵄨󵄨󵄨󵄨󵄨�휋�휋 + Δ𝑚LD
�퐾

󵄨󵄨󵄨󵄨󵄨�휂󸀠 , (11)

where the SD part is derived from (9) with the effective
Hamiltonian obtained from the box diagrams, while the two
LD parts are estimated, respectively, as [38, 39]

Δ𝑚LD
�퐾

󵄨󵄨󵄨󵄨󵄨�휋�휋 = 0.4Δ𝑚exp
�퐾 ,

Δ𝑚LD
�퐾

󵄨󵄨󵄨󵄨󵄨�휂󸀠 = −0.3Δ𝑚exp
�퐾 . (12)

We can see from (12) that the LD contribution to Δ𝑚�퐾

is about 10% of the experimental value. However, keeping
in mind that this estimate is just a bold-guess based on an
analysis at the leading chiral logarithm in the framework
of chiral perturbation theory [38], we should note that the
actual uncertainty onΔ𝑚LD

�퐾 is quite huge (we thank Professor
Antonio Pich for pointing out this to us). As the structure of
LD contribution is still not well understood, we include this
part only in the SM case but not in the NP one.

The formula for the CP-violating parameter 𝜖�퐾, with the
LD contribution taken into account, is given by [40]

𝜖�퐾 = 𝜅�휖𝑒�푖�휙𝜖√2
Im𝑀SD

12Δ𝑚exp
�퐾

, (13)

where 𝜅�휖 = 0.94(2) [38],𝜙�휖 = 43.52(5)∘ [41], and𝑀SD
12 = ⟨𝐾0 |

Heff | 𝐾0⟩. The LD contribution to 𝜖�퐾 has been included in
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the two phenomenological factors 𝜅�휖 and 𝜙�휖. In the case with
only the SD contribution, 𝜅�휖 = 1 and 𝜙�휖 = 𝜋/4, and (13) goes
back to (10).

3. Analytic Calculation

3.1. Wilson Coefficients within the SM. For the SM case, we
calculate theWilson coefficients from the box diagram shown
in Figure 1(a). Without any QCD correction, they are given,
respectively, as

𝐶VLL
SM (𝜇�푊)
= [𝜆2�푐𝑆0 (𝑥�푐) + 𝜆2�푡𝑆0 (𝑥�푡) + 2𝜆�푐𝜆�푡𝑆0 (𝑥�푐, 𝑥�푡)]
+ 𝑥�푠 [𝜆2�푐𝑓1 (𝑥�푐) + 𝜆2�푡𝑓1 (𝑥�푡) + 2𝜆�푐𝜆�푡𝑓1 (𝑥�푐, 𝑥�푡)] ,

𝐶SLL
SM (𝜇�푊)
= 𝑥�푠 [𝜆2�푐𝑓2 (𝑥�푐) + 𝜆2�푡𝑓2 (𝑥�푡) + 2𝜆�푐𝜆�푡𝑓2 (𝑥�푐, 𝑥�푡)] ,

𝐶TLL
SM (𝜇�푊)
= 𝑥�푠 [𝜆2�푐𝑓3 (𝑥�푐) + 𝜆2�푡𝑓3 (𝑥�푡) + 2𝜆�푐𝜆�푡𝑓3 (𝑥�푐, 𝑥�푡)] ,

(14)

where 𝑥�푖 = 𝑚2
�푖 (𝜇)/𝑚2

�푊, and 𝑆0 is the Inami-Lim function
given by (A.1) [42]. Explicit expressions for the functions 𝑓�푖
can be found in the appendix. Note that when the external
strange-quark momentum and mass are kept to the second
order, we also get nonzero contributions to the Wilson
coefficients 𝐶SLL

SM and 𝐶TLL
SM even in the SM case.

The QCD corrections to the Wilson coefficients can be
described by the factors 𝜂�푐�푐, 𝜂�푐�푡, and 𝜂�푡�푡, which have been
calculated up to the next-to-next-to-leading order [43–45]
and are collected in [46]. Combining the renormalization
group (RG) evolution with these QCD corrections, we get

⟨𝐾0 |Heff | 𝐾0⟩VLL

SM
= 𝜁 [𝐵 (𝜆2�푐𝜂�푐�푐𝑆0 (𝑥�푐)

+ 𝜆2�푡𝜂�푡�푡𝑆0 (𝑥�푡) + 2𝜆�푐𝜆�푡𝜂�푐�푡𝑆0 (𝑥�푐, 𝑥�푡))
+ 𝑃VLL

SM 𝑥�푠,�휇𝑊 (𝜆2�푐𝑓1 (𝑥�푐,�휇𝑊) + 𝜆2�푡𝑓1 (𝑥�푡,�휇𝑊)
+ 2𝜆�푐𝜆�푡𝑓1 (𝑥�푐,�휇𝑊 , 𝑥�푡,�휇𝑊))] ,

⟨𝐾0 |Heff | 𝐾0⟩SLL

SM
= 𝜁 [𝑃SLL

SM 𝐶SLL
SM (𝜇�푊)] ,

⟨𝐾0 |Heff | 𝐾0⟩TLL

SM
= 𝜁 [𝑃TLL

SM 𝐶TLL
SM (𝜇�푊)] ,

(15)

where 𝜁 = 𝐺2
�퐹𝑚2

�푊𝑚�퐾𝐹2�퐾/12𝜋2, and 𝑥�푖 ≡ (𝑚�푖(𝑚�푖)/𝑚�푊)2 is the
scale-independent mass ratio, whereas 𝑥�푖,�휇 ≡ (𝑚�푖(𝜇)/𝑚�푊)2
is the mass ratio at the scale 𝜇. 𝐵 is the RG independent bag

parameter, and the factors 𝑃�푖 encode the RG evolution effects
that are given, respectively, as [37]

𝑃VLL
SM = [𝜂 (3GeV)]SMVLL 𝐵1 (3GeV) ,
𝑃SLL
SM = −58 [𝜂11 (3GeV)]SMSLL [𝐵2 (3GeV)]eff

− 32 [𝜂21 (3GeV)]SMSLL [𝐵3 (3GeV)]eff ,
𝑃TLL
SM = −58 [𝜂12 (3GeV)]SMSLL [𝐵2 (3GeV)]eff

− 32 [𝜂22 (3GeV)]SMSLL [𝐵3 (3GeV)]eff ,

(16)

where the effective bag parameters [𝐵�푖(3GeV)]eff are defined
as [37]

[𝐵�푖 (3GeV)]eff ≡ 𝑅 (3GeV) 𝐵�푖 (3GeV) , (17)

with 𝑅(𝜇) defined in (8). The factors 𝜂 and 𝜂�푖,�푗 are given by
the formulae collected in [37] with

𝜂4 ≡ 𝛼(4)�푠 (𝜇�푏)𝛼(4)�푠 (3GeV) ,

𝜂5 ≡ 𝛼
(5)
�푠 (𝜇�푊)𝛼(5)�푠 (𝜇�푏) .

(18)

3.2.Wilson Coefficients in the 2HDMswithMFV. TheWilson
coefficients at the matching scale 𝜇�퐻± ∼ 𝑚�퐻± in the NP
case are calculated from the box diagrams shown in Figures
1(b)–1(d), with the results given, respectively, as

𝐶VLL
III (𝜇�퐻±) = 𝐴�푢𝐴∗

�푢 [𝜆2�푐 (𝑓4 (𝑥�푐, 𝑥�퐻)
+ 𝑥�푠𝑔4 (𝑥�푐, 𝑥�퐻)) + 𝜆2�푡 (𝑓4 (𝑥�푡, 𝑥�퐻) + 𝑥�푠𝑔4 (𝑥�푡, 𝑥�퐻))
+ 2𝜆�푐𝜆�푡 (𝑓4 (𝑥�푐, 𝑥�푡, 𝑥�퐻) + 𝑥�푠𝑔4 (𝑥�푐, 𝑥�푡, 𝑥�퐻))]
+ 𝐴�푢𝐴∗

�푑𝑥�푠 [𝜆2�푐𝑓5 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓5 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓5 (𝑥�푐, 𝑥�푡, 𝑥�퐻)] + 𝐴2

�푢𝐴∗2
�푢 𝑥�푠 [𝜆2�푐𝑓6 (𝑥�푐, 𝑥�퐻)

+ 𝜆2�푡𝑓6 (𝑥�푡, 𝑥�퐻) + 2𝜆�푐𝜆�푡𝑓6 (𝑥�푐, 𝑥�푡, 𝑥�퐻)] ,
𝐶SLL
III (𝜇�퐻±)
= 𝑥�푠 [𝐴�푢𝐴∗

�푢 (𝜆2�푐 [𝑓7 (𝑥�푐, 𝑥�퐻) + 𝑔7 (𝑥�푐, 𝑥�퐻)]
+ 𝜆2�푡 [𝑓7 (𝑥�푡, 𝑥�퐻) + 𝑔7 (𝑥�푡, 𝑥�퐻)]
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+ 2𝜆�푐𝜆�푡 [𝑓7 (𝑥�푐, 𝑥�푡, 𝑥�퐻) + 𝑔7 (𝑥�푐, 𝑥�푡, 𝑥�퐻)])
+ 𝐴�푢𝐴∗

�푑 (𝜆2�푐𝑓8 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓8 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓8 (𝑥�푐, 𝑥�푡, 𝑥�퐻)) + 𝐴2

�푢𝐴∗2
�푢 (𝜆2�푐𝑓9 (𝑥�푐, 𝑥�퐻)

+ 𝜆2�푡𝑓9 (𝑥�푡, 𝑥�퐻) + 2𝜆�푐𝜆�푡𝑓9 (𝑥�푐, 𝑥�푡, 𝑥�퐻))
+ 𝐴2

�푢𝐴∗2
�푑 (𝜆2�푐𝑓10 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓10 (𝑥�푡, 𝑥�퐻)

+ 2𝜆�푐𝜆�푡𝑓10 (𝑥�푐, 𝑥�푡, 𝑥�퐻))
− 𝐴2

�푢𝐴∗
�푢𝐴∗

�푑 (𝜆2�푐𝑓10 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓10 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓10 (𝑥�푐, 𝑥�푡, 𝑥�퐻))] ,

𝐶TLL
III (𝜇�퐻±) = 0,
𝐶VLL
C (𝜇�퐻±) = 13𝐴�푢𝐴∗

�푢 [𝜆2�푐 (𝑓4 (𝑥�푐, 𝑥�퐻)
+ 𝑥�푠𝑔4 (𝑥�푐, 𝑥�퐻)) + 𝜆2�푡 (𝑓4 (𝑥�푡, 𝑥�퐻) + 𝑥�푠𝑔4 (𝑥�푡, 𝑥�퐻))
+ 2𝜆�푐𝜆�푡 (𝑓4 (𝑥�푐, 𝑥�푡, 𝑥�퐻) + 𝑥�푠𝑔4 (𝑥�푐, x�푡, 𝑥�퐻))] + 13
⋅ 𝐴�푢𝐴∗

�푑𝑥�푠 [𝜆2�푐𝑓5 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓5 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓5 (𝑥�푐, 𝑥�푡, 𝑥�퐻)] + 1118
⋅ 𝐴2

�푢𝐴∗2
�푢 𝑥�푠 [𝜆2�푐𝑓6 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓6 (𝑥�푡, 𝑥�퐻)

+ 2𝜆�푐𝜆�푡𝑓6 (𝑥�푐, 𝑥�푡, 𝑥�퐻)] ,
𝐶SLL
C (𝜇�퐻±) = 𝑥�푠 [− 512
⋅ 𝐴�푢𝐴∗

�푢 (𝜆2�푐 [𝑓7 (𝑥�푐, 𝑥�퐻) + 𝑔7 (𝑥�푐, 𝑥�퐻)]
+ 𝜆2�푡 [𝑓7 (𝑥�푡, 𝑥�퐻) + 𝑔7 (𝑥�푡, 𝑥�퐻)]
+ 2𝜆�푐𝜆�푡 [𝑓7 (𝑥�푐, 𝑥�푡, 𝑥�퐻) + 𝑔7 (𝑥�푐, 𝑥�푡, 𝑥�퐻)]) − 512
⋅ 𝐴�푢𝐴∗

�푑 (𝜆2�푐𝑓8 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓8 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓8 (𝑥�푐, 𝑥�푡, 𝑥�퐻)) − 1972
⋅ 𝐴2

�푢𝐴∗2
�푢 (𝜆2�푐𝑓9 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓9 (𝑥�푡, 𝑥�퐻)

+ 2𝜆�푐𝜆�푡𝑓9 (𝑥�푐, 𝑥�푡, 𝑥�퐻)) − 1972
⋅ 𝐴2

�푢𝐴∗2
�푑 (𝜆2�푐𝑓10 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓10 (𝑥�푡, 𝑥�퐻)

+ 2𝜆�푐𝜆�푡𝑓10 (𝑥�푐, 𝑥�푡, 𝑥�퐻)) + 1972
⋅ 𝐴2

�푢𝐴∗
�푢𝐴∗

�푑 (𝜆2�푐𝑓10 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓10 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓10 (𝑥�푐, 𝑥�푡, 𝑥�퐻))] ,

𝐶TLL
C (𝜇�퐻±) = 𝑥�푠 [ 116
⋅ 𝐴�푢𝐴∗

�푢 (𝜆2�푐 [𝑓7 (𝑥�푐, 𝑥�퐻) + 𝑔7 (𝑥�푐, 𝑥�퐻)]
+ 𝜆2�푡 [𝑓7 (𝑥�푡, 𝑥�퐻) + 𝑔7 (𝑥�푡, 𝑥�퐻)]
+ 2𝜆�푐𝜆�푡 [𝑓7 (𝑥�푐, 𝑥�푡, 𝑥�퐻) + 𝑔7 (𝑥�푐, 𝑥�푡, 𝑥�퐻)]) + 116
⋅ 𝐴�푢𝐴∗

�푑 (𝜆2�푐𝑓8 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓8 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓8 (𝑥�푐, 𝑥�푡, 𝑥�퐻)) + 796
⋅ 𝐴2

�푢𝐴∗2
�푢 (𝜆2�푐𝑓9 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓9 (𝑥�푡, 𝑥�퐻)

+ 2𝜆�푐𝜆�푡𝑓9 (𝑥�푐, 𝑥�푡, 𝑥�퐻)) + 796
⋅ 𝐴2

�푢𝐴∗2
�푑 (𝜆2�푐𝑓10 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓10 (𝑥�푡, 𝑥�퐻)

+ 2𝜆�푐𝜆�푡𝑓10 (𝑥�푐, 𝑥�푡, 𝑥�퐻)) − 796
⋅ 𝐴2

�푢𝐴∗
�푢𝐴∗

�푑 (𝜆2�푐𝑓10 (𝑥�푐, 𝑥�퐻) + 𝜆2�푡𝑓10 (𝑥�푡, 𝑥�퐻)
+ 2𝜆�푐𝜆�푡𝑓10 (𝑥�푐, 𝑥�푡, 𝑥�퐻))] .

(19)

Explicit expressions for the functions𝑓�푖 introduced in the
above equations are collected in the appendix. Note that the
contribution to 𝐶TLL is zero for type III but is not for type C
2HDM.With the RG evolution effect included, the final result
is similar to the SM case and can be written as

⟨𝐾0 |Heff | 𝐾0⟩VLL

III
= 𝜁 [𝑃VLL

NP 𝐶VLL
III (𝜇�푡)] ,

⟨𝐾0 |Heff | 𝐾0⟩SLL

III
= 𝜁 [𝑃SLL

NP 𝐶SLL
III (𝜇�푡)] ,

⟨𝐾0 |Heff | 𝐾0⟩TLL

III
= 0,

(20)

for type III, and

⟨𝐾0 |Heff | 𝐾0⟩VLL

C
= 𝜁 [𝑃VLL

NP 𝐶VLL
C (𝜇�푡)] ,

⟨𝐾0 |Heff | 𝐾0⟩SLL

C
= 𝜁 [𝑃SLL

NP 𝐶SLL
C (𝜇�푡)] ,

⟨𝐾0 |Heff | 𝐾0⟩TLL

C
= 𝜁 [𝑃TLL

NP 𝐶TLL
C (𝜇�푡)] ,

(21)

for type C 2HDM. The factors 𝑃�푖 are also similar to the SM
case but with a different factor 𝜂5, which is now defined by

𝜂5 ≡ 𝛼(5)�푠 (𝜇�푡)𝛼(5)�푠 (𝜇�푏) . (22)

Here the matching scale for the 2HDMs has been changed to𝜇�푡 ∼ 𝑚�푡, because the evolution effect from 𝜇�퐻± ∼ 𝑚�퐻± down
to 𝜇�푡 ∼ 𝑚�푡 is quite small and can be safely neglected.
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Table 1: Input parameters used throughout this paper, together with the experimental data.

Electroweak parameters [47]𝑚�푊 = 80.385(15)GeV 𝑚�푍 = 91.1876(21)GeV𝜇�푊 = 80.385GeV 𝜇�푡 = 163.427GeVa

𝐺�퐹 = 1.1663787(6) × 10−5 GeV−2

QCD coupling constant𝛼�푠(𝜇�푡) = 0.1086 (10)a 𝛼�푠(𝑚�푍) = 0.1182(12) [47]𝛼�푠(𝜇�푊) = 0.1205 (12)a 𝛼�푠(𝜇�푏) = 0.2243 (45)a𝛼�푠(3GeV) = 0.2521+0.0058−0.0057

a

Quark masses𝑚�푑(2GeV) = 0.0047+0.0005−0.0004 GeV [47] 𝑚�푑(3GeV) = 0.0043+0.0005−0.0004 GeV
a

𝑚�푠(2GeV) = 0.096+0.008−0.004 GeV [47] 𝑚�푠(3GeV) = 0.087+0.007−0.004 GeV
a

𝑚�푠(𝜇�푊) = 0.057+0.005−0.002 GeV
a 𝑚�푠(𝜇�푡) = 0.054+0.005−0.002 GeV

a

𝑚�푐(𝑚�푐) = 1.27(3)GeV [47] 𝑚�푐(𝜇�푊) = 0.660(21)GeVa

𝑚�푐(𝜇�푡) = 0.623(20)GeVa 𝑚pole
�푡 = 173.21(87)GeV [47]𝑚�푡(𝑚�푡) = 163.427+0.828−0.829 GeV

a 𝑚�푡(𝜇�푊) = 173.276+1.590−1.586 GeV
a

CKMmatrix elements [47]𝜆 = 0.22506 (50) 𝐴 = 0.811 (26)𝜌 = 0.124+0.019−0.018 𝜂 = 0.356 (11)𝜌 = 0.127+0.019−0.018 𝜂 = 0.365 (11)
Kaon mixing parameters𝑚�퐾 = 0.497611(13)GeV [47] 𝐹�퐾 = 0.1562(9)GeV [41]𝐵�퐾 = 0.7625(97) [41] 𝐵1(3GeV) = 0.519(26) [48]𝐵2(3GeV) = 0.525(23) [48] 𝐵3(3GeV) = 0.360(16) [48]𝐵4(3GeV) = 0.981(62) [48] 𝐵5(3GeV) = 0.751(68) [48]𝜂�푐�푐 = 1.87(76) [46] 𝜂�푡�푡 = 0.5765(65) [46]𝜂�푐�푡 = 0.496(47) [46]
Experimental data [47](Δ𝑚�퐾)exp = 3.4839(59) × 10−15 GeV (|𝜖�퐾|)exp = 2.228(11) × 10−3

aThis value is calculated with the RunDec package [49] at the two-loop level in �훼�푠.

After performing the proper RG evolution, we can then
sum directly both the SM and NP contributions to the matrix
element ⟨𝐾0 |Heff | 𝐾0⟩, which can be written as

⟨𝐾0 |Heff | 𝐾0⟩�푖 = ⟨𝐾0 |Heff | 𝐾0⟩�푖

SM

+ ⟨𝐾0 |Heff | 𝐾0⟩�푖

NP
,

(23)

where the superscript “𝑖” labels the different four-quark
operators.

4. Numerical Results and Discussions

4.1. Input Parameters and the SM Results. Firstly, we collect
in Table 1 the values of the relevant input parameters used
throughout this paper, togetherwith the experimental data onΔ𝑚�퐾 and 𝜖�퐾. For the bag parameters, we use the lattice results
with𝑁�푓 = 2 + 1 flavors of dynamical quarks and evaluated at
the renormalization scale 3GeV [41, 48]. In addition, we have
used theRunDec package [49] to obtain the running coupling

constant and quark masses at different scales in the two-loop
approximation.

With the input parameters collected in Table 1, we can
nowgive the numerical results forΔ𝑚�퐾 and 𝜖�퐾 in the SMcase,
which are listed in Table 2. Wemake the following comments
on the SM results:

(i) Our result for the mass difference Δ𝑚�퐾 without the
corrections from the external strange-quark mass, 𝑥�푠,
and from the LD contribution, agrees well with that
obtained in [45].

(ii) The corrections from 𝑥�푠 toΔ𝑚�퐾 and 𝜖�퐾 are 6.83% and−0.06%, respectively. Note that the correction toΔ𝑚�퐾

is at the same order as that obtained in [36].Moreover,
the LD contributions to Δ𝑚�퐾 and 𝜖�퐾 are 11.20% and−6%, respectively.

(iii) As the 𝑥�푠 correction can be precisely calculated, we
consider it both to Δ𝑚�퐾 and to 𝜖�퐾; especially, this
correction is not too small for Δ𝑚�퐾. In addition, we
include the LD contributions to 𝜖�퐾 but not to Δ𝑚�퐾,
because the structure of LD contribution to Δ𝑚�퐾 is
still not well understood [38].
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Table 2: SM results forΔ𝑚�퐾 and 𝜖�퐾 with different corrections included and the ratios between these values and their experimental data. Here
the column “None” denotes the results obtained with the external strange-quark momentum and mass ignored and without including the
LD contribution.

Observables Corrections
None With LD With 𝑥�푠 With LD and 𝑥�푠(Δ𝑚�퐾)SM (×10−15 GeV) 3.109 (1.258) 3.458 (1.258) 3.321 (1.258) 3.670 (1.258)(Δ𝑚�퐾)SM(Δ𝑚�퐾)exp 89.24% 99.24% 95.34% 105.34%

(|𝜖�퐾|)SM (×10−3) 2.219+0.309−0.294 2.086+0.294−0.280 2.218+0.309−0.294 2.085+0.294−0.280(|𝜖�퐾|)SM(|𝜖�퐾|)exp 99.61% 93.63% 99.55% 93.58%

4.2. Results in the 2HDMs with MFV. As can be seen clearly
from Table 2, there is no significant deviation between the
SM predictions and the experimental data for Δ𝑚�퐾 and 𝜖�퐾,
especially for the latter. Therefore, these two observables are
expected to put strong constraints on the parameter spaces
of type III and type C 2HDMs, which are both featured by
the three parameters, the two Yukawa couplings 𝐴�푢,�푑, and
the charged-Higgs mass 𝑚�퐻± , in this paper. In the case of
complex couplings, we can further choose |𝐴�푢| and 𝐴�푢𝐴∗

�푑 =|𝐴�푢𝐴∗
�푑|𝑒�푖�휃 as the independent variables, with 𝜃 being the

relative phase between 𝐴�푢 and 𝐴∗
�푑.

The relevant model parameters are also constrained by
the other processes. For the parameter |𝐴�푢|, an upper bound
can be obtained from the 𝑍 → 𝑏𝑏 decay [25], while the
parameter 𝐴�푑 is much less constrained phenomenologically
[25, 28]. However, the perturbativity of the theory requires
that these couplings cannot be too large. As for the charged-
Higgs mass, the lower bound 𝑚�퐻± > 78.6GeV (95% CL)
has been set by the LEP experiment [50], which is obtained
under the assumption that 𝐻± decays mainly into fermions
without any specific Yukawa structure. In addition, direct
searches for 𝐻± are also performed by the Tevatron [51],
ATLAS [52], and CMS [53] experiments, among which
most constraints depend strongly on the underling Yukawa
structures. Recently, by comparing the cross-sections for the
dijet, top-pair, dijet-pair, 𝑡𝑡𝑏𝑡, and 𝑏𝑏𝑏𝑏 production at the
LHC with the strongest available experimental limits from
ATLAS or CMS at 8 or 13 TeV, Hayreter, andValencia [54] has
extracted constraints on the parameter space of theManohar-
Wise model [24], which is equivalent to type C 2HDM
discussed here. Interestingly, they found that masses below
1 TeV have not been excluded for color-octet scalars as is
often claimed in the literature. For a variety of well-motivated
2HDMs, the authors in [55] found that charged-Higgs bosons
as light as 75GeV can still be compatible with all the results
from direct charged and neutral Higgs boson searches at
LEP and the LHC, as well as the most recent constraints
fromflavor physics, although this implies severely suppressed
charged-Higgs couplings to all fermions. Thus, based on the
above observations, we generate randomly numerical points
for the model parameters as [34]󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨 ∈ [0, 3] ,󵄨󵄨󵄨󵄨𝐴�푑
󵄨󵄨󵄨󵄨 ∈ [0, 500] ,

𝜃 ∈ [−𝜋, 𝜋] ,
𝑚�퐻± = 100, 250, 500GeV.

(24)
Taking𝑚�퐻± = 500GeV as a benchmark, we firstly explore

the dependence of each Wilson coefficient evaluated at the
matching scale 𝜇 = 𝑚�퐻± or approximately at 𝜇 = 𝑚�푡 on the
other model parameters,

𝐶VLL
III × 109 = (41.28 − 42.15𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨2
+ (6.97 − 7.19𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨4 + 10−4
⋅ (5.33 − 0.05𝑖) 𝐴�푢𝐴∗

�푑,
𝐶SLL
III × 1015 = (3.28 − 3.29𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨2
− (0.09 − 0.09𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨4
− (308.73 − 25.25𝑖) 𝐴�푢𝐴∗

�푑

+ (0.45 − 0.46𝑖) 󵄨󵄨󵄨󵄨𝐴�푢
󵄨󵄨󵄨󵄨2 𝐴�푢𝐴∗

�푑

− (0.45 − 0.46𝑖) (𝐴�푢𝐴∗
�푑)2 ,

𝐶VLL
C × 109 = (13.76 − 14.05𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨2
+ (4.26 − 4.39𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨4 + 10−4
⋅ (1.78 − 0.02𝑖) 𝐴�푢𝐴∗

�푑,
𝐶SLL
C × 1015 = − (1.37 − 1.37𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨2
+ (0.02 − 0.02𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨4
+ (128.64 − 10.52𝑖) 𝐴�푢𝐴∗

�푑

− (0.12 − 0.12𝑖) 󵄨󵄨󵄨󵄨𝐴�푢
󵄨󵄨󵄨󵄨2 𝐴�푢𝐴∗

�푑

+ (0.12 − 0.12𝑖) (𝐴�푢𝐴∗
�푑)2 ,

𝐶TLL
C × 1016 = (2.05 − 2.06𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨2
− (0.06 − 0.06𝑖) 󵄨󵄨󵄨󵄨𝐴�푢

󵄨󵄨󵄨󵄨4
− (192.96 − 15.78𝑖) 𝐴�푢𝐴∗

�푑

+ (0.32 − 0.33𝑖) 󵄨󵄨󵄨󵄨𝐴�푢
󵄨󵄨󵄨󵄨2 𝐴�푢𝐴∗

�푑

− (0.32 − 0.33𝑖) (𝐴�푢𝐴∗
�푑)2 .

(25)
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Figure 2: Allowed parameter spaces for𝐴�푢 and𝐴�푑 in the case of real coupling for type III and type C 2HDMs, under the combined constraint
from Δ𝑚�퐾 and 𝜖�퐾. The red, blue, and green regions are obtained with𝑚�퐻± fixed at 100, 250, and 500GeV, respectively.

From the above numerical results, we canmake the following
observations:

(i) The dominant contribution to the effective Hamil-
tonian given by (5) comes from the operator 𝑄VLL

in both type III and type C 2HDM, due to the𝑥�푠 suppression in 𝑄SLL and 𝑄TLL. Furthermore, the
coefficient of the 𝐴�푢𝐴∗

�푑 term in 𝑄VLL is quite small,
being of order O(10−4) compared to that of the |𝐴�푢|
terms.

(ii) Due to the color factor, theWilson coefficient𝐶VLL in
typeC is a little bit smaller than that in type III 2HDM,
and the sign of 𝐶SLL in type C is also flipped relative
to that in type III 2HDM.

(iii) There exists an extra operator𝑄TLL in type C 2HDM,
and its Wilson coefficient 𝐶TLL differs from that of𝑄SLL in sign.

From the current experimental data on Δ𝑚�퐾 and 𝜖�퐾, one
can constrain the model parameters and even distinguish the
two scenarios of 2HDM with MFV. To get the plots for the
allowed parameter spaces, we do as follows:

(1) We scan the Yukawa coupling parameters 𝐴�푢 and𝐴�푑 (also the relative phase 𝜃 for complex couplings)
randomly within the ranges given by (24), with 𝑚�퐻±

fixed at 100, 250, and 500GeV, respectively.
(2) With each set of values for the model parameters,

we give the theoretical prediction for Δ𝑚�퐾 and 𝜖�퐾,
together with the corresponding uncertainty resulted
from the input parameters listed in Table 1. The
method of calculating the theoretical uncertainty is
the same as in [34].

(3) We select the points which lead to the theoretical
predictions overlapping with the 2𝜎 range of the
experimental data.

The final allowed spaces for the model parameters are shown
in Figure 2 for the real coupling and in Figure 3 for the
complex coupling case, respectively.

From Figure 2, we can make the following observations
for the real coupling:

(i) In type III model, as shown in Figure 2(a), the
parameter 𝐴�푢 is severely constrained due to the
good agreement between the SM predictions and the
experimental data, especially for 𝜖�퐾; for example, the
limit |𝐴�푢| < 0.7 is more stringent compared to that
obtained in [34] with 𝑚�퐻± = 500GeV. However,
there is almost no constraints on 𝐴�푑 because of
the smallness of the coefficient involving 𝐴�푑, as
mentioned earlier.

(ii) In type Cmodel, we also get strong constraint for𝐴�푢,
but being looser than that in type III case, with the
maximum value |𝐴�푢| ≈ 1.The wider allowed range in
type C model comes from the additional color factor.
Similar to that observed in type IIImodel, there is also
almost no constraint on 𝐴�푑.

(iii) The patterns of the allowed parameter spaces of
these two models are different, looking like “convex
lens” for type III and like “concave lens” for type C
model. This means that the allowed range for |𝐴�푢|
is smaller with larger |𝐴�푑| for type III model, while
the allowed range for |𝐴�푢| in type C model can
be larger with greater |𝐴�푑|. The reason is that the
dominant contribution to the two observables Δ𝑚�퐾

and 𝜖�퐾 comes from the operator 𝑄VLL, the Wilson
coefficient of which in type C is smaller than that in
type III model. Moreover, the cancellation between
theWilson coefficients𝑄SLL and𝑄TLL in typeCmodel
also reduces their contribution to the observables.

For the complex coupling, on the other hand, the results
shown in Figure 3 imply that

(i) in type III model, there exists a strong correlation
between |𝐴�푢| and |𝐴�푢𝐴∗

�푑|, especially when 𝑚�퐻± =100GeV, as shown in Figure 3(a). It is also found from
Figure 3(c) that the large values of |𝐴�푢𝐴∗

�푑| are allowed
at 𝜃 ≈ ±𝜋/2, due to the cancellation between the
complex terms,
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Figure 3: Allowed parameter spaces for |𝐴�푢|, |𝐴�푢𝐴∗
�푑|, and 𝜃 in the case of complex coupling for type III and type C 2HDMs, under the

combined constraint from Δ𝑚�퐾 and 𝜖�퐾. The exclusion region in |𝐴�푢𝐴∗
�푑| comes from the constraint on |𝐴�푑|. The other captions are the same

as in Figure 2.

(ii) in type C model, as shown in Figures 3(b) and 3(d),
similar observations can also be made, except for the
fact that the constraints on the couplings are now
a little bit looser than that in type III model. What
makes difference from type III model is that larger
values of |𝐴�푢𝐴∗

�푑| in the |𝐴�푢𝐴∗
�푑| − 𝜃 plane occur

around 𝜃 ≈ 0 and ±𝜋, which are resulted from the
cancellation between the complex terms.

From the above discussions, one can conclude that
although type III and typeCmodel present some significantly
different behaviors under the experimental constraints from
𝐾0 − 𝐾0 mixing, it is still hard to distinguish them from
each other, especially for the real coupling case or for small|𝐴�푑|. This is due to the significant uncertainties of both the
theoretical predictions and the experimental data. Therefore,
more refined theoretical and experimental efforts are needed
for a much clearer phenomenological picture.

5. Conclusion

In this paper, we have performed a complete one-loop
computation of the box diagrams for the 𝐾0 − 𝐾0 mixing,
both within the SM and in type III and type C 2HDMs. It

is noted that, in order to get a gauge-independent result, the
external strange-quarkmomentum andmass should be taken
into account, which has been kept up to the second order.

Combining the latest experimental data on the 𝐾0 − 𝐾0

mixing, we then performed a detailed phenomenological
analysis of the charged-Higgs effects on this process. Our
main conclusions can be summarized as follows:

(i) The operator 𝑄TLL appears already at the matching
scale in type Cmodel, while its appearance in type III
model is induced by the RG evolution effect from the
high-down to the low-energy scale.

(ii) We get strong constraint on the Yukawa coupling
parameter |𝐴�푢| in both the real and the complex
coupling case, being even stronger than that obtained
in [34], while there is almost no constraint on the
other Yukawa coupling |𝐴�푑|.

(iii) The allowed parameter spaces for 𝐴�푢 and 𝐴�푑 in the
case of real coupling are similar for both types of
models, with a wider range in type C model. If we
extend the 𝐴�푑 range, however, the allowed region
for 𝐴�푢 will be smaller in type III and larger in type
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C model, behaving like “convex lens” and “concave
lens,” respectively.

(iv) In the case of complex coupling, the strong correla-
tion between |𝐴�푢| and |𝐴�푢𝐴∗

�푑| is observed, especially
for 𝑚�퐻± = 100GeV in type III model. The relative
phase between |𝐴�푢| and |𝐴�푑|, 𝜃, allows the large
values of |𝐴�푢𝐴∗

�푑| at 𝜃 ≈ ±𝜋/2 in type III and𝜃 ≈ 0 and ±𝜋 in type C model. This is due to the
cancellation effect between the complex terms in the
Wilson coefficient 𝐶VLL.

Although these two types of models present some signifi-
cantly different behaviors under the experimental constraints
from𝐾0−𝐾0mixing, it is still hard to distinguish one from the
other, especially for the real coupling case or for small |𝐴�푑|.
Weneedmore refined theoretical and experimental efforts for
a much clearer phenomenological picture.

Appendix

Basic Functions for 𝐾0 − 𝐾0
Mixing

In this appendix, we collect the relevant functions during the
calculation of the Wilson coefficients for 𝐾0 − 𝐾0 mixing.
Note that the notations𝑓(𝑥) = lim�푦→�푥𝑓(𝑥, 𝑦) and𝑓(𝑥, 𝑥�퐻) =
lim�푦→�푥𝑓(𝑥, 𝑦, 𝑥�퐻) are applied to each function listed below.

The Inami-Lim function 𝑆0 is given by [42]

𝑆0 (𝑥�푐, 𝑥�푡) = 𝑥�푐𝑥�푡 [(𝑥
2
�푐 − 8𝑥�푐 + 4) ln (𝑥�푐)

4 (𝑥�푐 − 1)2 (𝑥�푐 − 𝑥�푡)
− (𝑥2�푡 − 8𝑥�푡 + 4) ln (𝑥�푡)4 (𝑥�푡 − 1)2 (𝑥�푐 − 𝑥�푡) − 34 (𝑥�푐 − 1) (𝑥�푡 − 1)] .

(A.1)

The functions 𝑓�푖 introduced in Section 3 are given explicitly as

𝑓1 (𝑥�푐, 𝑥�푡) = ln (𝑥�푡)
12 (𝑥�푡 − 1)4 (𝑥�푐 − 𝑥�푡)3 [𝑥

3
�푐 (𝑥4�푡 − 9𝑥3�푡 + 36𝑥2�푡 − 42𝑥�푡 + 12) + 𝑥2�푐𝑥�푡 (−3𝑥4�푡 + 22𝑥3�푡 − 87𝑥2�푡 + 108𝑥�푡 − 36)

+ 𝑥�푐𝑥3�푡 (15𝑥2�푡 − 23𝑥�푡 + 6)] + ln (𝑥�푐)
12 (𝑥�푐 − 1)4 (𝑥�푡 − 𝑥�푐)3 [𝑥

3
�푡 (𝑥4�푐 − 9𝑥3�푐 + 36𝑥2�푐 − 42𝑥�푐 + 12) + 𝑥2�푡𝑥�푐 (−3𝑥4�푐 + 22𝑥3�푐

− 87𝑥2�푐 + 108𝑥�푐 − 36) + 𝑥�푡𝑥3�푐 (15𝑥2�푐 − 23𝑥�푐 + 6)] − 1
72 (𝑥�푐 − 1)3 (𝑥�푡 − 1)3 (𝑥�푐 − 𝑥�푡)2 [𝑥

5
�푐 (65𝑥3�푡 − 130𝑥2�푡 + 113𝑥�푡

− 60) + 𝑥4�푐 (−118𝑥4�푡 + 34𝑥3�푡 + 250𝑥2�푡 − 298𝑥�푡 + 180) + 𝑥3�푐 (65𝑥5�푡 + 34𝑥4�푡 + 66𝑥3�푡 − 386𝑥2�푡 + 329𝑥�푡 − 180)
− 2𝑥2�푐 (65𝑥5�푡 − 125𝑥4�푡 + 193𝑥3�푡 − 217𝑥2�푡 + 90𝑥�푡 − 30) + 𝑥�푐𝑥�푡 (113𝑥4�푡 − 298𝑥3�푡 + 329𝑥2�푡 − 180𝑥�푡 + 24) − 60 (𝑥�푡 − 1)3
⋅ 𝑥2�푡 ] ,

𝑓2 (𝑥�푐, 𝑥�푡) = 𝑥�푡36 (𝑥�푐 − 1)3 (𝑥�푡 − 1)3 (𝑥�푐 − 𝑥�푡)2 [𝑥
5
�푐 (5𝑥2�푡 − 22𝑥�푡 + 5) + 2𝑥4�푐 (𝑥3�푡 − 𝑥2�푡 + 35𝑥�푡 − 11) + 𝑥3�푐 (5𝑥4�푡 − 2𝑥3�푡

− 78𝑥2�푡 − 2𝑥�푡 + 5) − 2𝑥2�푐𝑥�푡 (11𝑥3�푡 − 35𝑥2�푡 + 𝑥�푡 − 1) + 𝑥�푐 (5𝑥4�푡 − 22𝑥3�푡 + 5𝑥2�푡 )] − 𝑥3�푐𝑥�푡 ln (𝑥�푐)6 (𝑥�푐 − 1)4 (𝑥�푐 − 𝑥�푡)3 [3𝑥
2
�푐 (𝑥�푡 + 1)

− 𝑥�푐 (𝑥2�푡 + 10𝑥�푡 + 1) + 3𝑥�푡 (𝑥�푡 + 1)] − 𝑥3�푡𝑥�푐 ln (𝑥�푡)6 (𝑥�푡 − 1)4 (𝑥�푡 − 𝑥�푐)3 [3𝑥
2
�푡 (𝑥�푐 + 1) − 𝑥�푡 (𝑥2�푐 + 10𝑥�푐 + 1) + 3𝑥�푐 (𝑥�푐 + 1)] ,

𝑓3 (𝑥�푐, 𝑥�푡) = − 1
36 (𝑥�푐 − 1)3 (𝑥�푡 − 1)3 (𝑥�푐 − 𝑥�푡)2 [𝑥

5
�푐 (10𝑥3�푡 − 25𝑥2�푡 + 8𝑥�푡 − 5) + 𝑥4�푐 (−20𝑥4�푡 + 25𝑥3�푡 + 49𝑥2�푡 − 21𝑥�푡 + 15)

+ 𝑥3�푐 (10𝑥5�푡 + 25𝑥4�푡 − 102𝑥3�푡 + 2𝑥2�푡 + 8𝑥�푡 − 15) + 𝑥2�푐 (−25𝑥5�푡 + 49𝑥4�푡 + 2𝑥3�푡 + 26𝑥2�푡 − 9𝑥�푡 + 5) + 𝑥�푐 (8𝑥5�푡 − 21𝑥4�푡 + 8𝑥3�푡
− 9𝑥2�푡 + 2𝑥�푡) − 5 (𝑥�푡 − 1)3 𝑥2�푡 ] − ln (𝑥�푡)

6 (𝑥�푡 − 1)4 (𝑥�푐 − 𝑥�푡)3 [𝑥
3
�푐 (3𝑥�푡 − 1) − 𝑥2�푐 (𝑥3�푡 + 6𝑥2�푡 − 3𝑥�푡) + 𝑥�푐 (3𝑥4�푡 − 𝑥3�푡 )]

− ln (𝑥�푐)
6 (𝑥�푐 − 1)4 (𝑥�푡 − 𝑥�푐)3 [𝑥

3
�푡 (3𝑥�푐 − 1) − 𝑥2�푡 (𝑥3�푐 + 6𝑥2�푐 − 3𝑥�푐) + 𝑥�푡 (3𝑥4�푐 − 𝑥3�푐)] ,
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𝑓4 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = (𝑥�푐 − 4) 𝑥2�푐𝑥�푡 ln (𝑥�푐)2 (𝑥�푐 − 1) (𝑥�푐 − 𝑥�퐻) (𝑥�푐 − 𝑥�푡) −
𝑥�푐 (𝑥�푡 − 4) 𝑥2�푡 ln (𝑥�푡)2 (𝑥�푡 − 1) (𝑥�푐 − 𝑥�푡) (𝑥�푡 − 𝑥�퐻) −

𝑥�푐 (𝑥�퐻 − 4) 𝑥�퐻𝑥�푡 ln (𝑥�퐻)2 (𝑥�퐻 − 1) (𝑥�푐 − 𝑥�퐻) (𝑥�퐻 − 𝑥�푡)
+ 𝑥�푠 { 𝑥2�푐𝑥�푡 ln (𝑥�푐)24 (𝑥�푐 − 1)3 (𝑥�푐 − 𝑥�퐻)3 (𝑥�푐 − 𝑥�푡)3 [−3𝑥

5
�푐 (𝑥�퐻 + 2𝑥�푡 − 7) + 𝑥4�푐 (4𝑥�퐻 (4𝑥�푡 − 3) + 𝑥2�퐻 + 2𝑥2�푡 + 16𝑥�푡 − 23)

− 𝑥3�푐 (𝑥2�퐻 (6𝑥�푡 − 7) + 𝑥�퐻 (5𝑥2�푡 + 76𝑥�푡 + 5) + 5𝑥2�푡 + 42𝑥�푡 − 12) + 𝑥2�푐 (𝑥2�퐻 (𝑥2�푡 + 28𝑥�푡 + 2) + 8𝑥�퐻𝑥�푡 (3𝑥�푡 + 20)
+ 𝑥�푡 (13𝑥�푡 + 12)) − 3𝑥�푐𝑥�퐻𝑥�푡 (𝑥�퐻 (𝑥�푡 + 22) + 17𝑥�푡 + 20) + 12𝑥�퐻𝑥�푡 (𝑥�퐻 (𝑥�푡 + 2) + 𝑥�푡)]
− 𝑥�푐𝑥2�푡 ln (𝑥�푡)24 (𝑥�푡 − 1)3 (𝑥�푐 − 𝑥�푡)3 (𝑥�푡 − 𝑥�퐻)3 [𝑥

2
�푐 (𝑥2�퐻 (𝑥2�푡 − 3𝑥�푡 + 12) + 𝑥�퐻 (−5𝑥3�푡 + 24𝑥2�푡 − 51𝑥�푡 + 12)

+ 𝑥2�푡 (2𝑥2�푡 − 5𝑥�푡 + 13)) − 2𝑥�푐 (𝑥2�퐻 (3𝑥3�푡 − 14𝑥2�푡 + 33𝑥�푡 − 12) + 2𝑥�퐻𝑥�푡 (−4𝑥3�푡 + 19𝑥2�푡 − 40𝑥�푡 + 15)
+ 𝑥2�푡 (3𝑥3�푡 − 8𝑥2�푡 + 21𝑥�푡 − 6)) + 𝑥2�푡 (𝑥2�퐻 (𝑥2�푡 + 7𝑥�푡 + 2) − 𝑥�퐻𝑥�푡 (3𝑥2�푡 + 12𝑥�푡 + 5) + 𝑥�푡 (21𝑥2�푡 − 23𝑥�푡 + 12))]
− 𝑥�푐𝑥�퐻𝑥�푡 ln (𝑥�퐻)
24 (𝑥�퐻 − 1)3 (𝑥�푐 − 𝑥�퐻)3 (𝑥�퐻 − 𝑥�푡)3 [𝑥

2
�푐 (𝑥3�퐻 (6 − 5𝑥�푡) + 𝑥2�퐻 (2𝑥2�푡 + 16𝑥�푡 + 13) − 3𝑥�퐻𝑥�푡 (2𝑥�푡 + 21) + 𝑥4�퐻

+ 12𝑥�푡 (2𝑥�푡 + 1)) − 𝑥�푐 (𝑥4�퐻 (8 − 12𝑥�푡) + 𝑥3�퐻 (5𝑥2�푡 + 40𝑥�푡 + 41) − 4𝑥2�퐻 (4𝑥2�푡 + 39𝑥�푡 + 3) + 3𝑥�퐻𝑥�푡 (21𝑥�푡 + 16) + 3𝑥5�퐻
− 12𝑥2�푡 ) + 𝑥2�퐻 (−3𝑥3�퐻 (𝑥�푡 − 6) + 𝑥2�퐻 (𝑥2�푡 − 8𝑥�푡 + 2) + 𝑥�퐻𝑥�푡 (6𝑥�푡 − 41) + 𝑥�푡 (13𝑥�푡 + 12))]} ,

𝑔4 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = − 𝑥�푐𝑥�푡12 (𝑥�푐 − 1)2 (𝑥�푐 − 𝑥�퐻)2 (𝑥�퐻 − 1)2 (𝑥�푐 − 𝑥�푡)2 (𝑥�퐻 − 𝑥�푡)2 (𝑥�푡 − 1)2 [𝑥
5
�푐 ((𝑥2�푡 + 4) 𝑥3�퐻 + (−13𝑥2�푡

+ 15𝑥�푡 − 17) 𝑥2�퐻 + (4𝑥3�푡 − 4𝑥2�푡 + 12𝑥�푡 + 3) 𝑥�퐻 + 𝑥�푡 (6𝑥2�푡 − 14𝑥�푡 + 3)) − ((3𝑥2�푡 − 2𝑥�푡 + 9) 𝑥4�퐻 − (2𝑥3�푡 + 11𝑥2�푡 − 22𝑥�푡
+ 24) 𝑥3�퐻 + (2𝑥4�푡 − 16𝑥3�푡 − 11𝑥2�푡 + 31𝑥�푡 − 21) 𝑥2�퐻 + (4𝑥4�푡 + 11𝑥3�푡 + 𝑥2�푡 + 13𝑥�푡 + 6) 𝑥�퐻 + 𝑥�푡 (14𝑥3�푡 − 23𝑥2�푡 − 12𝑥�푡
+ 6)) 𝑥4�푐 + 𝑥3�푐 ((𝑥2�푡 + 4) 𝑥5�퐻 + (23𝑥2�푡 − 25𝑥�푡 + 17) 𝑥4�퐻 + 2 (𝑥4�푡 − 32𝑥3�푡 + 14𝑥2�푡 + 22𝑥�푡 − 35) 𝑥3�퐻 + 8 (2𝑥4�푡 + 𝑥3�푡 − 4𝑥2�푡
+ 4𝑥�푡 + 2) 𝑥2�퐻 + (4𝑥5�푡 − 11𝑥4�푡 + 8𝑥3�푡 + 35𝑥2�푡 − 24𝑥�푡 + 3) 𝑥�퐻 + 𝑥�푡 (6𝑥4�푡 + 23𝑥3�푡 − 72𝑥2�푡 + 25𝑥�푡 + 3)) + ((𝑥3�푡 − 18𝑥2�푡
+ 17𝑥�푡 − 15) 𝑥5�퐻 + (−3𝑥4�푡 + 23𝑥3�푡 − 22𝑥2�푡 − 2𝑥�푡 + 19) 𝑥4�퐻 + (𝑥5�푡 + 11𝑥4�푡 + 28𝑥3�푡 − 16𝑥2�푡 − 5𝑥�푡 + 21) 𝑥3�퐻 − (13𝑥5�푡
− 11𝑥4�푡 + 32𝑥3�푡 + 16𝑥2�푡 − 5𝑥�푡 + 15) 𝑥2�퐻 − 𝑥�푡 (4𝑥4�푡 + 𝑥3�푡 − 35𝑥2�푡 + 30𝑥�푡 − 15) 𝑥�퐻 + 𝑥2�푡 (−14𝑥3�푡 + 12𝑥2�푡 + 25𝑥�푡 − 18)) 𝑥2�푐
+ ((17𝑥2�푡 − 8𝑥�푡 + 6) 𝑥5�퐻 + (2𝑥4�푡 − 25𝑥3�푡 − 2𝑥2�푡 + 2𝑥�푡 − 12) 𝑥4�퐻 + (−22𝑥4�푡 + 44𝑥3�푡 − 5𝑥2�푡 − 8𝑥�푡 + 6) 𝑥3�퐻 + 𝑥�푡 (15𝑥4�푡
− 31𝑥3�푡 + 32𝑥2�푡 + 5𝑥�푡 − 6) 𝑥2�퐻 + 𝑥2�푡 (12𝑥3�푡 − 13𝑥2�푡 − 24𝑥�푡 + 15) 𝑥�퐻 + 3 (𝑥�푡 − 1)2 𝑥3�푡 ) 𝑥�푐 + 𝑥�퐻𝑥�푡 ((4𝑥2�푡 − 15𝑥�푡 + 6) 𝑥4�퐻
+ (−9𝑥3�푡 + 17𝑥2�푡 + 19𝑥�푡 − 12) 𝑥3�퐻 + (4𝑥4�푡 + 24𝑥3�푡 − 70𝑥2�푡 + 21𝑥�푡 + 6) 𝑥2�퐻 + 𝑥�푡 (−17𝑥3�푡 + 21𝑥2�푡 + 16𝑥�푡 − 15) 𝑥�퐻
+ 3 (𝑥�푡 − 1)2 𝑥2�푡 )] ,

𝑓5 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = − 𝑥�푐 ln (𝑥�푐)
4 (𝑥�푐 − 1)2 (𝑥�푐 − 𝑥�퐻)2 (𝑥�푐 − 𝑥�푡) [−𝑥

2
�푐 (6𝑥�퐻 + 11𝑥�푡 + 6) + 2𝑥�푐 (𝑥�퐻 (6𝑥�푡 + 3) + 5𝑥�푡) + 6𝑥3�푐

− 11𝑥�퐻𝑥�푡] + 𝑥�푐𝑥�푡 ln (𝑥�푡)
4 (𝑥�푡 − 1)2 (𝑥�푐 − 𝑥�푡) (𝑥�퐻 − 𝑥�푡)2 [𝑥�퐻 (6𝑥�푡 − 5) + (4 − 5𝑥�푡) 𝑥�푡]

+ 𝑥�푐 ln (𝑥�퐻)
4 (𝑥�퐻 − 1)2 (𝑥�푐 − 𝑥�퐻)2 (𝑥�퐻 − 𝑥�푡)2 [𝑥�푐 (−𝑥

2
�퐻 (19𝑥�푡 + 6) + 𝑥�퐻𝑥�푡 (12𝑥�푡 + 17) + 6𝑥3�퐻 − 10𝑥2�푡 ) + 𝑥�퐻 (𝑥2�퐻 (20𝑥�푡 + 6)

− 𝑥�퐻𝑥�푡 (13𝑥�푡 + 18) − 6𝑥3�퐻 + 11𝑥2�푡 )] − 𝑥�푐𝑥�푡4 (𝑥�푐 − 1) (𝑥�퐻 − 1) (𝑥�푡 − 1) (𝑥�푐 − 𝑥�퐻) (𝑥�퐻 − 𝑥�푡) [𝑥�푐 (𝑥�퐻 − 2𝑥�푡 + 1) + 𝑥�퐻𝑥�푡
− 𝑥2�퐻 + 𝑥�푡 − 1] ,
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𝑓6 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = 𝑥3�푐𝑥�푡 ln (𝑥�푐)4 (𝑥�푐 − 𝑥�퐻)2 (𝑥�푐 − 𝑥�푡) −
𝑥�푐𝑥3�푡 ln (𝑥�푡)4 (𝑥�푐 − 𝑥�푡) (𝑥�퐻 − 𝑥�푡)2 −

𝑥�푐𝑥�퐻𝑥�푡 ln (𝑥�퐻)
4 (𝑥�푐 − 𝑥�퐻)2 (𝑥�퐻 − 𝑥�푡)2 [𝑥�푐 (𝑥�퐻 − 2𝑥�푡) + 𝑥�퐻𝑥�푡]

− 𝑥�푐𝑥�퐻𝑥�푡4 (𝑥�푐 − 𝑥�퐻) (𝑥�퐻 − 𝑥�푡) + 𝑥�푠 {
𝑥3�푐𝑥�푡 ln (𝑥�푐)12 (𝑥�푐 − 𝑥�퐻)4 (𝑥�푐 − 𝑥�푡)3 [3𝑥

2
�푐 (𝑥�퐻 + 𝑥�푡) − 𝑥�푐 (10𝑥�퐻𝑥�푡 + 𝑥2�퐻 + 𝑥2�푡 ) + 3𝑥�퐻𝑥�푡 (𝑥�퐻

+ 𝑥�푡)] + 𝑥�푐𝑥3�푡 ln (𝑥�푡)12 (𝑥�푐 − 𝑥�푡)3 (𝑥�퐻 − 𝑥�푡)4 [𝑥
2
�푐 (𝑥�푡 − 3𝑥�퐻) + 𝑥�푐 (10𝑥�퐻𝑥�푡 − 3𝑥2�퐻 − 3𝑥2�푡 ) + 𝑥�퐻𝑥�푡 (𝑥�퐻 − 3𝑥�푡)]

+ 𝑥�푐𝑥�푡 ln (𝑥�퐻)
12 (𝑥�푐 − 𝑥�퐻)4 (𝑥�퐻 − 𝑥�푡)4 [−3𝑥�푐𝑥

4
�퐻 (𝑥�퐻 − 3𝑥�푡) + 3𝑥2�푐𝑥�퐻𝑥2�푡 (𝑥�푡 − 3𝑥�퐻) + 𝑥3�푐𝑥2�푡 (3𝑥�퐻 − 𝑥�푡) + 𝑥5�퐻 (𝑥�퐻 − 3𝑥�푡)]

+ 𝑥�푐𝑥�푡72 (𝑥�푐 − 𝑥�퐻)3 (𝑥�푐 − 𝑥�푡)2 (𝑥�퐻 − 𝑥�푡)3 [𝑥
4
�푐 (−22𝑥�퐻𝑥�푡 + 5𝑥2�퐻 + 5𝑥2�푡 ) + 𝑥3�푐 (70𝑥2�퐻𝑥�푡 − 2𝑥�퐻𝑥2�푡 − 22𝑥3�퐻 + 2𝑥3�푡 )

+ 𝑥2�푐 (−2𝑥3�퐻𝑥�푡 − 78𝑥2�퐻𝑥2�푡 − 2𝑥�퐻𝑥3�푡 + 5𝑥4�퐻 + 5𝑥4�푡 ) + 2𝑥�푐𝑥�퐻𝑥�푡 (−𝑥2�퐻𝑥�푡 + 35𝑥�퐻𝑥2�푡 + 𝑥3�퐻 − 11𝑥3�푡 ) + 𝑥2�퐻𝑥2�푡 (−22𝑥�퐻𝑥�푡
+ 5𝑥2�퐻 + 5𝑥2�푡 )]} ,

𝑓7 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = − 𝑥�푐𝑥�푡12 (𝑥�푐 − 1)2 (𝑥�푐 − 𝑥�퐻)2 (𝑥�퐻 − 1)2 (𝑥�푐 − 𝑥�푡)2 (𝑥�퐻 − 𝑥�푡)2 (𝑥�푡 − 1)2 [((𝑥
2
�푡 − 3𝑥�푡 + 4) 𝑥3�퐻 + (−3𝑥3�푡

+ 5𝑥2�푡 − 8) 𝑥2�퐻 + 𝑥�푡 (4𝑥2�푡 − 13𝑥�푡 + 15) 𝑥�퐻 + 𝑥2�푡 (3𝑥�푡 − 5)) 𝑥5�푐 + ((3𝑥2�푡 − 4𝑥�푡 − 3) 𝑥4�퐻 + 𝑥�푡 (−7𝑥2�푡 + 5𝑥�푡 + 8) 𝑥3�퐻
+ (10𝑥4�푡 + 𝑥3�푡 − 16𝑥2�푡 − 4𝑥�푡 + 15) 𝑥2�퐻 + 𝑥�푡 (−16𝑥3�푡 + 19𝑥2�푡 + 11𝑥�푡 − 28) 𝑥�퐻 − 𝑥2�푡 (2𝑥2�푡 + 𝑥�푡 − 9)) 𝑥4�푐 + ((−2𝑥2�푡 + 3𝑥�푡
+ 1) 𝑥5�퐻 + (6𝑥3�푡 − 10𝑥2�푡 + 5𝑥�푡 + 5) 𝑥4�퐻 + (−7𝑥4�푡 + 8𝑥3�푡 + 4𝑥2�푡 − 16𝑥�푡 − 13) 𝑥3�퐻 + (−3𝑥5�푡 + 𝑥4�푡 − 16𝑥3�푡 + 28𝑥2�푡 + 11𝑥�푡
− 5) 𝑥2�퐻 + 𝑥�푡 (4𝑥4�푡 + 19𝑥3�푡 − 40𝑥2�푡 + 14𝑥�푡 + 9) 𝑥�퐻 + 𝑥2�푡 (3𝑥3�푡 − 𝑥2�푡 − 6𝑥�푡 − 2)) 𝑥3�푐 + ((−2𝑥3�푡 + 6𝑥2�푡 − 7𝑥�푡 − 3) 𝑥5�퐻
+ (3𝑥4�푡 − 10𝑥3�푡 + 8𝑥2�푡 + 𝑥�푡 + 4) 𝑥4�퐻 + (𝑥5�푡 + 5𝑥4�푡 + 4𝑥3�푡 − 16𝑥2�푡 + 19𝑥�푡 + 3) 𝑥3�퐻 + 𝑥�푡 (5𝑥4�푡 − 16𝑥3�푡 + 28𝑥2�푡 − 40𝑥�푡 − 1)
⋅ 𝑥2�퐻 + 𝑥2�푡 (−13𝑥3�푡 + 11𝑥2�푡 + 14𝑥�푡 − 6) 𝑥�퐻 + 𝑥3�푡 (−5𝑥2�푡 + 9𝑥�푡 − 2)) 𝑥2�푐 + 𝑥�퐻𝑥�푡 ((3𝑥2�푡 − 7𝑥�푡 + 10) 𝑥4�퐻 + (−4𝑥3�푡 + 5𝑥2�푡
+ 𝑥�푡 − 16) 𝑥3�퐻 + (−3𝑥4�푡 + 8𝑥3�푡 − 16𝑥2�푡 + 19𝑥�푡 − 2) 𝑥2�퐻 − 𝑥�푡 (4𝑥2�푡 − 11𝑥�푡 + 1) 𝑥�퐻 + 𝑥2�푡 (15𝑥2�푡 − 28𝑥�푡 + 9)) 𝑥�푐
+ 𝑥2�퐻𝑥2�푡 ((𝑥�푡 − 3) 𝑥3�퐻 + (−3𝑥2�푡 + 5𝑥�푡 + 4) 𝑥2�퐻 + (4𝑥3�푡 − 13𝑥�푡 + 3) 𝑥�퐻 + 𝑥�푡 (−8𝑥2�푡 + 15𝑥�푡 − 5))] ,

𝑔7 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = − 𝑥2�푐𝑥�푡 ln (𝑥�푐)6 (𝑥�푐 − 1)3 (𝑥�푐 − 𝑥�퐻)3 (𝑥�푐 − 𝑥�푡)3 [6𝑥
6
�푐 − 3𝑥5�푐 (5𝑥�퐻 + 5𝑥�푡 + 4) + 𝑥4�푐 (5𝑥�퐻 (7𝑥�푡 + 6) + 8𝑥2�퐻 + 7𝑥2�푡

+ 29𝑥�푡 + 5) − 𝑥3�푐 (2𝑥2�퐻 (9𝑥�푡 + 8) + 𝑥�퐻 (16𝑥2�푡 + 68𝑥�푡 + 13) + 𝑥�푡 (13𝑥�푡 + 12)) + 𝑥2�푐 (𝑥2�퐻 (8𝑥2�푡 + 35𝑥�푡 + 7)
+ 𝑥�퐻𝑥�푡 (30𝑥�푡 + 29) + 5𝑥2�푡 ) − 3𝑥�푐𝑥�퐻𝑥�푡 (5𝑥�퐻 (𝑥�푡 + 1) + 4𝑥�푡) + 6𝑥2�퐻𝑥2�푡 ] − 𝑥2�푡𝑥�푐 ln (𝑥�푡)6 (𝑥�푡 − 1)3 (𝑥�푡 − 𝑥�퐻)3 (𝑥�푡 − 𝑥�푐)3 [6𝑥

6
�푡

− 3𝑥5�푡 (5𝑥�퐻 + 5𝑥�푐 + 4) + 𝑥4�푡 (5𝑥�퐻 (7𝑥�푐 + 6) + 8𝑥2�퐻 + 7𝑥2�푐 + 29𝑥�푐 + 5) − 𝑥3�푡 (2𝑥2�퐻 (9𝑥�푐 + 8) + 𝑥�퐻 (16𝑥2�푐 + 68𝑥�푐 + 13)
+ 𝑥�푐 (13𝑥�푐 + 12)) + 𝑥2�푡 (𝑥2�퐻 (8𝑥2�푐 + 35𝑥�푐 + 7) + 𝑥�퐻𝑥�푐 (30𝑥�푐 + 29) + 5𝑥2�푐) − 3𝑥�푡𝑥�퐻𝑥�푐 (5𝑥�퐻 (𝑥�푐 + 1) + 4𝑥�푐)
+ 6𝑥2�퐻𝑥2�푐] + 𝑥�푐𝑥�퐻𝑥�푡 ln (𝑥�퐻)

6 (𝑥�퐻 − 1)3 (𝑥�푐 − 𝑥�퐻)3 (𝑥�퐻 − 𝑥�푡)3 [𝑥
2
�푐 (−𝑥3�퐻 (16𝑥�푡 + 15) + 𝑥2�퐻 (7𝑥2�푡 + 29𝑥�푡 + 5) − 3𝑥�퐻𝑥�푡 (4𝑥�푡 + 3)

+ 8𝑥4�퐻 + 3𝑥2�푡 ) + 𝑥�푐𝑥�퐻 (𝑥3�퐻 (36𝑥�푡 + 35) − 𝑥2�퐻 (16𝑥2�푡 + 68𝑥�푡 + 13) + 𝑥�퐻𝑥�푡 (29𝑥�푡 + 24) − 18𝑥4�퐻 − 9𝑥2�푡 )
+ 𝑥2�퐻 (−18𝑥3�퐻 (𝑥�푡 + 1) + 𝑥2�퐻 (8𝑥2�푡 + 35𝑥�푡 + 7) − 𝑥�퐻𝑥�푡 (15𝑥�푡 + 13) + 9𝑥4�퐻 + 5𝑥2�푡 )] ,
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𝑓8 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = 𝑥�푐𝑥�푡4 (𝑥�푐 − 1) (𝑥�퐻 − 1) (𝑥�푡 − 1) (𝑥�푐 − 𝑥�퐻) (𝑥�퐻 − 𝑥�푡) [𝑥�퐻 (𝑥�푐 (𝑥�푡 − 2) − 2𝑥�푡 + 1) + 𝑥�푐𝑥�푡 + 𝑥
2
�퐻]

− 𝑥2�푐 ln (𝑥�푐)4 (𝑥�푐 − 1)2 (𝑥�푐 − 𝑥�퐻)2 (𝑥�푐 − 𝑥�푡) [−𝑥
2
�푐 (9𝑥�퐻 + 16𝑥�푡 + 9) + 𝑥�푐 (𝑥�퐻 (17𝑥�푡 + 9) + 15𝑥�푡) + 9𝑥3�푐 − 16𝑥�퐻𝑥�푡]

+ 𝑥�푐𝑥2�푡 ln (𝑥�푡)4 (𝑥�푡 − 1)2 (𝑥�푐 − 𝑥�푡) (𝑥�퐻 − 𝑥�푡)2 [𝑥�퐻 (8𝑥�푡 − 7) + (6 − 7𝑥�푡) 𝑥�푡]

+ 𝑥�푐𝑥�퐻 ln (𝑥�퐻)
4 (𝑥�퐻 − 1)2 (𝑥�푐 − 𝑥�퐻)2 (𝑥�퐻 − 𝑥�푡)2 [𝑥�푐 (−𝑥

2
�퐻 (26𝑥�푡 + 9) + 8𝑥�퐻𝑥�푡 (2𝑥�푡 + 3) + 9𝑥3�퐻 − 14𝑥2�푡 ) + 𝑥�퐻 (9𝑥2�퐻 (3𝑥�푡 + 1)

− 𝑥�퐻𝑥�푡 (17𝑥�푡 + 25) − 9𝑥3�퐻 + 15𝑥2�푡 )] ,
𝑓9 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = − 𝑥3�푐𝑥�푡 ln (𝑥�푐)6 (𝑥�푐 − 𝑥�퐻)4 (𝑥�푐 − 𝑥�푡)3 [3𝑥

2
�푐 (𝑥�퐻 + 𝑥�푡) − 𝑥�푐 (10𝑥�퐻𝑥�푡 + 𝑥2�퐻 + 𝑥2�푡 ) + 3𝑥�퐻𝑥�푡 (𝑥�퐻 + 𝑥�푡)]

− 𝑥�푐𝑥3�푡 ln (𝑥�푡)6 (𝑥�푐 − 𝑥�푡)3 (𝑥�퐻 − 𝑥�푡)4 [𝑥
2
�푐 (𝑥�푡 − 3𝑥�퐻) + 𝑥�푐 (10𝑥�퐻𝑥�푡 − 3𝑥2�퐻 − 3𝑥2�푡 ) + 𝑥�퐻𝑥�푡 (𝑥�퐻 − 3𝑥�푡)]

+ 𝑥�푐𝑥�푡 ln (𝑥�퐻)
6 (𝑥�푐 − 𝑥�퐻)4 (𝑥�퐻 − 𝑥�푡)4 [3𝑥�푐𝑥

4
�퐻 (𝑥�퐻 − 3𝑥�푡) + 3𝑥2�푐𝑥�퐻𝑥2�푡 (3𝑥�퐻 − 𝑥�푡) + 𝑥3�푐𝑥2�푡 (𝑥�푡 − 3𝑥�퐻) + 𝑥5�퐻 (3𝑥�푡 − 𝑥�퐻)]

− 𝑥�푐𝑥�푡36 (𝑥�푐 − 𝑥�퐻)3 (𝑥�푐 − 𝑥�푡)2 (𝑥�퐻 − 𝑥�푡)3 [𝑥
4
�푐 (−22𝑥�퐻𝑥�푡 + 5𝑥2�퐻 + 5𝑥2�푡 ) + 𝑥3�푐 (70𝑥2�퐻𝑥�푡 − 2𝑥�퐻𝑥2�푡 − 22𝑥3�퐻 + 2𝑥3�푡 )

+ 𝑥2�푐 (−2𝑥3�퐻𝑥�푡 − 78𝑥2�퐻𝑥2�푡 − 2𝑥�퐻𝑥3�푡 + 5𝑥4�퐻 + 5𝑥4�푡 ) + 2𝑥�푐𝑥�퐻𝑥�푡 (−𝑥2�퐻𝑥�푡 + 35𝑥�퐻𝑥2�푡 + 𝑥3�퐻 − 11𝑥3�푡 ) + 𝑥2�퐻𝑥2�푡 (−22𝑥�퐻𝑥�푡
+ 5𝑥2�퐻 + 5𝑥2�푡 )] ,

𝑓10 (𝑥�푐, 𝑥�푡, 𝑥�퐻) = 𝑥2�푐𝑥�푡 ln (𝑥�푐)(𝑥�푐 − 𝑥�퐻)2 (𝑥�푐 − 𝑥�푡) −
𝑥�푐𝑥2�푡 ln (𝑥�푡)(𝑥�푐 − 𝑥�푡) (𝑥�퐻 − 𝑥�푡)2 +

𝑥�푐𝑥�푡 ln (𝑥�퐻)
(𝑥�푐 − 𝑥�퐻)2 (𝑥�퐻 − 𝑥�푡)2 [𝑥�푐𝑥�푡 − 𝑥

2
�퐻]

− 𝑥�푐𝑥�푡(𝑥�푐 − 𝑥�퐻) (𝑥�퐻 − 𝑥�푡) .
(A.2)
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