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We suggest and analyze a technique by combining the variational iteration method and the
homotopy perturbation method. This method is called the variational homotopy perturbation
method (VHPM). We use this method for solving higher dimensional initial boundary value
problemswith variable coefficients. The developed algorithm is quite efficient and is practically well
suited for use in these problems. The proposed scheme finds the solution without any discritization,
transformation, or restrictive assumptions and avoids the round-off errors. Several examples are
given to check the reliability and efficiency of the proposed technique.
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1. Introduction

The numerical and analytical solutions of higher dimensional initial boundary value problems
of variable coefficients, linear and nonlinear, are of considerable significance for applied
sciences. Examples of linear models are Euler-Darboux equation [1], Lambropoubs’ equation
[2] and Tricomi equation [3] given by

(x − y)uxy +
(
αux − βuy

)
= 0,

uxy + axux + byuy + cxyu + ut = 0,

uyy = yuxx,

(1.1)

respectively. Examples of nonlinear models are introduced in Kdv equation [4–7] of variable
coefficients and Clairaut’s equation [5] given by

ut + αtnuux + βtmuxxx = 0, u = xux + yuy + f
(
ux, uy

)
, (1.2)
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respectively; see [1–7]. Several numerical and analytical techniques including the spectral
methods, characteristics method, and Adomian’s decomposition method have been developed
for solving these problems; see [1–7] and the references therein. For implementation of the
Adomian decomposition method, one has to find the so-called the Adomian polynomial,
which is itself a difficult problem. To overcome these difficulties and drawbacks, He [8–18]
developed variational iteration method for solving linear and nonlinear problems, which arise
in various branches of pure and applied sciences. It is worth mentioning that the origin of
variational iteration method can be traced back to Inokuti et al. [19]. It has been shown that
the variational iteration method is user friendly. Furthermore, He [8–14] also introduced the
homotopy perturbation method, which is developed by combining the standard homotopy
and perturbation method. In these methods the solution is given in an infinite series usually
converging to an accurate solution, see [8–31]. We would like to mention that Noor [32] used
the homotopy perturbation method for suggesting a number of iterative methods solving
nonlinear equations of the type f(x) = 0. This is another application of the homotopy
perturbation method.

Motivated and inspired by the on-going research in these areas, we consider a new
method, which is called the variational homotopy perturbation method (VHPM). This method
is suggested by combining the variational iteration technique and the homotopy perturbation
method. The suggested VHPM provides the solution in a rapid convergent series which may
lead the solution in a closed form and is in full agreement with [7], where similar problems
were solved by using the decomposition method. The fact that the proposed technique solves
nonlinear problems without using the so-called Adomian’s polynomials is a clear advantage
of this algorithm over the decomposition method. In this algorithm, the correct functional
is developed [8, 15–19, 21–25] and the Lagrange multipliers are calculated optimally via
variational theory. Finally, the homotopy perturbation is implemented on the correct functional
and the comparison of like powers of p gives solutions of various orders. The developed
algorithm takes full advantage of variational iteration and the homotopy perturbation
methods. It is worth mentioning that the VHPM is applied without any discretization,
restrictive assumption, or transformation and is free from round-off errors. Unlike the method
of separation of variables that require initial and boundary conditions, the VHPM provides an
analytical solution by using the initial conditions only. The boundary conditions can be used
only to justify the obtained result. The proposed method work efficiently and the results so
far are very encouraging and reliable. We would like to emphasize that the VHPM may be
considered as an important and significant refinement of the previously developed techniques
and can be viewed as an alternative to the recently developed methods such as Adomian’s
decomposition, variational iterations, and homotopy perturbation methods. Several examples
are given to verify the reliability and efficiency of the variational homotopy perturbation
method (VHPM).

2. Variational iteration method

To illustrate the basic concept of the technique, we consider the following general differential
equation:

Lu +Nu = g(x), (2.1)
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where L is a linear operator, N a nonlinear operator, and g(x) the forcing term. According to
variational iteration method [8, 15–19, 21–25], we can construct a correct functional as follows:

un+1(x) = un(x) +
∫x

0
λ
(
Lun(s) +Nũn(s) − g(s)

)
ds, (2.2)

where λ is a Lagrange multiplier [8, 15–19], which can be identified optimally via a variational
iteration method. The subscripts n denote the nth approximation, ũn is considered as a
restricted variation. That is, δũn = 0; (2.2) is called a correct functional. The solution of the
linear problems can be solved in a single iteration step due to the exact identification of the
Lagrange multiplier. The principles of the variational iteration method and its applicability for
various kinds of differential equations are given in [8, 15–19]. In this method, it is required first
to determine the Lagrange multiplier λ optimally. The successive approximation un+1, n ≥ 0
of the solution u will be readily obtained upon using the determined Lagrange multiplier and
any selective function u0, consequently, the solution is given by u = lim

n→∞
un.

3. Homotopy perturbation method

To explain the homotopy perturbation method, we consider a general equation of the type,

L(u) = 0, (3.1)

where L is any integral or differential operator. We define a convex homotopyH(u, p) by

H(u, p) = (1 − p)F(u) + pL(u), (3.2)

where F(u) is a functional operator with known solutions v0, which can be obtained easily. It
is clear that, for

H(u, p) = 0, (3.3)

we have

H(u, 0) = F(u), H(u, 1) = L(u). (3.4)

This shows that H(u, p) continuously traces an implicitly defined curve from a starting point
H(v0, 0) to a solution function H(f, 1). The embedding parameter monotonically increases
from zero to unit as the trivial problem F(u) = 0 is continuously deforms the original problem
L(u) = 0. The embedding parameter p ∈ (0, 1] can be considered as an expanding parameter
[8–14, 26–31]. The homotopy perturbation method uses the homotopy parameter p as an
expanding parameter [8–14] to obtain

u =
∞∑

i=0

piui = u0 + pu1 + p2u2 + p3u3 + · · · . (3.5)

If p→1, then (3.5) corresponds to (3.2) and becomes the approximate solution of the form

f = lim
p→1

u =
∞∑

i=0

ui. (3.6)

It is well known that series (3.5) is convergent for most of the cases and also the rate of
convergence is dependent on L(u); see [8–14]. We assume that (3.6) has a unique solution.
The comparisons of like powers of p give solutions of various orders.
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4. Variational homotopy perturbation method (VHPM)

To convey the basic idea of the variational homotopy perturbation method, we consider the
following general differential equation:

Lu +Nu = g(x), (4.1)

where L is a linear operator, N a nonlinear operator, and g(x) the forcing term. According to
variational iteration method [8, 15–19], we can construct a correct functional as follows:

un+1(x) = un(x) +
∫x

0
λ(ξ)

(
Lun(ξ) +Nũn(ξ) − g(ξ)

)
dξ, (4.2)

where λ is a Lagrange multiplier [8, 15–19], which can be identified optimally via variational
iteration method. The subscripts n denote the nth approximation, ũn is considered as a
restricted variation. That is, δ ũn = 0; (4.2) is called as a correct functional. Now, we apply
the homotopy perturbation method,

∞∑

n=0

p(n)un = u0(x) + p

∫x

0
λ(ξ)

( ∞∑

n=0

p(n)L
(
un

)
+

∞∑

n=0

p(n)N
(
ũn

)
)

dξ −
∫x

0
λ(ξ)g(ξ)dξ, (4.3)

which is the variational homotopy perturbation method and is formulated by the coupling of
variational iteration method and Adomian’s polynomials. A comparison of like powers of p
gives solutions of various orders.

5. Numerical applications

In this section, we apply the VHPM developed in Section 4 for solving higher dimensional
initial boundary value problems with variable coefficient. We develop the correct functional
and calculate the Lagrange multipliers optimally via variational theory. The homotopy
perturbation method is implemented on the correct functional and finally, the comparison of
like powers of p gives solutions of various orders. Numerical results reveal that the VHPM
is easy to implement and reduces the computational work to a tangible level while still
maintaining a very higher level of accuracy. For the sake of comparison, we take the same
examples as used in [7, 20].

Example 5.1. Consider the two-dimensional initial boundary value problem:

utt =
1
2
y2uxx +

1
2
x2uyy, 0 < x, y < 1, t > 0, (5.1)

with boundary conditions

u(0, y, t) = y2e−t, u(1, y, t) =
(
1 + y2)e−t,

u(x, 0, t) = y2e−t, u(x, 1, t) =
(
1 + x2)e−t,

(5.2)

and the initial conditions

u(x, y, 0) = x2 + y2, ut(x, y, 0) = −(x2 + y2). (5.3)
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The correct functional is given as

un+1(x, y, z, t) =
(
x2 + y2) − (

x2 + y2)t +
∫ t

0
λ(ξ)

(
∂2un

∂t2
− 1
2

(
y2(ũn

)
xx + x2(ũn

)
yy

))
dξ, (5.4)

where ũn is considered as a restricted variation. Making the above functional stationary, the
Lagrange multiplier can be determined as λ = ξ − t, which yields the following iteration
formula:

un+1(x, y, z, t) =
(
x2 + y2) − (

x2 + y2)t +
∫ t

0
(ξ − t)

(
∂2un

∂t2
− 1
2

(
y2(un

)
xx + x2(un

)
yy

))
dξ. (5.5)

Applying the variational homotopy perturbation method, we have

u0 + pu1 + p2u2 + · · · = (
x2 + y2) − (

x2 + y2)t + p

∫ t

0
(ξ − t)

(
∂2u0

∂t2
+ p

∂2u1

∂t2
+ p2

∂2u2

∂t2
+ · · ·

)
dξ

− 1
2
p

∫ t

0
(ξ − t)

((
y2

(
∂2ũ0

∂x2
+ p

∂2ũ1

∂x2
+ p2

∂2ũ2

∂x2
+ · · ·

))

+
(
x2
(
∂2ũ0

∂y2
+ p

∂2ũ1

∂y2
+ p2

∂2ũ2

∂y2
+ · · ·

)))
dξ.

(5.6)

Comparing the coefficient of like powers of p, we have

p(0) : u0(x, y, t) =
(
x2 + y2) − (

x2 + y2)t,

p(1) : u1(x, y, t) =
(
x2 + y2) t

2

2!
− (

x2 + y2) t
3

3!
,

p(2) : u2(x, y, t) =
(
x2 + y2) t

4

4!
− (

x2 + y2) t
5

5!
,

p(3) : u3(x, y, t) =
(
x2 + y2) t

5

5!
− (

x2 + y2) t
7

7!
,

p(4) : u4(x, y, t) =
(
x2 + y2) t

8

8!
− (

x2 + y2) t
9

9!
,

p(5) : u5(x, y, t) =
(
x2 + y2) t

10

10!
− (

x2 + y2) t
11

11!
,

...

(5.7)

The series solution is given by

u(x, y, t) =
(
x2 + y2)

(
1 − t +

t2

2!
− t3

3!
+
t4

4!
− t5

5!
+
t6

6!
− t7

7!
+
t8

8!
− · · ·

)
, (5.8)

and in a closed form by u(x, y, t) = (x2 + y2)e−t, which is in full agreement with [7].



6 Mathematical Problems in Engineering

Example 5.2. Consider the three-dimensional initial boundary value problem

utt =
1
45

x2uxx +
1
45

y2uyy +
1
45

z2uzz − u, 0 < x, y < 1, t < 0 (5.9)

subject to the Neumann boundary conditions

ux(0, y, z, t) = 0, ux(1, y, z, t) = 6y6z6 sinh t, uy(x, 0, z, t) = 0,

uy(x, 1, z, t) = 6x6z6 sinh t, uz(x, y, 0, t) = 0, uz(x, y, 1, t) = 6x6y6 sinh t,
(5.10)

and the initial conditions

u(x, y, z, 0) = 0, ut(x, y, z, 0) = x6y6z6. (5.11)

The correct functional is given by

un+1(x, y, z, t) =
(
x6y6z6

)
t +

∫ t

0
λ(ξ)

(
∂2un

∂t2
− 1
45

(
x2(ũn

)
xx + y2(ũn

)
yy + z2

(
ũn

)
zz

)
+ ũn

)
dξ,

(5.12)

where ũn is considered as a restricted variation. Making the above functional stationary, the
Lagrange multiplier can be determined as λ = ξ − t, which yields the following iteration
formula:

un+1(x, y, z, t) =
(
x6y6z6

)
t +

∫ t

0
(ξ − t)

(
∂2un

∂t2
− 1
45

(
x2(un

)
xx + y2(un

)
yy + z2

(
un

)
zz

)
+ un

)
dξ.

(5.13)

Applying the variational homotopy perturbation method,

u0 + pu1 + p2u2 + · · · = (
x2 + y2) − (

x2 + y2)t + p

∫ t

0
(ξ − t)

(
∂2u0

∂t2
+ p

∂2u1

∂t2
+ p2

∂2u2

∂t2
+ · · ·

)
dξ

− 1
45

p

∫ t

0
(ξ − t)

((
x2
(
∂2ũ0

∂x2
+ p

∂2ũ1

∂x2
+ p2

∂2ũ2

∂x2
+ · · ·

))

+
(
y2

(
∂2ũ0

∂y2
+ p

∂2ũ1

∂y2
+ p2

∂2ũ2

∂y2
+ · · ·

)))
dξ

− 1
45

p

∫ t

0
(ξ − t)z2

(
∂2ũ0

∂z2
+ p

∂2ũ1

∂z2
+ p2

∂2ũ2

∂z2
+ · · ·

)
dξ

+ p

∫ t

0
(ξ − t)

(
u0 + pu1 + p2u2 + · · · )dξ.

(5.14)
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Comparing the coefficient of like powers of p, we have

p(0) : u0(x, y, z, t) = x6y6z6t,

p(1) : u1(x, y, z, t) = x6y6z6
t3

3!
,

p(2) : u2(x, y, z, t) = x6y6z6
t5

5!
,

p(3) : u3(x, y, z, t) = x6y6z6
t7

7!
,

p(4) : u4(x, y, z, t) = x6y6z6
t9

9!
,

...

(5.15)

The series solution is given by

u(x, y, z, t) = x6y6z6
(
t +

t3

3!
+
t5

5!
+
t7

7!
+
t9

9!
+ · · ·

)
= x6y6z6 sinh t, (5.16)

which is in full agreement with [7].

Example 5.3. Consider the two-dimensional nonlinear inhomogeneous initial boundary value
problem

utt = 2x2 + 2y2 +
15
2
(
xu2

xx + yu2
yy

)
, 0 < x, y < 1, t > 0 (5.17)

with boundary conditions

u(0, y, t) = y2t2 + yt6, u(1, y, t) =
(
1 + y2)t2 + (1 + y)t6,

u(x, 0, t) = x2t2 + xt6, u(x, 1, t) =
(
1 + x2)t2 + (1 + x)t6,

(5.18)

and the initial conditions

u(x, y, 0) = 0, ut(x, y, 0) = 0, (5.19)

The correct functional is given as

un+1(x, y, z, t) =
∫ t

0
λ(ξ)

(
∂2un

∂t2
− 15

2

(
x
(
ũ2
n

)
xx + y2(ũ2

n

)
yy

)
− 2

(
x2 + y2)

)
dξ, (5.20)
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where ũn is considered as a restricted variation. Making the above functional stationary, the
Lagrangemultiplier can be determined as λ = ξ−t, which yields the following iteration formula

un+1(x, y, z, t) =
∫ t

0
(ξ − t)

(
∂2un

∂t2
− 15

2

(
x
(
ũ2
n

)
xx + y2(ũ2

n

)
yy

)
− 2

(
x2 + y2)

)
dξ. (5.21)

Applying the variational homotopy perturbation method, we have

u0 + pu1 + p2u2 + · · · = p

∫ t

0
(ξ − t)

(
∂2u0

∂t2
+ p

∂2u1

∂t2
+ p2

∂2u2

∂t2
+ · · ·

)
dξ

− 15
2
p(ξ − t)

(

x

(
∂2ũ0

∂x2
+ p

∂2ũ1

∂x2
+ p2

∂2ũ2

∂x2
+ · · ·

)2

xx

+
∫ t

0
y

(
∂2ũ0

∂y2
+ p

∂2ũ1

∂y2
+ p2

∂2ũ2

∂y2
+ · · ·

)2

yy

− 2
(
x2 + y2)

)

dξ.

(5.22)

Comparing the coefficient of like powers of p, we have

p(0) : u0(x, y, t) = 0,

p(1) : u1(x, y, t) =
(
x2 + y2)t2,

p(2) : u2(x, y, t) = (x + y)t6,

p(3) : u3(x, y, t) = 0,
...

(5.23)

The solution is obtained as u(x, y, t) = (x2 + y2)t2 + (x + y)t6, which is in full agreement with
[7].

Example 5.4. Consider the three-dimensional nonlinear initial boundary value problem

utt =
(
2 − t2

)
+ u − (

e−xu2
xx + e−yu2

yy + e−zu2
zz

)
, 0 < x, y < 1, t < 0 (5.24)

subject to the Neumann boundary conditions

ux(0, y, z, t) = 1, ux(1, y, z, t) = e,

uy(x, 0, z, t) = 0, uy(x, 1, z, t) = e,

uz(x, y, 0, t) = 1, uz(x, y, 1, t) = e,

(5.25)

and the initial conditions

u(x, y, z, 0) = ex + ey + ez, ut(x, y, z, 0) = 0. (5.26)
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The correct functional is given as

un+1(x, y, z, t)

=
(
ex+ey+ez

)
+
∫ t

0
λ(ξ)

(
∂2un

∂t2
+
(
e−x

(
ũn

)2
xx + e−y

(
ũn

)2
yy + e−z

(
ũn

)2
zz

)
−ũn

)
dξ−

∫ t

0
λ(ξ)

(
2 − t2

)
dξ,

(5.27)

where ũn is considered as a restricted variation. Making the above functional stationary, the
Lagrange multiplier can be determined as λ = ξ − t, which yields the following iteration
formula:

un+1(x, y, z, t)

=
(
ex+ey+ez

)
+
∫ t

0
(ξ − t)

(
∂2un

∂t2
+
(
e−x

(
ũn

)2
xx+e

−y(ũn

)2
yy+e

−z(ũn

)2
zz

)
−ũn

)
dξ−

∫ t

0
λ(ξ)

(
2 − t2

)
dξ,

(5.28)

Applying the variational homotopy perturbation method, we have

u0 + pu1 + · · · = (
ex + ey + ez

)
+ p

∫ t

0
(ξ − t)

((
∂2u0

∂t2
+ p

∂2u1

∂t2
+ p2

∂2u2

∂t2
+ · · ·

)

+ e−x
(
∂2ũ0

∂x2
+ p

∂2ũ1

∂x2
+ p2

∂2ũ2

∂x2
+ · · ·

)2

xx

)

dξ

+ p

∫ t

0
(ξ − t)

(

e−y
(
∂2ũ0

∂y2
+ p

∂2ũ1

∂y2
+ p2

∂2ũ2

∂y2
+ · · ·

)2

xx

+
∫ t

0
e−z

(
∂2ũ0

∂z2
+ p

∂2ũ1

∂z2
+ p2

∂2ũ2

∂z2
+ · · ·

)2

yy

)

dξ

− p

∫ t

0
(ξ − t)

((
u0 + pu1 + p2u2 + · · · ) + (

2 − t2
))
dξ.

(5.29)

Comparing the coefficient of like powers of p, we have

p(0) : u0(x, y, z, t) =
(
ex + ey + ez

)
+ t2 − t4

12
,

p(1) : u1(x, y, z, t) =
t4

12
− t6

360
,

p(2) : u2(x, y, z, t) =
t6

360
− t8

20160
,

...

(5.30)

The solution is obtained as u(x, y, z, t) = (ex + ey + ez) + t2, which is in full agreement with [7].
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Remark 5.5. Wewould like to point out that Noor [32] used the homotopy perturbationmethod
for suggesting some iterative-type methods for solving nonlinear equations f(x) = 0 coupled
with system of equations. Also it has been shown [32] that the homotopy perturbation method
andAdomian decompositionmethod are equivalent. This application of the homotopymethod
is quite different in nature. It is an interesting problem to consider such type of applications of
the variational homotopy method in solving nonlinear equations.

6. Conclusions

In this paper, we develop the variational homotopy perturbation method (VHPM) for solving
nonlinear problems. We used the variational homotopy perturbation method for solving the
higher dimensional initial boundary value problems with variable coefficient. The proposed
method is successfully implemented by using the initial conditions only. There are two
important points to make here. First, unlike the implicit and explicit finite difference methods,
the solution here is given in a closed form and by using the initial conditions only. Second,
the VHPM avoids the cumbersome of the computational methods while still maintaining the
higher level of accuracy. The fact that the variational homotopy perturbation method solves
nonlinear problems without using the Adomian’s polynomials can be considered as a clear
advantage of this technique over the decomposition method. It is observed that the proposed
scheme exploits full advantage of variational iteration method and the homotopy perturbation
method. Finally, we conclude that the VHPMmay be considered as a nice refinement in existing
numerical techniques.
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