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Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are
depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are
identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for
developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In
this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop
framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In
a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning
different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members

of Norovirus.

1. Introduction

Understanding the evolutionary relationships between
groups of organisms has become increasingly reliant on
phylogenetic analysis. Phylogenies are usually presented
as tree diagrams, known as phylogenetic trees. These trees
are constructed from genetic similarities and differences
between different organisms. Comparative sequence analysis
is a useful method by which one can identify gene, infer the
function of a gene’s product, and identify novel functional
elements. By comparing several sequences along their
entire length, researchers can find conserved residues that
are likely preserved by natural selection. Reconstructing
ancestral sequences can reveal the timing and directionality
of mutations. These comparative analyses rely on the
phylogenetic tree construct.

A reading frame is a set of consecutive, nonoverlapping
triplets of three consecutive nucleotides. A codon is a triplet
equating to an amino acid or stop signal during translation.
An open reading frame (ORF) is the section of reading frame
containing no stop codons. A protein cannot be made if
RNA transcription ceases prior to reaching the stop codon.
Therefore, to ensure that the stop codon is translated at

the correct position, the transcription termination pause site
is located after the ORE. The ORFs can identify translated
regions in DNA sequences. Long ORFs indicate candidate
protein coding regions in a DNA sequence. ORFs also have
been utilized to classify various virus families [1-3], including
members of Norovirus [3, 4]. The Open Reading Frame
Finder (ORF Finder) [5] is a graphical analysis tool that
searches for open reading frames in DNA sequences. The
OREF Investigator [6] program provides information on the
coding and noncoding sequences and performs pairwise
alignment of different DNA regions. This tool efficiently iden-
tifies ORFs and converts them to amino acid codes, declaring
their respective positions in the sequence. Pairwise alignment
also detects mutations, including single-nucleotide polymor-
phisms between sequences. StarORF [7] facilitates identifica-
tion of the protein(s) encoded within a DNA sequence. First,
the DNA sequence is transcribed into RNA, and all potential
OREFs are identified. These ORFs are encoded within each of
the six translation frames (3 in the forward direction and 3 in
the reverse direction), so that users can identify the transla-
tion frame yielding the longest protein coding sequence.
Several biological organizations have implemented bioin-
formatics tools on websites. The National Center for



Biotechnology Information (NCBI) [8] provides many
tools for comparing database-stored nucleotide or protein
sequences, including the well-known BLAST algorithms.
NCBI also provides several databases, such as GenBank and
SNP, in which biologists can seek homology or specific func-
tions. The European Molecular Biology Laboratory (EMBL)
[9] provides freely available data and online bioinformatics
tools to all facets of the scientific community. These data and
tools are indispensable in medical and biology studies. Most
of these services are accessed via the Internet and utilized
online.

Cloud computing is a recently developed concept that
delivers computing resources, either hardware or software,
over the Internet. Many types of cloud computing have
been proposed, such as infrastructure as a service (IaaS),
platform as a service (PaaS), software as a service (Saa$),
network as a service (Naa$), and storage as a service (STaaS).
Most of these services rely on virtualization technology—
the creation of virtual hardware platforms, operating systems,
storage devices, and network resources. Cloud computing is
welcomed for its user friendliness, virtualization, Internet-
centric focus, resource variety, automatic adaptation, scal-
ability, resource optimization, pay-per-use, service SLAs
(Service-Level Agreements), and infrastructure SLAs [10].
Many cloud computing vendors distribute these resources on
demand from large resource pools installed in data centers.
Amazon EC2 [11] supplies an infrastructure service, while
Google App Engine [12] and Microsoft’s Azure Services Plat-
form [13] supply platform services. In academia, numerous
cloud computing projects are under construction or fully
operational [14-17].

Cloud computing is essentially a distribution system
that enables parallel computing. Hadoop [18] is an open-
source software framework that supports data-intensive dis-
tributed computation. Under Hadoop, applications can be
implemented on large clusters of commodity computers.
The Hadoop cluster includes a single master and multiple
slave nodes. The master node assigns jobs to slave nodes,
which complete the assigned tasks. Hadoop provides the
MapReduce programming model for parallel processing of
large datasets. The computational task is divided into many
small tasks, each of which may be executed or reexecuted
on a compute node in the Hadoop cluster. MapReduce also
provides a distributed file system, the Hadoop Distributed
File System (HDEFS), that stores the data on compute nodes
[19], enabling a very high aggregate bandwidth across the
cluster. Both map/reduce and the distributed file system
are robust against failure. Several sequence analysis tools
have been redeveloped as cloud tools based on the Hadoop
architecture, such as CloudBlast [20] and CrossBow [21].
Therefore, standard online tools can be ported to the cloud
architecture. Such importing of preexisting tools constitutes
the main goal of bioinformatics as a service (BaaS).

In this paper, we develop a high-availability, large-scale
ORF phylogenetic analysis cloud service based on virtu-
alization technology and Hadoop. This service provides
phylogenetic analyses from ORFs based on Hadoop clusters
to support multiple requests. The essence of the cloud com-
puting environment is virtualization. The physical computing
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power is regarded as a user-pays utility that users can request
as desired. The utility is also known as a virtual machine.
Each node in a Hadoop cluster is a virtual machine. Users
can upload their sequence data or files through the master
node (web portal) and then submit a job. The job is assigned
to the slave node containing the uploaded data, and the
slave node completes the job. Since ORF comparisons have
unambiguously established the homology of Norovirus [22],
we here adopt Norovirus as a case study. The results show
that the proposed cloud-based analysis tool, by virtue of vir-
tualization technology and Hadoop framework, can readily
facilitate BaaS. The proposed cloud-based ORF phylogenetic
tool is available at http://bioinfo.cs.pu.edu.tw/CloudORF/.

2. Methods

In this paper, we propose a cloud-based ORF phylogenetic
analysis service combining Hadoop framework, virtualiza-
tion technology, phylogenetic tree tool, and diversity analysis.
As mentioned previously, the cloud platform is constructed
from virtualization and Hadoop framework. Hadoop is per-
formed on the VMs created by virtualization technology such
as Kernel-based Virtual Machine (KVM). Hadoop performs
the phylogenetic analysis in a distributed computing manner.
The underlying architecture ensures elasticity, scalability, and
availability of the proposed cloud-based service.

2.1. Phylogenetic Analysis. The proposed cloud service inte-
grates the ORF finding process, phylogenetic tree contrac-
tions, and ORF diversity analysis to generate a complete phy-
logenetic analysis. The procedure of the analysis is outlined
below and shown in Figure 1.

Step I: Detecting Open Reading Frames. Functional ORFs are
extracted from sequences. Although many ORFs exist in a
protein sequence, most are insignificant. The ORF finder
locates all open reading frames of a specified minimum size
in a sequence. In this study, the ORF Finder commonly used
on the NCBI tools website was adopted. This tool identifies all
open reading frames using the standard or alternative genetic
codes.

Step 2: Constructing Phylogenetic Tree Based on Open Reading
Frames. A phylogenetic tree (or evolutionary tree) is a
branching (tree) diagram showing the inferred evolutionary
relationships between biological species or other entities
based on similarities and differences in their physical and/or
genetic characteristics. The taxa clustered together in the
tree are presumably descended from a common ancestor.
Phylogenetic analysis usually aligns whole-length sequences.
However, different ORFs might yield different phylogenetic
trees. Virus ORF alignments might reveal a common viral
ancestor or an ORF that is common to all viruses. Such a
discovery would greatly assist viral drug design.

The phylogenetic tree is computed using ClustalW [23].
This algorithm builds two phylogenetic trees; one based on
full sequences and the other for ORFs only, thereby revealing
the variance between the two trees.

Step 3: Diversity Analysis among Open Reading Frames.
Diversity usually depicts the number of different identities
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F1GURE 1: The phylogenetic analysis procedure.

in a group. In this paper, diversity demonstrates species
variance at a specific position in the protein sequence. Small
diversity value at a position implies that protein sequences
are very similar at that position. By contrast, a high diversity
value denotes low similarity at that position. A frame with
high variance also indicates that this frame mutates easily.
Such high-variance frames can be used to observe protein
structural differences and to aid vaccine development. In this
paper, diversity is calculated from the entropy as follows:

H@)=-) p(x)log,p(x,), x ={GALV,..}, (1)

where H (i) is the value of entropy and p(x;) is the probability
of finding a specified amino acid at position i. To find the
significant position, entropy values under a certain threshold
are filtered out. In this study, the threshold was set at 1.4.

2.2. Cloud Platform Based on Virtaulization and Hadoop
Framework. The cloud platform for proposed phylogenetic
analysis tool is constructed on two important technologies:
virtualization and the Hadoop framework. Hadoop is a highly
scalable and available distributed system. The scalability
and availability are guaranteed by HDEFS, a self-healing

distributed storage system and MapReduce, a specific fault-
tolerant distributed processing algorithm [24]. The architec-
ture of a Hadoop cluster is shown in Figure 2.

The Hadoop cluster constitutes a single master and
multiple slave nodes. The master node consists of a job
tracker, task tracker, name node, and data node. A slave node,
or computing node, comprises a data node and a task tracker.
The job tracker assigns map/reduce tasks to specific nodes
within the cluster, ideally those already containing the data
or at least within the same rack. A task-tracker node accepts
map, reduce, and shuffle operations from a job-tracker. The
map/reduce operation is shown in Figure 3.

HDEFS is the primary distribution file system used by
the Hadoop framework. Each input file is split into data
blocks that are distributed to data nodes. Hadoop also creates
multiple replicas of data blocks and distributes them to data
nodes throughout a cluster to enable reliable, extremely rapid
computations. The name node serves as both a directory
namespace manager and a node metadata manager for the
HDEFS. The HDEFS architecture contains a single name node.

One desirable characteristics of Hadoop is its high fault
tolerance. The HDFS allows the data to spread across hun-
dreds or thousands of nodes or machines, and the tasks are
computed on data-holding nodes. Hadoop replicates data, so
that if one replica is lost, backup copies exist. When a node
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fails during computation, Hadoop restarts the halted task
on another node containing replicate data. In the Hadoop
framework, node failures are detected using the heartbeat
mechanism, by which individual task nodes (task trackers)
constantly communicate with the job tracker. If a task tracker
fails to communicate with the job tracker for a period of time,
the job tracker will assume that the task tracker has crashed
[25]. The job tracker knows which task trackers (data nodes)
contain replicate data, and it issues a restart task. In this paper,
the proposed cloud service was implemented by combining
Hadoop cluster distribution with a management model. In
our cloud server, a submitted job is computed in a data
node. Rather than processing parallel data, jobs themselves
are parallelized. Therefore, submitted data are distributed to
a data node by the HDEFS, while the computing process is
delivered to the task tracker and copied with the submitted
data. Virtualization is a critical component of the cloud
computing environment. The physical computing power is
essentially a utility that users can purchase as required. The
usual goal of virtualization is to improve scalability and
overall hardware-resource utilization. Virtualization permits
the parallel running of several operating systems on a single
physical computer. While a physical computer in the classical
sense constitutes a complete and actual machine, a virtual
machine (VM) is a completely isolated machine running
a guest operating system within the physical computer. To
ensure scalability and efficiency, all components—job tracker,
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(Job tracker) (Task tracker) (Task tracker)

[ VM3 ] VM3 VM3
(Task tracker) (Task tracker) (Task tracker)

FIGURE 4: Cloud computing service based on virtualization technol-
ogy.

task tracker, name node, and data node—in our cloud
service operate as virtual machines. Figure 4 shows the VM
architecture of our proposed service.

2.3. Cloud-Based ORF Phylogenetic Analysis Service. Cloud-
based ORF phylogenetic analysis service was developed on
a virtualization platform with the Hadoop framework as
described above. The procedure of the proposed service is
shown in Figure 5. The master node (name node) and slave
node (data node) are the master VM and slave VM, respec-
tively. When a phylogenetic analysis request is submitted, it
is saved in a job queue. The master node periodically extracts
the jobs from the job queue and assigns them to slave nodes
(or mappers), which perform the task. At the completion of
all jobs, the reducer collects the results and saves them in
the Network File System storage (NES). A single comparison
result of a phylogenetic job is saved in a single file of NFS.
As shown in Figure 5, a data node running in VM2 performs
a phylogenetic analysis and a name node runs in VMI. The
reducer, running in VM, ,, collates the results from the data
nodes executing the phylogenetic analyses. In this service, the
user uploads protein sequences and submits a phylogenetic
analysis request on the website portal. All submitted analysis
jobs are gathered in the job queue and sequence data are
stored in different hosts by HDFS. Phylogenetic analyses are
assigned to the data nodes already containing sequence data.
The analysis results are sent to both data node and reducer
to produce the final result stored in NFS. The user retrieves
the final result by logging into the website. The service is
implemented as follows.

Step I: Job Submission. Users submit their job online through
the web portal of the proposed cloud service. Users either
enter the comparative DNA/RNA sequences on the web por-
tal or upload a file containing comparative RNA sequences
from a web portal.

Step 2: Sequence Translation. To detect the ORF regions, all
input RNA sequences are translated to protein sequences
based on the genetic code. The genetic code is the set of
rules by which RNA sequence information is translated into
proteins. Each codon in an RNA sequence usually represents
a single amino acid specified by the corresponding genetic
code. The code specifies the amino acid to be added next
during protein synthesis. The genetic codes are displayed in
Table 1.
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TaBLE 1: The genetic code: nucleotides to amino acids.

2nd base
U C A G
Ist base
UUU Phenylalanine (Phe) UCU Serine (Ser) UAU Tyrosine (Tyr) UGU Cysteine (Cys)
U UUC Phe UCC Ser UAC Tyr UGC Cys
UUA Leucine (Leu) UCA Ser UAA STOP UGA STOP
UUG Leu UCG Ser UAG STOP UGG Tryptophan (Trp)
CUU Leucine (Leu) CCU Proline (Pro) CAU Histidine (His) CGU Arginine (Arg)
C CUC Leu CCC Pro CAC His CGC Arg
CUA Leu CCA Pro CAA Glutamine (Gln) CGA Arg
CUG Leu CCG Pro CAG GIn CGG Arg
AUU Isoleucine (Ile) ACU Threonine (Thr) AAU Asparagine (Asn) AGU Serine (Ser)
A AUC Ile ACC Thr AAC Asn AGC Ser
AUA Tle ACA Thr AAA Lysine (Lys) AGA Arginine (Arg)
AUG Methionine (Met) or START ACG Thr AAG Lys AGG Arg
GUU Valine Val GCU Alanine (Ala) GAU Aspartic acid (Asp) GGU Glycine (Gly)
G GUC (Val) GCC Ala GAC Asp GGC Gly
GUA Val GCA Ala GAA Glutamic acid (Glu) GGA Gly
GUG Val GCG Ala GAG Glu GGG Gly
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FIGURE 5: Flowchart of cloud-based ORF phylogenetic analysis service.

Step 3: Phylogenetic Analysis. This step identifies the func-
tional ORFs, recall that significant ORFs are rare. In our
service, the user can provide the length of ORF that he/she
regards as meaningful. The service then locates the significant
ORFs. An example of ORFs is shown in Figure 6. In this
example, the first ORF (denoted as AB447445_1) extends
from positions 3 to 5099 in the sequence AB447445. In this

step, two types of phylogenetic trees are built, one using
the full sequence length and the other using ORFs only.
From the three ORF regions identified in the analysis, three
ORF phylogenetic trees are built. These trees are recorded
in ph format and are then transferred to and stored in the
portal. Meanwhile, the diversity value of each position in the
sequence is calculated. These values are saved in a file.



FIGURE 6: An example of ORFs detected by ORF finder.

Cloud-Bazed ORF phylc.

€ = € [ bioinfocspuedutw

-1- PROVIDENCE UNIVERSITY
\} Bioinformatics Lab

Cloud-Based ORF phylogen:

E-mail (Selective option)
ORF size defuitlength 00
UpLoad File [Choose File ] No file chosen Example

=

Copyright © 2012 CCI, Providence University All Rights Reserved. E-maitclung @em pu edh tw
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Step 4: Report Result. In this step, the ph formatted trees are
drawn as three diagrams and displayed on the portal. The user
observes these diagrams online or downloads them from the
website. Similarly, a bar graph of aggregate diversity appears
on the website.

3. Experiment

The proposed cloud service for virus analysis was performed
on four IBM blade servers. Each server was equipped with
two Quad-Core Intel Xeon 2.26 GHz CPUs, 24 GB RAM,
and 296 GB hard disk, running under the Ubuntu operating
system version 10.4, with 8 virtual machines on each server.
Hadoop version 0.2 MapReduce platform was installed on
each server. One VM constituted the job tracker and name
node; the others are task trackers and data nodes. The job
tracker is also the portal of our cloud service. The portal is
depicted in Figure 7.

Our current cloud environment permits eight virtual
machines. Two of these VMs are name node and data node
running the Reducer; the remaining six are responsible for
map operation. For the experiment, we randomly produced
three datasets, each containing 20 sequences of different
lengths (300, 400, and 600 nucleotides). All sequences in each
dataset were compared by phylogenetic analysis methods.
ClustalW and the proposed service were applied three times,
for simulating three ORF phylogenetic analyses.

The computation time of the proposed service illustrated
in Figure 8 is proportional to the number of mappers. The
execution time is considerably reduced when six mappers are
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used, relative to two mappers. Figure 9 compares the per-
formance between sequential phylogenetic analysis methods
such as ClustalW and the proposed service with six mappers,
for different sequence lengths. Clearly, the proposed service
in the Hadoop framework achieves better performance than
standard sequential phylogenetic analysis.

4. Case Study

Norovirus (NoV) is an important etiological agent of acute
gastroenteritis worldwide. It causes diarrhea in all ages,
especially in Taiwan. The NoV genome is a single-stranded,
positive sense, polyadenylated RNA encoding three open
reading frames, ORF1, ORF2, and ORF3 [26]. ORFI encodes
a long polypeptide that is cleaved intracellularly into six
proteins by the viral proteinase [27]. These proteins enable
NoV to replicate in host cells [28]. ORF2 encodes a viral
capsid protein, VP1, while ORF3 encodes a VP2 protein
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FIGURE 10: Phylogenetic trees for full length and different ORF regions: (a) full length, (b) ORFL, (c) ORF2, and (d) ORF3.
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that is regarded as a minor structural component of virus
particles [29], apparently responsible for the expression and
stabilization of VP1 [30]. Like the majority of RNA viruses,
NoV is genetically and antigenically diverse [31-33]. The virus
is tentatively divided into five genogroups and more than 25
genotypes, based on similarities between ORF2 sequences
[33, 34]. Therefore, the homology of this type of virus may be
identified from ORF similarities. Identifying this homology
will assist in viral drug and vaccine design. Therefore, NoV
was selected as a case study in our experiments. We selected
fifteen NoV that have been discovered in Taiwan. These NoV
sequences can be downloaded from NCBI.
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FIGURE 12: Example of showing high entropy value at the specific
positions.

The phylogenetic trees constructed from full length
sequences and three ORFs are shown in Figure 10. Obviously,
these trees differ from each other. The tree constructed
from the full length sequences (Figure 10(a)) demonstrates
an evolutionary relationship between the viruses. However,
different ORFs yield distinctly different trees (Figures 10(b)-
10(d)), suggesting that viruses can copy ORFs from other
viruses and alter their function by integrating them into
their own sequences. Therefore, by establishing evolutionary
relationships for each ORE, virologists can analyze the dis-
eases caused by specific ORFs. Figure 11 shows the diversity
bar graph generated by the platform. The residue position
of high entropy is provided in Figure 12, which shows four
phylogenetic trees and the diversity bar graph. The positions
(also the amino acids) of high diversity are shown in the box.



5. Conclusion

Cloud computing is the online delivering of computing
resources, such as hardware and software. Users can access
cloud-based applications through a web browser or via appli-
cations on mobile devices. Although many bioinformatics
tools have been developed as web applications, these are
typically deployed in a server, which has limited computing
power. Currently, some tools have been redeveloped as dis-
tributed computing tools based on the Hadoop framework.
These tools are readily deployed on a cluster provided by a
cloud computing vendor such as Amazon EC2. Deployment
of preexisting tools to the cloud environment is the current
trend of bioinformatics as a service.

In this paper, we propose a high-scale, available cloud-
based open reading frame phylogenetic analysis service based
on a Hadoop cluster using virtualization technology. Virtual-
ization enables the proposed service to copy large quantities
of jobs. Because Hadoop is strongly buffered against faults,
the proposed cloud service guarantees that submitted jobs are
recovered by task reassignment, ensuring a high-availability
cloud service. Our case study demonstrated that our service
can construct different phylogenetic trees from comparisons
of different ORFs. These relationships can significantly assist
biologists to observe sequence evolutions in different ORFs.
The proposed service can also assist researches to develop
novel drugs against pathogenic viruses.
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