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Abstract

High energy influxes increase the complexity of passive calorimetric probe
measurements because of an increasing temperature of the surrounding materials
like the probe holder. This leads to a distinctively different evolution of the probe
temperature compared to low energy influxes. Different established methods for the
analysis of passive calorimetric probe data are presented and it is shown that they
are not applicable for high energy influx measurements resulting in the requirement
of a novel analysis approach. Such an approach is given in this paper by the
combination of the exponential and the linear method. The high energy influx
measurements are studied for a commercial atmospheric pressure plasma jet, in
order to illustrate our suggested modified approach.

Keywords: Calorimetric probe, High energy influx, Atmospheric pressure plasma jet,
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Introduction
Atmospheric pressure plasma jets are used for cleaning, activation and thin film coat-

ing of metal, plastics and other materials [1, 2]. But often they have a large energy flux

onto surfaces because of input powers in the kW range. As the thermal stress of a sub-

strate is a key parameter in many different plasma applications, in particular, for

temperature-sensitive materials, detailed knowledge is needed for the optimization of

processes involving these sources. The thermal conditions not only define process limi-

tations, but also influence the quality of coatings [3]. Yet, atmospheric plasma sources

with a high energy influx in the order of 100 W/cm2 towards substrate surfaces offer

some advantages compared to low power sources (<1 W/cm2), e.g., faster treatments

of substrates and effective use of precursors.

Calorimetric probes are a well-known and widespread diagnostic tool for the deter-

mination of the energy influx [4, 5]. They can be divided into active and passive calori-

metric probes. The active probes are heated to a constant temperature and the heating

power is recorded. Any additional energy influx from a plasma source results directly

in a reduced heating power. However, only energy influxes smaller than the heating

power can be measured, which puts a limit to this diagnostic. The limit of the probe

used so far are a few watts per square centimeter and can, therefore, not be used for

high energy influxes [6]. The passive probes can be distinguished for different princi-

ples, again. For example, the probes are exposed to the energy source on the one side
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of the probe and cooled on the other side until a stationary temperature distribution is

reached [7]. This leads to a spatial temperature gradient along the probe from which

the energy influx can be derived. The other principle uses smaller probes, which are

considered to have a negligible temperature gradient in the heated part of the probe

during the plasma interaction. These probes based on temporal changes of the

temperature have been used in many different designs for versatile processes, mostly at

low pressure and small energy flux applications. A suitable review can be found in [5].

It was already shown that for the investigation of atmospheric pressure plasma jets

with a large power consumption changes in the design of the probe are necessary [8].

These adaptions allow to handle the high mechanical and thermal stress of the probe

induced by the investigated high power atmospheric pressure plasma jet from the com-

pany Plasmatreat.

In this present study we will focus on the analysis of the results obtained with modi-

fied passive probes. First, we explain the well-known linear and exponential methods

[4, 9–11] and the underlying assumptions in detail, before we show for a typical meas-

urement why these methods are not suitable for energy influxes in the order of 100 W/

cm2. Finally, we introduce a novel method by combining the linear and the exponential

methods and show that this approach is suitable for the analysis of high energy influxes

by a passive calorimetric probe.

Basics of the analytical method at low energy fluxes
The basis for all the common methods for the analysis of passive calorimetric probe

measurements is the consideration of temporal temperature changes during the heating

and the cooling phase of the calorimetric probe [9]:

Cp
dTp

dt
¼ Pin−Pout ð1Þ

with the heat capacity of the probe Cp, the time derivative of the probe temperature

Tp. Pin is the net incoming power containing the heating processes as well as losses due

to plasma-wall-interactions. A list of the various contributions to the thermal energy

balance at the substrate (probe) can be found in [12, 13]. Pout, on the other hand, in-

cludes all loss processes dependent on the rising temperature of the probe. The pro-

cesses are heat radiation (Stefan-Boltzmann law)

Prad ¼ εσAp T 4
p−T

4
eq

� �
; ð2Þ

with the emissivity ε, the Stefan-Boltzmann constant σ, the area of the probe Ap and

the equilibrium temperature Teq, and thermal conduction

Pcond ¼ c Tp−Teq
� �

; ð3Þ

with a constant c depending on the material and geometry of the probe.

It includes, furthermore, the virtual reduction of the incoming power due to higher

substrate temperatures. This reduction is often considered to be a loss in order to dis-

tinguish this effect from any other changes of the energy influx [4, 10]. As soon as the

substrate temperature rises, the contributions of the total energy flux to the substrate

which are dependent on the substrate temperature decline, generally. For example,

under atmospheric pressure one of these contributions is that of the heated neutral gas.
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The energy transferred from the gas to the substrate will diminish with a rising sub-

strate temperature.

At low pressure free convection can be neglected. When using atmospheric pressure

plasma jets, forced convection, which can be treated linearly analog to thermal conduc-

tion, may become dominant during the plasma treatment.

The three loss processes, radiation, conduction, and convection, are also those which

are present in the cooling phase after plasma treatment. Here, the convection losses are

dependent on the experimental conditions. If the gas flow is switched off together with

the plasma or if the plasma jet is moved away from the probe, free convection is

present. If the gas flow is still on, the losses caused by forced convection depend on the

temperature of the gas.

The incoming power can be determined by a comparison of the change of

temperature during the heating (Pin – Pout, plasma/energy influx on, eq. 4.1) and the

cooling phase (P′out, plasma/energy influx off, eq. 4.2) leading to eq. 4.3:

Cp
dTp

dt

� �
heat

¼ Pin−Pout ð4:1Þ

Cp
dTp

dt

� �
cool

¼ −P′
out ð4:2Þ

Pin ¼ Cp
dTp

dt

� �
heat

−
dTp

dt

� �
cool

� �
þ Pout−P′

out

� � ð4:3Þ

It is important to point out that the power loss functions during the two phases Pout
(Tp) and P′out (Tp) are not necessarily the same. A crucial point for the losses to remain

the same is the reduction of the incoming power due to higher substrate temperatures.

In the case of a plasma jet this loss is mainly caused by the temperature difference be-

tween the probe and the neutral gas. As soon as the probe temperature rises, the differ-

ence becomes smaller and the incoming power is reduced. To mirror this effect during

the cooling phase, a gas flow equally large to that one during the heating phase and at

equilibrium temperature has to be applied. However, this is often not achievable due to

residual heat in the jet or other effects on the gas temperature. Turning the gas flow off

leads to free convection and, thereby, again to different power loss contributions.

Another issue is the temperature of the surrounding, i.e., the probe holder. The

power losses in eqs. 2 and 3 are dependent on this temperature, which is the equilib-

rium temperature Teq at the beginning of the treatment. If the probe holder heats up

during the measurement these losses are no longer solely dependent on the probe

temperature Tp. Hence, a time dependent component is introduced and, therefore, the

power loss functions Pout (Tp) and P′out (Tp) differ from each another.

To illustrate these relations and the consequences for the measurement of high en-

ergy influxes, we start with the methods used for the analysis of small energy influxes

and discuss their applicability to high energy influxes.

The simplest approach to apply the relation given in eq. 4.3 is the linear method.

At the beginning of the heating curve at the equilibrium temperature Teq the losses

are negligible and the energy influx is proportional to the slope of the temperature

curve leading to [9]:

Kewitz et al. EPJ Techniques and Instrumentation  (2017) 4:1 Page 3 of 9



Pin ¼ Cp
dTp

dt

� �
heat

����
T¼Teq

ð5Þ

Since this method is applied at the beginning of the heating curve, the incoming

power should be fully applied in a short time and the recording frequency of the probe

temperature should be sufficiently high to minimize uncertainties for the determination

of the slope dTp

dt

� �
heat

. For higher energy influxes the time, where the probe

temperature is close to the equilibrium temperature, becomes very short and it is not

always possible to apply the full power to the probe in the time available. This may be

attributed to a starting phase of the source plasma or moving it over the probe if it was

started elsewhere to account for the starting phase. There will always be a short time

where the probe is exposed only to a fraction of the total energy flux of the source and

where it is already heated up.

Another method is the exponential analysis. With the assumptions of a constant in-

coming power, linear loss terms, and a constant temperature for the surrounding of the

probe the shape of the signal for heating and cooling phases will be exponential [9, 10]:

Tp;heat tð Þ ¼ Teq þ Pin

a

� �
−

Pin

a

� �
exp −

a
Cp

t

� �
ð6:1Þ

Tp;cool tð Þ ¼ Teq þ Tp;st−Teq
� �

exp −
a
Cp

t

� �
ð6:2Þ

Here a is the constant for the linear cooling processes and Tp,st the temperature of

the probe at the beginning of the cooling phase.

Because of the constant temperature of the surroundings, i.e., Teq, the power loss

functions Pout (Tp) and P′out (Tp) are equal and cancel each other out (eq. 4.3) leading

to [4]:

Pin ¼ Cp
dTp

dt

� �
heat

−
dTp

dt

� �
cool

� �
ð7Þ

In this case, the incoming power can be simply calculated with the difference of the

time derivatives of the temperature _T p ¼ dTp

dt during the heating and the cooling phase

(Fig. 1a). Fig. 1b shows this relation for an exemplary measurement in a low pressure

calibration experiment with an electron beam. It can be seen, that the curves of _T p for

the heating and cooling phase are linear and parallel, so that their difference is roughly

constant.

The assumptions made in this case are valid for short measurements with small en-

ergy influxes where the temperature of the surrounding materials, i.e., the probe holder,

does not change significantly and for probe temperatures where heat loss by radiation

is negligible.

If the probe is used for measurements at higher temperatures, i. e. heated up by

sources with high energy influx, thermal radiation becomes relevant and the energy

losses can no longer be assumed to be linear (see eq. 2). But, if the energy losses are

solely dependent on the probe temperature (constant Teq), the function of the power

losses Pout represented by the cooling curve _T p is still the same for each energy influx

measurement. Therefore, eq. 7 can be applied [12].
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However, if plasma sources with a high energy influx onto substrates are used, the

boundary conditions change. The assumption inherent to the cases above that the

power losses are only dependent on the probe temperature can only be made if the sur-

roundings of the probe, i.e., the probe holder, are at equilibrium temperature Teq. But

due to the high energies the temperature of the holder may increase remarkably during

the treatment. Hence, the temperature Teq in eqs. 2 and 3 is time dependent and,

thereby, the power loss function Pout. This means that the power loss functions Pout
(Tp) and P′out (Tp) in eqs. 4.1 and 4.2 are not the same. As a consequence, eq. 7 can no

longer be used for the whole measurement and the method has to be modified.

Modified analytical method at high energy fluxes and experimental verification
for plasma jet operation
The concerns raised in the discussion of the linear and exponential methods concern-

ing high energy influx measurements are illustrated by a typical measurement for high

energy influx in Fig. 2. This measurement was performed at the atmospheric pressure

plasma jet system from the company Plasmatreat [14] consisting of a FG5001 gener-

ator, a HTR12 transformer and a RD1004 nozzle (similar to [15]). A metal sheet
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Fig. 1 Measurement for a small energy influx of 0,043 W/cm2 in a calibration experiment at low pressure
(6.6 · 10-5 Pa) for a passive calorimetric probe. Electrons emitted from a heated tungsten wire (j = 15 kA/cm2)
are accelerated to the biased probe (Vbias = 950 V) during the heating phase (for further information see
[16]). Graph a shows the temperature evolution over time. b shows the relation between the temporal
derivation of the temperature and the temperature for the same measurement
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Fig. 2 Calorimetric probe measurement for the energy influx of an atmospheric pressure plasma jet. The jet
was operated with a voltage of 300 V (primary power 2.3 kW), a frequency of 19 kHz, 30 slm nitrogen and
at a distance to the probe of 6 mm. The measurement frequency was 100 Hz and the energy influx was
determined to 433 ± 2 W/cm2. a shows the temperature evolution over time with an exponential fit. The
exponential fit corresponds to the linear fit between P2 and P3 of b. b shows the relation between the
temporal derivation of the temperature and the temperature for the same measurement. Different phases
can be distinguished. P1 marks the start of the heating, where the shield for the warm-up time was
removed from between the plasma jet and the probe. P2 is the point where the full power is applied
to the probe. The surrounding starts to heat up around P3 and the measured curve deviates from
the fits (linear and exponential). The plasma jet was turned off at P4 and the transition to the cooling
phase was completed around P5. The dashed line marks the equilibrium temperature and the intersection
between this line and the linear fit (P6) gives the value for the linear method to obtain the energy influx.
c shows the part for the linear fit in more detail. It can be seen that the measurement frequency is sufficiently
high and the linear fit is in good agreement with the data
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positioned in between the plasma jet and the probe is used to shield the probe during

the warm-up time of the jet (see Fig. 3). Once stable conditions are reached the metal

sheet is removed and the plasma jet interacts with the probe (P1). As the gas flow does

not adjust immediately to the new geometry, the incoming power rises between P1 and

P2 until, again, stable conditions are reached and the incoming power is fully applied at

P2. From this point on until the point marked with P3 the loss terms are linear, result-

ing in a linear decrease of _T p over Tp, indicating that the surrounding is still at Teq and

thermal radiation can be neglected (P2 and P3 are chosen as the limits of this linear de-

crease). At P3 the temperature of the surrounding starts to increase significantly and

the curve deviates from the linear fit (red line) to higher values. This process surpasses

also the increasing thermal radiation which should let the measured curve deviate to

smaller values compared to the linear fit. P4 marks the time where the plasma jet is

switched off and the beginning of the transition phase to the cooling curve which starts

at P5.

The two methods described so far depend on a constant temperature Teq of the sur-

rounding. This temperature can be considered as constant between P1 and approxi-

mately P3 and also between P4 and P5, because of the short time between these two

points.

Due to the changing temperature of the surrounding after P3 the curves do not have

an exponential shape and the exponential method cannot be applied. The same applies

to the curve before P3, because there is no corresponding part in the cooling curve

with the same temperature of the surrounding.

The beginning of the heating phase was already considered for the linear method.

The consequences of the concerns mentioned for the use of this method for high en-

ergy influxes can be seen clearly in Fig. 2b. The probe temperature is already around

100 °C when the full power is applied to the probe (P2) and the losses cannot be

neglected.

The second area, where the temperature of the surrounding can be assumed as con-

stant, the transition between the heating and the cooling phase (P4-P5) is also complex

if plasma jets are used. The difficulties to get the same power losses were discussed

above. The consequences can again be recognized in Fig. 2b. The decrease after P4 is

much smaller than the increase after P1 due to residual heat in the gas flow and can,

thus, not be used for the measurement of the energy influx. In conclusion, both, the

Fig. 3 Photograph a and schematic illustration b of the experimental setup and process. The shield separates
plasma and probe until its removal at P1
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linear and the exponential method cannot be used for the analysis of the energy influx

in this case.

So, we have shown that the established methods lead to remarkable errors in the de-

termination of the energy influx in this case. Therefore, a modified method is presented

in the following.

To overcome the difficulties mentioned, we decided to take the part of the heating

curve where Pout (Tp) is linear (see Fig. 2b and c between P2 and P3 and compare to

the exponential method) and extrapolate the linear fit to the equilibrium temperature

(see Fig. 2b at P6). This procedure results in the slope of the temperature curve which

we would get at equilibrium temperature if the full power would be applied to the

probe immediately and this value is exactly what is used for the linear method. There-

fore, we apply the linear method (eq. 5) to obtain the energy influx of 433 ± 2 W/cm2

in the given experiment. An additional uncertainty of about 10% is induced by the cali-

bration of the probe. Using the Gaussian profile of the jet obtained at the same parame-

ters with air (standard deviations of 3.35 ± 0.06 mm and 3.47 ± 0.06 mm in x- and y-

directions [8]) and regarding the probe diameter of 5 mm, this results in a total energy

flux from the jet of 1.61 ± 0.16 kW. This value is comprehensible considering the pri-

mary power of 2.3 kW used for this experiment, since a lower value was expected due

to different losses in the plasma jet system and only a fraction of the total energy is

transferred to the surface. A closer look at the part for the linear fit is presented in

Fig. 2c. It illustrates in more detail that the linear fit is in good agreement with the data

and that the amount of measured points is sufficient for this method.

Conclusion
The passive calorimetric probe measurements at high energy influxes show distinctively

different temperature evolutions compared to measurements at low energy influxes.

The slopes of the heating and cooling curves differ substantially from each other due to

the changing temperature of the surrounding material. The analysis methods used so

far in the literature are based either on a constant temperature Teq of this surrounding

or, with the linear method, a fast application of the full power to the measuring probe.

Since neither of these conditions is fulfilled by the investigated atmospheric pressure

plasma jet a combination of the exponential and the linear method was used. This

combination omits the necessity of a fast application of the full power by using the ex-

ponential part of the heating curve and in the same time does not require the sur-

rounding to be close to the equilibrium temperature for a long time. The successful

application for the investigation of energy fluxes in the order of 100 W/cm2 was

presented.
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