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We produce an upper bound on the number of extended irreducible Goppa codes over any finite field.

1. Introduction

The advent of quantum computing has brought Goppa codes
to the forefront. Most cryptosystems which are in general
use today are asymmetric cryptosystems which are based on
the integer factorization problem or the discrete logarithm
problem and it is conjectured that these cryptosystems
may become insecure when quantum computing is further
developed [1]. One cryptosystem which may have potential
to withstand attack by quantum computers is the McEliece
cryptosystem which is based on the family of Goppa codes
[1]. It is conjectured that this family of Goppa codes is near
to random codes and a categorization has so far eluded
researchers [2]. There have been many attempts to count
the number of Goppa codes for fixed parameters and the
author of this paper produced in 2004 a computer program
which gives the best upper bound available today for the
number of such codes [3]. Recent research has clearly shown
that many Goppa codes become equivalent when extended
by a parity check [4] and so the question of categorizing
Goppa codes through their extended versions is now being
proposed. As a first step, we investigate the possibility of
counting extended Goppa codes using the tools which were
developed for counting the nonextended versions. We begin
by defining a degree 𝑟 irreducible Goppa code Γ(L, 𝑔) over
F𝑞 of length 𝑞

𝑛 in terms of a single field element 𝛼 of degree
𝑟 over F𝑞𝑛 . We then define the extended code Γ(L, 𝑔). We
give the well-known sufficient conditions on two elements of
degree 𝑟, 𝛼 and 𝛽, for the corresponding extended irreducible
Goppa codes (the extended Goppa codes defined by 𝛼 and 𝛽)
to be equivalent. Denoting the set of all elements of degree

𝑟 as S, counting the cardinality of the set S, and using the
well-known conditions for equivalence we produce an upper
bound on the number of inequivalent extended irreducible
Goppa codes over F𝑞 of degree 𝑟 and length 𝑞𝑛 + 1.

2. Background

Let 𝑞 be a power of a prime number; let F𝑞 be the field of order
𝑞 and F𝑞𝑛 its extension of order 𝑛. In this paper all codes will
be over F𝑞.The family of Goppa codes was first introduced by
Goppa in 1971 [5]. For our purposes we focus on irreducible
Goppa, codes, and define irreducible Goppa codes as follows.

Definition 1. Let 𝑔(𝑧) ∈ F𝑞𝑛[𝑧] be irreducible of degree 𝑟
and let 𝐿 = F𝑞𝑛 = {𝜁𝑖 : 0 ≤ 𝑖 ≤ 𝑞

𝑛
− 1}. Then the

irreducible Goppa code Γ(𝐿, 𝑔) is defined as the set of all
vectors 𝑐 = (𝑐0, 𝑐1, . . . 𝑐𝑞𝑛−1) with components in F𝑞 which
satisfy the condition

𝑞
𝑛

−1

∑

𝑖=0

𝑐𝑖

𝑧 − 𝜁𝑖

≡ 0 mod 𝑔 (𝑧) . (1)

The polynomial 𝑔(𝑧) is called the Goppa Polynomial. The
set 𝐿 is called the Defining Set. Since 𝑔(𝑧) is irreducible over
F𝑞𝑛 the code is called an irreducible Goppa code. Since 𝑔(𝑧) is
of degree 𝑟 the code Γ(𝐿, 𝑔) is called a Goppa code of degree
𝑟. In this paper 𝑔(𝑧) is always irreducible of degree 𝑟 over F𝑞𝑛 .

Remark 2. The definition we have given is specific for
“irreducible Goppa codes.” In the literature, in general, a
Goppa code is defined with Defining Set 𝐿 ⊆ F𝑞𝑛 such that
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no element of 𝐿 is a root of the Goppa polynomial 𝑔(𝑧).
Since, in this paper, 𝑔(𝑧) is irreducible we take 𝐿 as large as
possible; that is, 𝐿 = F𝑞𝑛 . Note further that in fixing an order
on the elements in 𝐿 we are implicitly putting an order on
the coordinates of the Goppa code as the ordered elements in
𝐿 label the component positions in the codewords. Thus the
length of the Goppa code is 𝑞𝑛.

Next we define extended irreducible Goppa codes.

Definition 3. Let Γ(L, 𝑔) be a Goppa code of length 𝑞𝑛 over F𝑞.
Then the extended code Γ(L, 𝑔) is defined by

Γ (L, 𝑔) =
{

{

{

(𝑐0, 𝑐1, ⋅ ⋅ ⋅ , 𝑐q𝑛) : (𝑐0, 𝑐1, ⋅ ⋅ ⋅ , 𝑐𝑞𝑛−1)

∈ Γ (L, 𝑔) ,
𝑞
𝑛

∑

𝑖=0

𝑐𝑖 = 0

}

}

}

.

(2)

Remark 4. Theextended code Γ(L, 𝑔) is often described as the
code obtained from Γ(L, 𝑔) by adding a parity check to each
codeword of Γ(L, 𝑔).

It is shown in [6] that if 𝛼 is any root of the Goppa
polynomial 𝑔(𝑧) then Γ(L, 𝑔) is completely described by any
root 𝛼 of 𝑔(𝑧) and a parity check matrixH(𝛼) is given by

H (𝛼) = (
1

𝛼 − 𝜁0

1

𝛼 − 𝜁1

⋅ ⋅ ⋅

1

𝛼 − 𝜁𝑞𝑛−1

) , (3)

where 𝐿 = F𝑞𝑛 = {𝜁𝑖 : 0 ≤ 𝑖 ≤ 𝑞
𝑛
− 1}. We may denote this

code by C(𝛼).

Remark 5. C(𝛼) denotes the same code as Γ(L, 𝑔), where
𝑔(𝛼) = 0.

Remark 6. Note that in using this parity check matrix to
define C(𝛼) we are implicitly fixing an order on 𝐿 and,
consequently, an order on the components of the codewords
in the code 𝐶(𝛼).

Considering that any irreducible Goppa code can be
defined by an element of degree 𝑟 over F𝑞𝑛 and, conversely,
any such element of degree 𝑟 defines an irreducible Goppa
code, we make the following definition.

Definition 7. The set S = S(𝑛, 𝑟) is the set of all elements in
F𝑞𝑛𝑟 of degree 𝑟 over F𝑞𝑛 .

Finally, as background material, we recall a sufficient
condition which is well known for two extended irreducible
Goppa codes to be equivalent.

Consider the maps 𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2
,𝑖 defined on S by

𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2
,𝑖 : 𝛼 →

𝜁1𝛼
𝑞
𝑖

+ 𝜉1

𝜁2𝛼
𝑞𝑖
+ 𝜉2

(4)

for fixed 𝑖, 𝜁𝑗, and 𝜉𝑗 where 0 ≤ 𝑖 < 𝑛𝑟, 𝜁𝑗, 𝜉𝑗 ∈ F𝑞𝑛 , 𝑗 = 1, 2,
and 𝜁1𝜉2 ̸= 𝜁2𝜉1.

For simplicity, where there is no confusion, we write 𝜋 for
𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜁
2

.
It is well known that if 𝜋(𝛼) = 𝛽 then C(𝛼) is equivalent

to C(𝛽) (see [7]).

Remark 8. Note that in the definition of𝜋 the scalars 𝜁𝑗 and 𝜉𝑗
are defined up to scalarmultiplication. Hence wemay assume
that 𝜁1 = 1 or 𝜉1 = 1 if 𝜁1 = 0.

Remark 9. Note that themap𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2
,𝑖 can be broken up into

the composition of two maps, namely,

(1) the map 𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

defined on S by 𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

: 𝛼 →

(𝜁1𝛼 + 𝜉1)/(𝜁2𝛼 + 𝜉2) and

(2) the map 𝜎𝑖 : 𝛼 → 𝛼
𝑞
𝑖

, where 𝜎 denotes the Frobenius
automorphism of F𝑞𝑛𝑟 leaving F𝑞 fixed.

We immediately justify the statement that 𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

is a
map on S.

Lemma 10. 𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

is a map defined on S.

Proof. Suppose𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

(𝛼) = (𝜁1𝛼+𝜉1)/(𝜁2𝛼+𝜉2) = 𝛽where
𝛽 is an element of degree 𝑠 strictly less that 𝑟 over F𝑞𝑛 (note that
𝛽 ∈ F𝑞𝑛𝑟 and so 𝛽 cannot have degree greater than 𝑟 over F𝑞𝑛)

𝜁1𝛼 + 𝜉1 = 𝜁2𝛼𝛽 + 𝜉2𝛽,

𝛼 =

𝜉2𝛽 − 𝜉1

𝜁1 − 𝜁2𝛽

.

(5)

But this is impossible since 𝛽 ∈ F𝑞𝑛𝑠 , 𝜁𝑖, 𝜉𝑖 ∈ F𝑞𝑛 and so the
right hand side is an element of F𝑞𝑛𝑠 contradicting the fact that
𝛼 is an element of degree 𝑟 over F𝑞𝑛 .

In the light of the foregoing, we make two more defini-
tions

Definition 11. Let 𝐹 denote the set of all maps {𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

:

𝜁𝑗, 𝜉𝑗 ∈ F𝑞𝑛 , 𝑗 = 1, 2 and 𝜁1𝜉2 ̸= 𝜁2𝜉1}.

Definition 12. Let 𝐺 denotes the set of all maps {𝜎𝑖 : 1 ≤ 𝑖 ≤
𝑛 × 𝑟}.

Lemma 13. 𝐹 together with the operation of composition of
maps ∘ is a group.

Proof. Let 𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

, 𝜋𝜁
3
,𝜁
4
,𝜉
3
,𝜉
4

∈ 𝐹. First we show that 𝐹 is
closed under the operation of ∘:

𝜋𝜁
3
,𝜁
4
,𝜉
3
,𝜉
4

∘ 𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

(𝛼)

=

𝜁3 ((𝜁1𝛼 + 𝜉1) / (𝜁2𝛼 + 𝜉2)) + 𝜉3

𝜁4 ((𝜁1𝛼 + 𝜉1) / (𝜁2𝛼 + 𝜉2)) + 𝜉4

=

𝜁3𝜁1𝛼 + 𝜁3𝜉1 + 𝜁2𝜉3𝛼 + 𝜉2𝜉3

𝜁4𝜁1𝛼 + 𝜁4𝜉1 + 𝜁2𝜉4𝛼 + 𝜉2𝜉4

=

(𝜁3𝜁1 + 𝜁2𝜉3) 𝛼 + 𝜁3𝜉1 + 𝜉2𝜉3

(𝜁4𝜁1 + 𝜁2𝜉4) 𝛼 + 𝜁4𝜉1 + 𝜉2𝜉4

.

(∗∗)
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We need to show (𝜁3𝜁1+𝜁2𝜉3)(𝜁4𝜉1+𝜉2𝜉4) ̸= (𝜁4𝜁1 + 𝜁2𝜉4)(𝜁3𝜉1
+ 𝜉2𝜉3). The Left Hand Side (LHS) is equal to 𝜁3𝜁1𝜁4𝜉1 +
𝜁2𝜉3𝜁4𝜉1 + 𝜁3𝜁1𝜉2𝜉4 + 𝜁2𝜉3𝜉2𝜉4 and the Right Hand side (RHS)
is equal to 𝜁4𝜁1𝜁3𝜉1 + 𝜁2𝜉4𝜁3𝜉1 + 𝜁4𝜁1𝜉2𝜉3 + 𝜁2𝜉4𝜉2𝜉3. Observe
that the first and last terms of the LHS are the same as the
first and last terms of the RHS and so our task now is to show
that 𝜁2𝜉3𝜁4𝜉1 + 𝜁3𝜁1𝜉2𝜉4 ̸= 𝜁2𝜉4𝜁3𝜉1 + 𝜁4𝜁1𝜉2𝜉3 or equivalently
show that 𝜁2𝜉1𝜁4𝜉3 − 𝜁2𝜉1𝜁3𝜉4 ̸= 𝜁1𝜉2𝜁4𝜉3 − 𝜁1𝜉2𝜁3𝜉4; that is
𝜁2𝜉1(𝜁4𝜉3 − 𝜁3𝜉4) ̸= 𝜁1𝜉2(𝜁4𝜉3 − 𝜁3𝜉4).

But this is immediate from the fact that 𝜁1𝜉2 ̸= 𝜁2𝜉1 and
𝜁3𝜉4 ̸= 𝜁4𝜉3.

Secondly, associativity follows from the associativity
of mappings. Thirdly, observe that 𝜋1,0,0,1 is the identity.
Finally, given 𝜋𝜁

1
,𝜁
2
,𝜉
1
,𝜉
2

to find 𝜋𝜁
3
,𝜁
4
,𝜉
3
,𝜉
4

such that 𝜋𝜁
3
,𝜁
4
,𝜉
3
,𝜉
4

∘

𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

= 𝜋1,0,0,1 is a matter of solving the equation ((𝜁3𝜁1 +
𝜁2𝜉3)𝑎 + 𝜁3𝜉1 + 𝜉2𝜉3)/((𝜁4𝜁1 + 𝜁2𝜉4)𝑎 + 𝜁4𝜉1 + 𝜉2𝜉4) = 𝑎. See
(∗∗) above. This is a matter of solving the four equations:

(a) 𝜁3𝜁1 + 𝜁2𝜉3 = 1
(b) 𝜁3𝜉1 + 𝜉2𝜉3 = 0
(c) 𝜁4𝜁1 + 𝜁2𝜉4 = 0
(d) 𝜁4𝜉1 + 𝜉2𝜉4 = 1

in the four unknowns 𝜁3, 𝜁4, 𝜉3 and 𝜉4. We know from linear
algebra that this is always possible.

Lemma 14. 𝐺 together with the operation of composition of
maps is a cyclic group of order 𝑛 × 𝑟.

Proof. Observe 𝐺 =< 𝜎 > where 𝜎 : 𝛼 → 𝛼
𝑞 is the Frobenius

automorphism of F𝑞𝑛𝑟 leaving F𝑞 fixed. Since𝜎
𝑛𝑟 is the identity

on F𝑞𝑛𝑟 the result follows.

3. Strategy to Count All Extended Irreducible
Goppa Codes for Fixed 𝑞, 𝑛, and 𝑟

We apply the following method to count the number of
extended Goppa codes. Observe that each element 𝛼 ∈ S

defines an extended irreducible Goppa code C(𝛼) over F𝑞 of
degree 𝑟 of length 𝑞𝑛 + 1 and conversely each such extended
Goppa code is defined by an element 𝛼 ∈ S. We count the
number of orbits in S under the action of the group 𝐹 and
this gives us an upper bound on the number of irreducible
extended Goppa codes.

We first confirm the details that 𝐹 acts on S.

Lemma 15. The group 𝐹 acts on S.

Proof. We have already seen that 𝜋(𝛼) ∈ S, for all 𝛼 ∈

S. Clearly 𝜋1,0,0,1(𝛼) = 𝛼, for all 𝛼 ∈ S. That 𝜋𝜁
3
,𝜁
4
,𝜉
3
,𝜉
4

∘

𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

(𝛼) = 𝜋𝜁
3
,𝜁
4
,𝜉
3
,𝜉
4

(𝜋𝜁
1
,𝜁
2
,𝜉
1
,𝜉
2

(𝛼)) is merely the definition
of ∘.

The orbit containing 𝛼 is the set

{

𝜁1𝛼 + 𝜉1

𝜁2𝛼 + 𝜉2

: 𝜁𝑗, 𝜉𝑗 ∈ F𝑞𝑛 , 𝑗 = 1, 2, 𝜁1𝜉2 − 𝜁2𝜉1 ̸= 0} (6)

and we denote this set by𝑂(𝛼). We denote the set of all orbits
in S under the action of 𝐹 by O; that is, O = {𝑂(𝛼) : 𝛼 ∈ S}.

It follows from Group Theory and Lemma 15 that the set of
all orbits in S under the group action of 𝐹 partition the set S
and thatO partitions the set S.

Theorem 16. For any 𝛼 ∈ S, |𝑂(𝛼)| = 𝑞3𝑛 − 𝑞𝑛:

𝑂 (𝛼) = {

𝜁1𝛼 + 𝜉1

𝜁2𝛼 + 𝜉2

: 𝜁𝑗, 𝜉𝑗 ∈ F𝑞𝑛 , 𝑗 = 1, 2, 𝜁1𝜉2 − 𝜁2𝜉1 ̸= 0} .

(7)

First remember that the elements 𝜁𝑖, 𝜉𝑖 are defined up to scalar
multiplication so we may assume that, if 𝜁1 ̸= 0, then 𝜁1 = 1
(see Remark 8).

(1) If 𝜁1 = 0, then w.l.o.g. 𝜉1 = 1 and there are 𝑞
𝑛
(𝑞
𝑛
−1) =

𝑞
2𝑛
− 𝑞
𝑛 possibilities.

(2) If 𝜁1 = 1, then we need to exclude the cases when 𝜉2 =
𝜁2𝜉1.

(a) Consider 𝜉2 = 0, and then exclude

(i) the 𝑞𝑛 cases when 𝜁2 = 0 and 𝜉1 ∈ F𝑞𝑛 ,
(ii) the 𝑞𝑛−1 caseswhen 𝜁2 ̸= 0 ∈ F𝑞𝑛 and 𝜉1 = 0.

(b) Consider 𝜉2 ̸= 0. There are 𝑞𝑛 − 1 such cases. In
each such case, for each 𝜉1 ̸= 0 (and there are
𝑞
𝑛
− 1 of them) there is a unique solution for

𝜁2. Hence there are (𝑞
𝑛
− 1)
2 possibilities when

𝜉2 ̸= 0.

So the total number of possibilities under item (2) is 𝑞3𝑛−
(2𝑞
𝑛
− 1) − (𝑞

𝑛
− 1)
2 = 𝑞3𝑛 − 𝑞2𝑛.

Adding the possibilities under (1) and (2) we get 𝑞3𝑛 −
𝑞
2𝑛
+ 𝑞
2𝑛
− 𝑞
𝑛
= 𝑞
3𝑛
− 𝑞
𝑛.

Theorem 17. Thenumber of inequivalent extended irreducible
Goppa codes over F𝑞 of degree 𝑟 and length 𝑞𝑛 + 1 is less than
or equal to |S|/(𝑞3𝑛 − 𝑞𝑛).

Proof. Any extended irreducible Goppa code is defined by an
element of S. The elements of S contained in the orbit 𝑂(𝛼)
define codes equivalent to 𝐶(𝛼). Since O partitions S and by
Theorem 16 every set inO has 𝑞3𝑛 −𝑞𝑛 elements, we conclude
that |O| = |S|/(𝑞3𝑛 − 𝑞𝑛). This gives an upper bound on the
number of inequivalent extended irreducible Goppa codes.

Remark 18. Note that this bound can be improved upon by
further action of the group𝐺 of Frobenius automorphisms. It
is possible to show that𝐺 acts onO = {𝑂(𝛼) : 𝛼 ∈ S} and then
the number of orbits in O under 𝐺 gives an improved upper
bound on the number of inequivalent extended irreducible
Goppa codes. This research is in progress.
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