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Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently
undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants
to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRImethods can still be improved
due to either lack of adaptability, high complexity of the training, or insufficient sparsity promotion. To properly balance the three
factors, this paper proposes a two-layer tight frame sparsifying (TRIMS) model for CSMRI by sparsifying the image with a product
of a fixed tight frame and an adaptively learned tight frame. The two-layer sparsifying and adaptive learning nature of TRIMS has
enabled accurate MR reconstruction from highly undersampled data with efficiency. To solve the reconstruction problem, a three-
level Bregman numerical algorithm is developed. The proposed approach has been compared to three state-of-the-art methods
over scanned physical phantom and in vivo MR datasets and encouraging performances have been achieved.

1. Introduction

Compressed sensing magnetic resonance imaging (CSMRI)
is a very popular signal processing based technique for
accelerating MRI scan. Different from the classical fixed-
rate sampling dogma Shannon-Nyquist sampling theorem,
CS exploits the sparsity of anMR image and allows CSMRI to
recover MR images from less incoherently sampled K-space
data [1].The classical formulation of CSMRI can be written as

min
𝑢

‖𝑊𝑢‖
1

s.t. 𝐹
𝑝
𝑢 = 𝑓,

(1)

where 𝑢 ∈ C𝑄×1 and 𝑓 ∈ C𝑃×1, respectively, denote
the MR image and its corresponding undersampled raw
K-space data, 𝐹

𝑝
∈ C𝑃×𝑄 represents the undersampled

Fourier encoding matrix with 𝑃 ≪ 𝑄, and ‖𝑊𝑢‖
1
is an

analysis model which sparsifies the image with transform
𝑊 ∈ C𝑄×𝑄 under the ℓ

1
norm constraint. 𝑃 and 𝑄 are the

number of image pixels and measured data. The classical
formulation is typically equipped with total variation and
wavelet and it can be solved very efficiently [1]. However,
the efficiency comes at the expense of accuracy, especially
with highly undersampled noisy measurements, due to lack
of adaptability or insufficient sparsity promotion. To address
this issue, there have been diverse methods proposed [2, 3]
andwe focus on the following three representative directions.

One main endeavor is employing nonlocal operations or
redundant transforms to analytically sparsify the MR image
[4]. Typical examples include nonlocal total variation regular-
ization [5], patch-based directional wavelet [6], and wavelet
tree sparsity based CSMRI techniques [7]. These methods
generally have straightforward models; nevertheless, the
reconstruction accuracy is not that perfectly satisfying due
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to lack of adaptability. We proposed one-layer data-driven
tight frame DDTF for undersampled image reconstruction
[8]. It is generally very efficient. But its performance is still
limited due to its insufficient sparsity promotion and reliance
on the Bregman iteration technique for bringing back the
image details.

The other effort is training adaptive dictionary to sparsely
represent the MR image in the synthesis manner. For exam-
ple, DLMRI [9], BPFA triggeredMR reconstruction [10], and
our proposed TBMDU [3] employ dictionary learning to
adaptively capture image structures while promoting sparsity.
These methods can generally achieve accurate MR image
reconstruction with strong noise suppression capability.
Unfortunately, the complexity of these approaches is very
high and the sparsity is still directly limited to one-layer
representation of the target image.

The third group endeavors could be regarded as the
variants of the above two efforts, which target employing
the advantages of both the analysis and synthesis sparse
models. For example, the balanced tight frame model [11]
introduces a penalty term to bridge the gap between the
analysis and synthesis model. Unfortunately, although it pos-
sesses a fascinating mathematical explanation, the sparsity
promotion is still limited to a single layer and therefore
its performance is only comparable to the analysis one.
To further promote sparsity, a wavelet driven dictionary
learning (named WaveDLMRI) [12] technique and our pro-
posed total variation driven dictionary learning approach
(named GradDLRec) [13] adaptively represent the sparse
coefficients derived from the analysis transform rather than
directly encode the underlying image. Nevertheless, despite
achieving encouraging performances, they still rely on the
computationally expensive dictionary learning technique.

Recently, there are double sparsity model and doubly
sparse transforms proposed in general image/signal process-
ing community [14, 15]. The double sparsity model tries
to train a sparse dictionary over a fixed base, while the
doubly sparse transform is devoted to learning an adaptive
sparse matrix over an analytic transform. There is no doubt
that their application to image denoising has presented
promising results, albeit the two-layer sparsifying model
is more concerned to assist efficient learning, storage, and
implementation by constraining the dictionary sparse rather
than focus on further triggering of the sparsity of the image.

Motivated by the above observations, we try to develop a
two-layer tight frame sparsifying (TRIMS) model for CSMRI
by sparsifying the image with a product of a fixed tight frame
and an adaptive learned tight frame. The proposed TRIMS
has several merits: (1) the tight frame satisfies the perfect
reconstruction property which ensures the given signal can
be perfectly represented by its canonical expansion [16]; (2)
a tight frame can be implemented very efficiently since it
satisfies𝑊𝐻𝑊 = 𝐼; (3) the adaptability has been kept by the
second-layer tight frame tailored for the target reconstruction
task; (4) the two-layer tight frame has enabled the image
sparsity to be explored more sufficiently compared to the
one-layer one. Furthermore, the two-layer tight frame also
has a convolutional explanation, which extracts appropriate

image characteristics to constrain MR image reconstruction
[17]. We have compared our method with three state-of-
the-art approaches of the above three directions, namely,
DDTF-MRI, DLMRI, and GradDLRec on an in vivo complex
valued MR dataset. The results have advised the proposed
method could properly balance the efficiency, accuracy, and
acceleration factors.

2. Theory

2.1. TRIMS Model. To reconstruct MR images from under-
sampled data, we propose a TRIMS model which can be
implicitly described as

min
𝑢,𝑊𝑏∈⋀


𝐹
𝑝
𝑢 − 𝑓



2

2

+ 𝛼
𝑊𝑏 (𝑊𝑎𝑢)

1 , (2)

where 𝑊
𝑎
is the fixed tight frame and 𝑊

𝑏
denotes the data-

driven tight frame. ⋀ means the tight frame system, since
a tight frame can be formulated with a set of filters under
the unitary extension principle (UEP) condition [16]. The
proposed model also has another approximately equivalent
convolutional expression, which we name the explicit model

min
𝑢,𝑏𝑚


𝐹
𝑝
𝑢 − 𝑓



2

2

+ 𝛼∑
𝑚

∑
𝑛

𝑏𝑚 ∗ (𝑎𝑛 ∗ 𝑢)
1 , (3)

where 𝑎
𝑛
are the fixed kernels and 𝑏

𝑚
denote the to-be-learned

adaptive kernels.

2.2. TRIMS Algorithm. To solve the proposed model, we
develop a three-level Bregman iteration numerical algorithm.
Introducing a Bregman parameter 𝑐, we have the first-level
Bregman iteration

{𝑢
𝑘+1

,𝑊
𝑘+1

𝑏
} = argmin
𝑢,𝑊𝑏∈⋀


𝐹
𝑝
𝑢 − 𝑓 + 𝑐

𝑘


2

2

+ 𝛼
𝑊𝑏 (𝑊𝑎𝑢)

1 ,

𝑐
𝑘+1

= 𝑐
𝑘

+ 𝐹
𝑝
𝑢
𝑘+1

− 𝑓.

(4)

To attack the first subproblem in (4), we introduce an assistant
variable 𝑢

𝑎
= 𝑊
𝑎
𝑢 and obtain the second-level iteration

{𝑢
𝑘+1

𝑎
,𝑊
𝑘+1

𝑏
} = argmin
𝑢𝑎 ,𝑊𝑏

𝜇

𝑊
𝑎
𝑢 − 𝑢
𝑎
+ 𝑑
𝑘


2

2

+ 𝛼
𝑊𝑏𝑢𝑎

1 ,

𝑢
𝑘+1

= argmin
𝑢


𝐹
𝑝
𝑢 − 𝑓 + 𝑐

𝑘


2

2

+ 𝜇

𝑊
𝑎
𝑢 − 𝑢
𝑘+1

𝑎
+ 𝑑
𝑘


2

2

,

𝑑
𝑘+1

= 𝑑
𝑘

+𝑊
𝑎
𝑢
𝑘+1

− 𝑢
𝑘+1

𝑎
.

(5)

The subproblem regarding the update of 𝑢 is a simple least
squares problem admitting an analytical solution. Its solution
satisfies the following normal equation:

𝐹
𝐻

𝑝
(𝐹
𝑝
𝑢 − 𝑓 + 𝑐

𝑘

) + 𝜇𝑊
𝐻

𝑎
(𝑊
𝑎
𝑢 − 𝑢
𝑘

𝑎
+ 𝑑
𝑘

) = 0. (6)
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(1) Initialization: 𝑘 = 0,𝑊
𝑎
,𝑊0
𝑏
, 𝑐0 = 0, 𝑑0 = 0, 𝑒0 = 0.

(2) while stop condition is not met do
(3) 𝑡 ← 0.01, 𝑤 ← 0
(4) for 𝑚 = 1 to𝑀 do
(5) V𝑘+1 = shrink(𝑊

𝑏
𝑢
𝑘

𝑎
+ 𝑒
𝑘

, 1/𝛼)

(6) 𝑒
𝑘+1

= 𝑒
𝑘

+𝑊
𝑘

𝑏
𝑢
𝑘

𝑎
− V𝑘+1

(7) 𝑢
𝑘+1

𝑎
= (𝜇(𝑊

𝑎
𝑢
𝑘

+ 𝑑) +𝑊
𝐻

𝑏
(V𝑘+1 − 𝑒𝑘))/(1 + 𝜇)

(8) update𝑊𝑘+1
𝑏

with the SVD technique of [16]
(9) 𝑑

𝑘+1

= 𝑑
𝑘

+𝑊
𝑎
𝑢
𝑘+1

− 𝑢
𝑘+1

𝑎

(10) update 𝑢𝑘+1 as the inverse Fourier transform of the data acquired in (7)
(11) end for
(12) update 𝑐𝑘+1 = 𝑐𝑘 + 𝐹

𝑝
𝑢
𝑘+1

− 𝑓

(13) 𝑘 ← 𝑘 + 1
(14) end while

Algorithm 1: Reconstructing MR images from undersampled K-space data with TRIMS.

Since 𝑊
𝑎
is a tight frame satisfying 𝑊𝐻

𝑎
𝑊
𝑎
= 𝐼, letting 𝐹

denote the full Fourier encodingmatrix normalized such that
𝐹
𝐻

𝐹 = 𝐼, we have

𝐹𝑢 (𝑘
𝑥
, 𝑘
𝑦
)

=

{{{

{{{

{

𝑆 (𝑘
𝑥
, 𝑘
𝑦
) , (𝑘

𝑥
, 𝑘
𝑦
) ∉ Ω,

𝑆 (𝑘
𝑥
, 𝑘
𝑦
) + 𝜇𝑆

0
(𝑘
𝑥
, 𝑘
𝑦
)

1 + 𝜇
, (𝑘
𝑥
, 𝑘
𝑦
) ∈ Ω,

(7)

where 𝑆
0
(𝑘
𝑥
, 𝑘
𝑦
) = 𝐹𝐹

𝐻

𝑝
(𝑓 − 𝑐

𝑘

), 𝑆(𝑘
𝑥
, 𝑘
𝑦
) = 𝐹𝑊

𝐻

𝑎
(𝑢
𝑘

𝑎
− 𝑑
𝑘

),
andΩ denotes the sampledK-space subset. In order to update
𝑢
𝑎
and𝑊

𝑏
, we introduce another assistant variable V = 𝑊

𝑏
𝑢
𝑎

to decompose the coupling between𝑊
𝑏
and 𝑢

𝑎
and therefore

obtain the third-level Bregman iteration

{V𝑘+1,𝑊𝑘+1
𝑏
} = argmin

V,𝑊𝑏


𝑊
𝑏
𝑢
𝑘

𝑎
− V + 𝑒𝑘



2

2

+ 𝛼 ‖V‖
1
,

𝑢
𝑘+1

𝑎
= argmin
𝑢𝑎

𝜇

𝑊
𝑎
𝑢
𝑘

− 𝑢
𝑎
+ 𝑑
𝑘


2

2

+

𝑊
𝑘

𝑏
𝑢
𝑎
− V𝑘+1 + 𝑒𝑘



2

2

,

𝑒
𝑘+1

= 𝑒
𝑘

+𝑊
𝑘

𝑏
𝑢
𝑘

𝑎
− V𝑘+1.

(8)

Similar to the update of 𝑢, we can easily get the least squares
solution for 𝑢

𝑎

𝑢
𝑘+1

𝑎
=
𝜇 (𝑊
𝑎
𝑢
𝑘

+ 𝑑
𝑘

) +𝑊
𝐻

𝑏
(V𝑘+1 − 𝑒𝑘)

1 + 𝜇
. (9)

As for the update of V, we temporarily fix the value of
𝑊
𝑏
and can easily obtain its update rule with the iterative

shrinkage/thresholding algorithm (ISTA)

V𝑘+1 = shrink (𝑊
𝑏
𝑢
𝑘+1

𝑎
+ 𝑒
𝑘

,
1

𝛼
) , (10)

where shrink(𝑥, 𝑎) = sign(𝑥)max(0, |𝑥| − 𝑎). Now fix V, we
update𝑊

𝑏
by minimizing

argmin
𝑊𝑏∈⋀


𝑊
𝑏
𝑢
𝑘

𝑎
− V + 𝑒𝑘



2

2

. (11)

Instead of directly optimizing 𝑊
𝑏
, we sequentially partition

the coefficient vectors V − 𝑒 into vectors and apply the tech-
nique of [16] to solve this subproblem using singular value
decomposition (SVD), with the aim of learning its corre-
sponding filter 𝑏

𝑚
. To facilitate the readers to grasp the overall

picture, we summarize the proposed TRIMS in Algorithm 1.

3. Experiments and Results

Weevaluated the proposedmethod on three datasets, namely,
a T1-weighted brain image obtained from GE 3T commercial
scanner with an eight-channel head coil (TE = 11ms, TR =
700ms, FOV = 22 cm, and matrix = 256 × 256), a PD-
weighted brain image scanned from 3T SIEMENS with an
eight-channel head coil andMPRAGE (3D flashwith IR prep,
TE = 3.45ms, TR = 2530ms, TI = 1100ms, flip angle = 7 deg.,
slice = 1, matrix = 256 × 256, slice thickness = 1.33mm,
FOV = 256mm, and measurement = 1), and a physical
phantom scanned from a 3T commercial scanner (SIEMENS
MAGNETOMTrioTim syngo) with a four-channel head coil
(TE = 12ms, TR = 800ms, FOV = 24.2 cm, and matrix =
256 × 256). Informed consent was obtained from the imaging
subject in compliance with the Institutional Review Board
policy.TheWalsh adaptive combination method is applied to
combine themultichannel data to a single-channel one corre-
sponding to a complex-valued image. We have compared the
proposed method to three state-of-the-art methods, namely,
the representative analysis transform based DDTF-MRI,
the synthesis dictionary based DLMRI, and the analysis-
synthesis mixture based GradDLRec approach. TRIMS was
implemented with shift invariant Haar wavelet filters for the
fixed tight frame (the size of each filter is 2 × 2) and for
initializing the second-level tight frame (the size of each filter
is 4 × 4). The other three algorithms were implemented with
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(a)

0.2

0.15

0.1

0.05

0

(b)
Figure 1: Visual quality comparison on GE MR images reconstructed by the four approaches from radially undersampled K-space data
(25.16%). (a) From left to right: ground truth image and images reconstructed by the DDTF, DLMRI, GradDLRec, and proposed TRIMS;
each one has an enlarged region for a closer comparison. (b) From left to right: color axis and difference images of the DDTF, DLMRI,
GradDLRec, and TRIMS.

their recommended parameter settings. To quantitatively
evaluate the reconstruction accuracy of eachmethod,we have
employed peak signal-to-noise ratio (PSNR), relative error,
and structural similarity (SSIM) index [18] which are defined
as follows:

PSNR = 20 log
10

max (𝑢
0
)√𝑄

𝑢0 − �̂�
2
,

err =
𝑢0 − �̂�

2
𝑢0
2
,

SSIM = [𝑙 (�̂�, 𝑢
0
)]
𝛼

⋅ [𝑐 (�̂�, 𝑢
0
)]
𝛽

⋅ [𝑠 (�̂�, 𝑢
0
)]
𝛾

,

(12)

where SSIM is multiplicative combination of the three terms,
namely, the luminance term 𝑙(�̂�, 𝑢

0
), the contrast term

𝑐(�̂�, 𝑢
0
), and the structural term 𝑠(�̂�, 𝑢

0
).

We firstly applied the four approaches to reconstruct
T1-weighted MR image under the radial sampling scheme
with the acceleration factor 𝑅 = 4 (sampling ratio 25.16%).
The reconstructed image obtained by each algorithm and
the absolute difference between the reconstructed image and
the ground truth image were displayed in Figure 1. We also
present an enlargement area to reveal the fine details and
structures each method has preserved. We can see that there
exist somewhat blurring artifacts on the edges in the results
reconstructed by the four methods. However, TRIMS can
reconstruct an image closer to the one reconstructed from
the full data. The absolute difference maps also indicate that
TRIMS incurs less errors while reconstructing the MR image
compared to the other three approaches.

We further utilized the four approaches to reconstruct
the PD-weighted brain image from 9.13% of 2D randomly
sampled K-space data. Figure 2(a) displays the original image

and the images reconstructed by the four approaches. For a
close-up look, the white box enclosed part has been zoomed
and presented at the right corner of the image. It can be
observed that our method has produced an image closer to
the original image. The four approaches were also evaluated
on a scanned physical phantom which consists of quite a
few regular structures with fine details. Figure 2(b) provided
the visual comparison results of the phantoms reconstructed
from 12.79% of 2D randomly sampled K-space data. An area
with different scales of lines was enlarged in each image to
visualize the reconstruction accuracy of each method. It can
be observed that the enlarged parts in the reconstruction
results suffer from blur. Nevertheless, the proposed method
can still produce an image with less blurry artifacts.

To test the sensitivity of the four methods to acceleration
factors, we retrospectively undersampled the full K-space
data with the 2D variable density scheme at 2.5-, 4-, 6-, 8-,
and 10-time acceleration and employed the four methods to
reconstructMR images from the undersampled data. Figure 3
has presented the average PSNR, relative error values, and
SSIM over all the three images reconstructed by the four
methods versus different acceleration factors. The two PSNR
and relative error plots have demonstrated that the proposed
method could achieve better reconstruction results at all
acceleration rates. Nevertheless, we should admit that the plot
of SSIM indicates that the proposedmethod does not produce
the best results at all undersampling factors on average since
the current tight frame size is relatively small based on the
concern of the computational complexity. Better results can
be produced if the size of the tight frame is set a little bigger.

We also have provided a comparison of the convergence
property of the four methods over acceleration rates 2.5 and
6 on the T1-weighted image in Figure 4. As can be seen, the
four methods all have approximately converged.
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(a)

(b)

Figure 2: Visual quality comparison on PD-weighted and physical phantom MR images reconstructed by the four approaches from 2D
randomly undersampled K-space data (9.312%). From left to right: ground truth image and images reconstructed by the DDTF, DLMRI,
GradDLRec, and proposed TRIMS; each one has an enlarged region for a closer comparison.
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Figure 3: The average reconstruction errors in PSNR, relative error, and SSIM over all images with respect to different acceleration rates.
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Figure 4: The convergence development of the four methods over acceleration rates 2.5 and 6 in PSNR, relative error, and SSIM while
reconstructing the T1-weighted image.



BioMed Research International 7

Table 1: The computational time (in second) comparison over
different acceleration rates.

Image PD-weighted image
Acceleration rate 2.5 4 6 8 10 20
TRIMS 137 139 140 139 137 137
DDTF 148 149 148 148 148 148
DLMRI 1294 1234 1215 1205 1188 1161
GradDLRec 2644 2475 2386 2352 2338 2298

Finally, we compare the computational time of the four
methods, which were implemented on a Windows 7 (64-bit)
operating system equippedwith 8GBRAMand Intel�Core�
i7-4770 CPU @ 3.40GHz in MATLAB 2015a. Table 1 lists the
computational time for eachmethod over the six acceleration
rates. We can observe that TRIMS is more efficient compared
to DLMRI and GradDLRec. It is even more efficient than
DDTF sinceDDTFneeds to train 64 filters, each size of which
is 8 × 8, while TRIMS only needs to train 16 filters whose size
is 4×4. Furthermore, it is worthmentioning that although the
size of the to-be-learned tight frame of TRIMS is smaller than
that of DDTF, the two-layer sparsifying nature has facilitated
TRIMS to achieve better reconstruction results in shorter
time compared to DDTF.

4. Conclusions

This paper proposes a two-layer tight frame sparsifying
model, namely, TRIMS, for compressed sensing magnetic
resonance imaging. This approach explores the strength of
adaptive learning technique and tight frames for accurate
reconstruction of MR images from undersampled K-space
data. The experimental results demonstrated that the pro-
posed TRIMS could accurately reconstruct MR images from
a variety of undersampled data with proper efficiency.
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