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Modeling and simulation of MEMS devices is a very complex tasks which involve the electrical, mechanical, fluidic, and thermal
domains, and there are still some uncertainties that need to be accounted for during the robust design of MEMS actuators caused
by uncertain material and/or geometric parameters. According to these problems, we put forward stochastic model order reduction
method under random input conditions to facilitate fast time and frequency domain analyses; the method makes use of polynomial
chaos expansions in terms of the random input variables for the matrices of a finite element model of the system and then uses
its transformation matrix to reduce the model; the method is independent of the MOR algorithm, so it is seamlessly compatible
with MOR method used in popular finite element solvers. The simulation results verify the method is effective in large scale MEMS

design process.

1. Introduction

MEMS are attractive for many applications because of their
small size and weight, which allow systems to be minia-
turized [1]. Modeling and simulation is at the basis of the
prediction of the device behavior and optimization of its
performance. The complexity of the simulation analysis adds
to the complexity of the model. MEMS characterization often
requires computationally expensive analysis such as transient
analysis. Moreover, the derived models are often nonlinear.
The primary source of nonlinearity is the electrostatic force,
which couples the electrical and mechanical energy domains.
Simulation of nonlinear models makes use of iterative time
consuming algorithms. To improve the simulation compu-
tation efficiency, MOR (model order reduction) method was
used to extract the lower order ODE system that reproduces
the input/output behavior with good accuracy. The method
is thus solely based on the mathematical properties of the
original system and is, therefore, formal, robust, and in great
part automatic [2, 3]. These properties render the use of
mathematical model order reduction more and more popular

in the study of MEMS devices. Variations during fabrication
lead to uncertain material and/or geometric parameters
causing a significant impact on MEMS device performance
[4]. While there have been significant advances in numerical
simulation methods that allow better understanding of the
underlying multiphysics [5-7], they, however, assume that
the geometrical and physical properties of the device are
known in a deterministic sense. Recently there have been
efforts towards developing computational methods that can
handle input uncertainties. A standard way to deal with
these uncertainties is brute-force Monte Carlo simulations;
these basically involve considering a large number (typically
greater than 10000) of realizations (or samples) of the
geometry and solving the deterministic problem for each
one of these realizations [8]. Several techniques have been
developed, for improving convergence, for example, Latin
hypercube sampling, [9, 10], the quasi-Monte Carlo (QMC)
method, and the Markov chain Monte Carlo method [11].
The statistics such as the mean and standard deviation of the
required output quantity such as the electrostatic force are
then generated. This is a very time consuming process. Also,



there is some uncertainty research work about MEMS: Kong
et al. [12] studied the performance variability of a ceramic
MEMS actuator under random variations in the shape of the
actuator and the air gap in the condenser. Han and Kwak [13]
presented the use of robust optimization during the design
of a microgyroscope using MC simulations to compare
predicted yields. Liu et al. [14] presented a robust design
method to minimize the sensitivity of a laterally vibrating
resonator against width variations due to fabrication errors.
Stochastic model order reduction can offer an eflicient way
for optimization of dynamic problems [15-17]. This has led
to a lot of efforts towards developing MOR algorithms for
variational and parametric uncertainty analysis. In [18], a
variational balanced truncation method was introduced for
model reduction of variable geometry interconnects. In [19], a
method for model order reduction of RCL interconnects was
described. Various algorithms for parametric model order
reduction have been proposed in [20-25].

In this paper, we input parameter uncertainty. We put
forward a new method for MEMS stochastic MOR comput-
ing process in the presence of input parameter uncertainty.
Firstly, we expressed the random input variables as standard
random variables by KL series expansion method; then, we
expressed the random output variables as standard random
variable polynomials by PC method; while obtaining the
polynomials of output variables, performing determinis-
tic MOR for each system to generate the corresponding
transformation matrix at each point on the Smolyak sparse
grid, at last, calculate the mean, standard deviation and
other statistics of the system response. The remainder of
this paper is organized as follows. In the next section, we
represent random input variables matrix of MEMS models;
Section 3 is dedicated to the PC representation of the output
random variables; polynomial chaos expansion coefficient
solution by sparse grid method was described in Section 4;
stochastic reduced order model is described in Section 5. The
computational gain provided by the sparse PC expansions
simulation is illustrated in Section 6 by numerical examples.

2. Representing Input Variable
Stochastic of MEMS Model

2.1. MEMS Stochastic Variables. The probability of the ran-
dom events can be described as a positive number less
than 1; the number which describes the degree of random
event A is called the sample space (), denoted as P(A).
Probability measure events may occur only giving a measure
of the standard and, for the sample point of the sample
space, a similar standard is still not given. It has two basic
futures: (1) MEMS stochastic variable is a real single-valued
function of sample points; (2) to any real number x, {w :
&(w) < x}is a random event. When we get the definition of
random variable, then a basic event can be represented by a
determined value, denoted as X = x; and any event can use
domain value of random variables; we can note the following:
{x; £ X < x,}. The likelihood of the event occurring with
probability can be described as P[x; < X < x,].
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2.2. MEMS Stochastic Process. MEMS stochastic process
refers to a cluster of random variables defined in the parame-
ter set; every point at the parameter set is corresponding to a
random variable. One-dimensional stochastic process can be
viewed as a natural extension of random vectors.

If a stochastic process was denotes as {X(¢),t € T},
to describe its probabilistic properties, the most important
aspect is the distribution function of random variables at time
T'; we denote the function as

F(x,t)=P[X(t)<x], teT. 1)

If we consider the relationship of the stochastic process
between any two random variables, then we can get the
following expression:

F(x;,t5%5,1) =P[X(t)) <x,, X (t,) <x,], teT. (2)

And if there are n variables in MEMS system, then the
stochastic process can be described as

> Xp> tn)

=P[X(t;)) <x,X(t,) <x,5....,X(t,) <x,], (3)

F(x,t13%5t5,. ..

teT.

2.3. MEMS Stochastic Field. MEMS stochastic field is the
natural expansion of stochastic process in special field; to a
stochastic field, its basic parameters is special variable u =
{x, y,z}, so we can define the stochastic field as series of
random variables on a field set. And there are corresponding
variables at every point u; of the field set. In fact, we just
take into consideration special variables as basic parameter’s
stochastic field denoted as {B(u); u € D}, where D is defined
area. To a uniform stochastic field, because of its mean
function is a constant, so it can be turned into the following
form:

B(u) = B, (u) + B, (1), 4)

where B, (u) is mean field function and B, (u) is zero-mean
stochastic field. Obviously, the covariance function of B,(u)
is the same as the correlation function of B, (). And we can
use limited distribution function to represent the probability
of random structure, like the following expression:

F(ﬁl’ul;ﬁZ’uZ;"';ﬁn’un) )
= P[B(ul) < lgl’B(I’lZ) < ﬁZ""’B(un) < ﬁn] >

where f; is value limit of variable.

2.4. Stochastic Input Variables of MEMS Model. The stochas-
tic problem of MEMS can be described as the following
equation:

KW, w(x,0)=F(@®), (6)

where u represent the solution of response-problem; F(0) is
random force; w(x, 0) is the MEMS material stochastic field;
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and 0 is the stochastic event. From expression (5), we discrete
the stochastic field and realize the conversion from stochastic
field to discrete random variable set. Then we will use KL
expansion to make these variables independent from each
other. The KL expansion can be written as

0(xB) =@ () + Y AL O £ (%), 7)
i1

where w(x) is the mean of the random process, A; and f;(x)
are correlation function, C(x,, x,) are the eigenvalues and
eigenfunctions, respectively, where x; and x, are the spatial
coordinates. {{;(0)} forms a set of uncorrelated random
variables. f; and A, form the eigenvector-eigenvalue pair of the
covariance kernel that satisfy

[l film)dn, =Mfix).  ®

At the same time, there is a relationship between the cofeature
value function of the variance function:

1 i=j
j_ﬁuxnunM=6U={ -/ ©)
Q 0 i#}j

(;(0) = [@ (x0) - @ (0)] f; (x) dx. (10)

)
A Ja
In practice the expansion in (7) is truncated after a finite
number of terms M, which leads to a truncation error €.
As compared to other expansion methods, which use some
orthonormal functions {f;}, the KL expansion is optimal in
the sense that the mean-square error In 812\4dx is minimized.

3. MEMS Output Variables by
Polynomial Chaos Expansion

The polynomial chaos expansion is a spectral expansion of
the random process in terms of the orthogonal polynomials
in multidimensional random variables. Let {(;(0)} be a
set of orthonormal Gaussian random variables. Using this,
the polynomial chaos expansion of a second-order output
variables random process u(x, 0) can be described as

F+Za )T (8, 0)

u(x,0)=a,(x

+ Z Z a; a; (x)T, (C,-l ), (Ciz (9))) +

i=1 i,=1

(11)

where T,((;,(;,...,(; ) denotes the polynomial chaos of
order # in terms of the multidimensional Gaussian random
variables. For convenience, (11) can be written as

u(x,0)=) ax) ¥ 0), (12)

i=0

where there is a one-to-one correspondence between the
functions I'[-] and ¥[-] and between the coeflicients. Finite
number of random variables is used in the expansion to
represent finite number of random parameters in the system.
Also, the order of the polynomial used in the expansion is
restricted to p. Thus, the expansion in (12) can now be written
as

N
u(x,0)=a(x) ¥ 0). (13)
i=0

The total number of terms included in the polynomial chaos
expansion (N + 1) depends on both the dimensionality n
and the highest order p of the multidimensional polynomials
used, which can be given as

(n+p)!
nlp!

N+1=

(14)

The eigenvalues and coefficients of eigenvectors are random
processes; they belong to 0; we write the random eigenval-
ues and eigenvectors using the Karhunen-Loeve truncated
expansion with Hermite polynomial chaos:

L@%ﬁkgﬁ¢ﬂa Vkell,.. n)
AR AGRCANNE

with B @) = S8 () VkelL...n),
I=1

where {ﬁl] : {{11 } are coefficients of the truncated expended,

$;(O)icn is famlly of Hermite polynomial chaos. Introducing a

classical normalization condition, {Uk}T[In]{ﬁk(Z)} =1Vke
{1,...,n}, we can get

O} = i+ 3 >

We also can express the other input random element of the
problem with the same approximation on ‘Y.

Bi-o(0)-{Ut.  ae)

HM§

4. Polynomial Chaos Expansion Coefficient
Solution by Sparse Grid Method

The most important aspect of polynomial chaos method is
to calculate the each coefficient of the polynomial chaos
expansion. On a multidimensional model containing random
variables polynomial chaos unfolds; the output at some point
can be calculated with its polynomial coefficients chaos
which unfolds. In a vector space expansion, if we us {{;(0)}
as base, and every sample {{;(6)} has corresponding point,
we call these points as configuring points. There are many
methods to compute the configuring points, such as tensor
product method and Stroud-2 method. We use sparse grid



method which derived from Smolyak method. This approach
can significantly reduce the required number of points and
this algorithm provides a linear combination of the tensor
product of the interpolation error which can be made very
close to full tensor product method. Firstly, let: A’ = 1/ —1/'";

then
A(g,N)

-3

q-N+llil<q

17)

(N-1 . .
e (q - IiI) (' o-ou),

where A(g, N) is a linear function and A(g, N)(f) is deter-
mined by the limited point function value. When u® = 0 and
lil =i, + - + iy especially, there is

A(gN)=) (A"® @ a™). (18)
lil<q

And all polynomial chaos expansion coefficient solution is
just processed by these grids points, and the point’s sets are

Oy =H(qN)= Ug-N+15lil<q (eil XX 027) ’ (19)

where the number of points used in each dimension vary
depending on the method of polynomials and quadrature.

5. Stochastic Reduced Order Model

The stochastic reduced order model method’s basic theory
is when we get the each point on the Smolyak sparse grid;
then we can calculate the full-finite element system matrices
at the point, and we can perform deterministic MOR for
each system to generate the corresponding transformation
matrix. Using this matrix information, we can compute the
augmented system using the coeflicients.

5.1 Deterministic Reduced Order Model. MEMS devices can
be modeled by partial differential equations (PDEs). To
simulate such models, spatial discretization via, for example,
finite element discretization is necessary, which results in a
system of ordinary differential equations (ODEs) or differen-
tial algebraic equations (DAEs). After spatial discretization,
the number of degrees of freedom usually is very high.
Therefore, it is time consuming to simulate the large-scale
systems of ODEs or DAEs. Developed from well-established
mathematical theories and robust numerical algorithms,
model order reduction (MOR) has been recognized as being
very eflicient in reducing the simulation time of large-
scale systems. Through MOR, a small system of ODEs with
reduced number of equations (reduced model) is derived.
The reduced model is simulated instead, and the solution of
the original PDEs or ODEs can then be recovered from the
solution of the reduced model. As a result, the simulation
time of the original large-scale system can be shortened by
several orders of magnitude. The reduced model as a whole
can also replace the original system and be reused for many
times during the design process, which can save much time
further. To illustrate the MOR formulation procedure and
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moment matching we will take the first-order system’s model
order reduction shown in (1) as an example and rewrite it as
follows:

EM = Ax (t) + Bu(t)
t (20)

y(t) =B'x(t),

where E= [¥ 0] e R*, A= N T e R™", B=[%]¢
R™P Here the matrices M, H,and N are positive semidefinite
matrices. The model order reduction based method can be
written as follows.

Step 1. We build block Krylov subspace: K,(A™'E; A" B).

Step 2. To implement Arnoldi process, specific algorithm is
as follows:

(a) given matrix, A € R", B € R"?, and QR
decomposition of matrix B, let B = VT

(b) compute V, = AV, — V,Hy,, where Hy, = VOT AVy;

(c) compute V, = AV, — V,H,, — V,H,,, where H,, =
VAV, Hy, = V) AV

(d) then compute the following parameter intrun: V, =
AV,y =V, H, oy, = ViHy . = VoHy, ), where

H = VZIAV;'71>""H1,r—1 = VITAVr—l’HO,rfl =

VIAV,_,.

Step 3. According to the transformation matrix, then get the
original system of reduced order system:

EEO o+ Bu
t (21)

7t =B'x(t),

where %(t) e R?, E=V'EV,A=VTAV,B=VTB.

PRIMA algorithm fully considered the system structure
characteristics, so it keeps the passivity of the system and
keeps the reduced order model system on the basis of struc-
tural characteristics, which has higher calculation accuracy.

5.2. Stochastic Reduced Order Model. To get stochastic
reduced order model of MEMS, the first thing is to represent
“randomness” in the original system matrices and the state
vector; this is done by making use of polynomial chaos
expansion. Suppose two input variables are assumed to be
random and uniformly distributed. Considering a linear
expansion in both of the input random variables, and using
one-dimensional polynomial chaotic maps, the ¥[-] in (13)
can be written as one-dimensional Hermite polynomial:

() =1, Y Q) =¢, Y, ) =01,
V() =C-3 VE=C-61+3,...

(22)
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Assuming the input of a linear variable, there are
E,=Ey+E{ +E(,, A, =Ag+A( +A0, :
23

B, = By + B|{; + B,(,

where E,E,,E,,Ay A, A,, By, B,B, is reduced order
model coefficient matrix of deterministic model. {;,{, are
two-dimensional random space orthogonal polynomials.
Once the coefficient matrix was determined by sparse grid
method, the stochastic mapping reduced order model can be
written as (11):

M dx, () ]
dx, (t)
E, E, 0 dr
E, 0 E,||dz,
L dr
4 A A g B B
3 3 © 3 3 (24)
“la, 4, o |FO*+|p B o [*O
A, 0 A, B, 0 B,
g BB
33
(t)= X(t)
y Bl BO
B, 0 B,
Let
303
E,=|E E, 0 |
E, 0 E,
Al A2
P R
3 3
Asr= > (25)
A A, 0
A, 0 A,
g, B B
303
B =
s~ |B, B, 0
B, 0 B,

Equation (18) may be cast in the following “deterministic”
form:

8 =A%) +Bu)
dt (26)

y(t)=BLx(t).

Equation (19) is a deterministic system which can be easily
used for time and frequency domain analyses. Then we can
use deterministic model order reduction method to solve the
stochastic reduced order model.

5.3. Computation of the Final Results: Expected Values and
Standard Deviations. Once we have solved the n systems
numerically, that is to say, when we have got the matrices
A, and B,,, then we plug back the results into (11) and (12)
to get an approximation of the probability density functions
of the random eigenvalues and eigenvectors. As we have
seen before this is the solution to the full problem with
just one chosen mistuning parameter projected onto the ¥
subspace. Nevertheless we are not directly interested in this
solution. Indeed, practically what is useful is the average value
and standard deviation of each eigenvalue and eigenvector
of the mistuned systems. But this is easy to get from the
approximations of the probability density functions we have
got. We directly use the linearity of the operator and the
orthogonality of polynomial chaos on (16) to get

@) ~(he$ o)

= A iaz]: Oy = A aic 27
b=1
Vk e {l,...,n}
oy = ol 3380 {U,}>
r=11=1
(28)
= U+ Y8 - U}
r=1
From (27) we get
<Xk>2 = (Ak-af)z. (29)

Hence using the linearity and orthogonality properties as
previously mentioned, we get

= (a2 Y (@) (). (o)

b=2

(A%

Finally using (28) and (29), we directly get the standard devi-
ation:

\/<A> ()’ Ml'\jZ(—wb (31)
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FIGURE I: Single-ended fixed electrostatic actuating microbeam structure.

We do exactly the same thing for eigenvectors and we directly
get the expected value from the linearity and orthogonality
properties applied on (28):

S N N ARC AR A

r=1]=2

1/2

+2- Zn: iﬁlﬁ ) <¢12>'{U’1}q {Urz}‘?

r=1 =2
rir#k

(32)

6. Numerical Studies: MEMS Examples

In order to illustrate the model reduction technique, we
give an example of the well-known beam structure in a
fluid environment. Figure 1 shows the beam structure; when
a voltage is applied, the top plate of the structure bends
downwards due to the resultant electrostatic force. Also when
the beam bends, the pressure distribution of the ambient air
under the beam increases. This pressure increase produces a
backward pressure force that damps the beam motion. The
beam structure has been used in many sensor applications.

Y
x=\y p oxt
p

To realize the stochastic reduced order model simulation,
we firstly established the corresponding finite element model
of the beam, to get the initial mathematical model such
as rigidity matrix and mass matrix, which can be used as
random input parameters, do standard KL series expansion
with these matrix and do polynomial chaos expansion with
output matrix; after expansion finish, we use Smolyak method
to decide which point should be used as reduced order
model simulation; then we use SPRMI method at the Smolyak

B Y sy eV
= pox*  g’p

(o) (5

2
2+@>x1] « I p0V2x3—

The beam can be modeled by coupling the Euler beam
equation with the electrostatic force and the Reynolds
squeeze-film damping equation as follows:

84)/ 0"y EOa)V2 © 82)/
E[—=2 —s—=2 = — ~ po)dy — p=—=
ax4 ax2 2)/2 + JO (p pO) y patz
(33)
124 9 (py)
V- (y’pVp) = )
(PPVP) = 156k o

Among them y(x,t) is the immunity of the z direction,
E is youngs modulus, I = wh’/12—moment of inertia’s
is residual stress (Figure 5), p is the density, g, is dielectric
constant, p is the air damping of the pressure, p, is the
ambient pressure, y is the air viscosity coefficient, g is the
distance from the plate under initial state, and A is air mean
free path (see Table 1).

Let y = (y(x,1) = 9)/g, p(x,t) = (p(x,1) = po)/ pos
substitute them into (3) and in g and p, using Taylor series
expansion, and take position, speed, and pressure as state
variables like

y X1
x=y =[x | (34)
p X3

29 | (35)

w 3e,0wV? gowV?
)xl_,_&J x3dy — 0 x2 -2

g

point; at last, we can get the probability distribution from
order reduction model simulation results. In MEMS, because
micromechanical usually driven by electrostatic force, the
machine is usually a conductor in static electric field, subject
to the effect of electrostatic force deformation occurring,
and the structure size and the location of the components
will influence the distribution of electric field in turn, so it
is a kind of strong coupling. Here we adopt finite element
method combined with the boundary element method to
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TaBLE I: The parameters of single-ended fixed electrostatic actuating
microbeam structure.

I (beam length) 610
w (beam width) 40
h (beam thickness) 2.2
gy (initial gap distance) 23
E (material Young’s modulus) 149 GPa
p (material density) 2330 kg/m’
 (air viscosity) 1.82 x 107° kg/(m-s)
A (mean-free path of air) 0.064
Y Microbeam

Ground simulation Air environment simulation

FIGURE 2: Structure model of microbeam.

solve the force electric coupling problem of MEMS, solving
process as follows.

Step 1. Under the condition of the plate without displace-
ment, giving an initial voltage on the plate and solving
problems of electrostatic field with the boundary element, we
can get the distribution of electrostatic force of plate.

Step 2. Solve the displacement of plate under electrostatic
force through the finite element method; if it reaches preci-
sion displacement, skip to Step 4; otherwise, go to Step 3.

Step 3. Based on the displacement of the plate to form the
boundary of the electrostatic field, use the boundary element
method to solve the problem of electrostatic field, obtain the
distribution plate of the electrostatic force, and leti = i + 1;
go to Step 2.

Step 4. 'The process is over.

We use (N + 1) x (M + 1) mesh as shown in Figure 2,
where N represents the number of inner grid points in the
x direction and M is the number of inner grid points in the
y direction, according to the two-dimensional model estab-
lishment of beam parameters as shown in Figure 2. The beam
was divided with 2D quadrilateral element PLANES82, and
the air medium was divided with PLANE121; displacement
constraints were applied to fix the microbeam anchors in
ANSYS (Figure 4); each degree of freedom beam base and
left side of beam were restricted; the finite element model is
shown in Figure 3. Then we applied effect of voltage on the
beam structure. After the mesh is generated, we then project
the unknowns u(x, t) and p(x, y,t) onto the mesh points and
apply the trapezoidal rule to discretize the special integral

FIGURE 3: Finite element model of microbeam.

FIGURE 4: The displacement of microbeam.

Li
. MN

X
FIGURE 5: The stress of microbeam.
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FIGURE 6: The endpoint deflection of the beam.
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FIGURE 7: Smolyak grid (total number of points 29).
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F1GURE 8: Model reduction simulation results.

operator and the central difference method to discretize the
special derivative operators as follows:

& _ Y1 =2Vt Yin

O0x? Ax?
04y, _ 2~ 4y 6yt 4y + Vi
ox* Ax*

w (36)
L (xi, Vs t) dy

=M Ay
= Z > [P (xi—p;"j_pt) + p(xi,yj,t)] )
=1

Accelerometer beam clamped at one end, so the bound-
ary conditions are y, 0,y = y;; substitute (36)
into (35) to discrete; then map the n state vector X =

T .
1 -+ yn(0yif0t) -+ @yn/Op1 -+ pun] to the vari-
ous nodes; we can convert discrete equations into n dimen-
sional state space equation (9), where n = 2N + N *« M,

X(t)=AX(t)+Bv(t)
(37)
y(t) = B"X(T),

where E = [¥ %] € R™, A =[] e R", and B =
[%] € R™P y(t) are the microdisplacement of the beam end
and v(t) is the input voltage of the system.

Applying the boundary conditions, the finite element
model is solved and can change the endpoint microbeam
under different voltage conditions. We get the deflection

of the beam’s end point as shown in Figure 6. The voltage
load vector along with the mass and stiffness matrices were
extracted as input random parameters.

A generalized polynomial chaos expansion is now gener-
ated to represent the dependence of the maximum displace-
ment of the membrane as a function of the input parameter
space. This includes geometric parameters thickness 4, length
I, width w, Young’s modulus E, and the initial gap g between
the membrane and the pull-down electrode. The variability
in the thickness and gap is estimated from known processing
conditions. The parameter limits are selected based on the
requirement; the device cannot experience pull-in instability
over the time span of interest. The parameter limits and
distribution types are presented in Table 2.

Then making use of Smolyak algorithm consisting of only
29 grid points in the two-dimensional random parameter
spaces for numerical integration, the grid result is shown in
Figure 7.

Then, we compute 29 times of model reduction simula-
tion at Smolyak point; the results were shown in Figure 8.
From the figure, we learn when time < 0.7s. The most
simulation results are almost the same. After that, we get
kinds of deflection.

We also compute that the resulting probability distri-
bution of the beam maximum deflection is presented in
Figures 9, 10, and 11. In Figure 9, we just show geometric
parameters thickness 4, length I, and width w as random
parameters, and Figure 10 shows Young’s module as random
parameter, and Figure 11 shows the initial gap distance as
random parameters.
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TABLE 2: The GPC response inputs parameters.

Variable Distribution Range Units
hh N(0.05, 3.40) 1.6-3.6 pm
) N(250, 650) 549-671 pm
w N(6,32) 27-33 pm
E N(190.5,6.9) 177-216 GPa
g N(4.5,0.1) 4.0-5.0 um
Expected value = 3.15294e — 5
Standard deviation = 7.0289%¢ - 5
12000 1
10000 ]
= 8000 1
g ]
< 6000 -
z ]
Z 4000
=)
g ]
[=} 4
-2000 -

T T T T T T T T T T T T T T T T e T T T T T T T T T T T T T r T rTT
(e} (=} n

0.0001
0.0002
0.0003

| |
v v
L'I'> n

-0.0002
—-0.00015
—-0.0001
0.00015
0.00025

MEMS_X (final value)

FIGURE 9: The geometric (w, h, I).

7. Conclusions

We have developed a new stochastic model order reduction
frame to MEMS model uncertainty and application in single
fixed micro-beam. In the computing process, firstly, we con-
struct finite model, then extract the matrix of analysis, get the
random input matrix, and use KL series expansion method
for input parameters matrix; then, we express the random
output variables as standard random variable polynomials
by PC method; while obtaining the polynomials of output
variables, we use Smolyak method to compute coeflicients
of PC equation, then take the reduced matrix to PRSIM
model reduction method, and compute the statistics such
as the mean and standard deviation of the desired system
response and deflection of microbeam. We can get that all the
computational effort is focused on the estimation of a small
set of PC coeflicients in the proposed methodology. This leads
to a considerable gain compared to the techniques based on
Monte Carlo simulation.
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