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Functional near-infrared spectroscopy (fNIRS) is suitable for noninvasive mapping of relative changes in regional cortical activity
but is limited for quantitative comparisons among cortical sites, subjects, and populations. We have developed a convolutional
neural network (CNN) analysis method that learns feature vectors for accurate identification of group differences in fNIRS
responses. In this study, subject gender was classified using CNN analysis of fNIRS data. fNIRS data were acquired from male
and female subjects during a visual number memory task performed in a white noise environment because previous studies had
revealed that the pattern of cortical blood flow during the task differed between males and females. A learned classifier accurately
distinguished males from females based on distinct fNIRS signals from regions of interest (ROI) including the inferior frontal
gyrus and premotor areas that were identified by the learning algorithm.These cortical regions are associated withmemory storage,
attention, and task motor response. The accuracy of the classifier suggests stable gender-based differences in cerebral blood flow
during this task. The proposed CNN analysis method can objectively identify ROIs using fNIRS time series data for machine
learning to distinguish features between groups.

1. Introduction

Functional near-infrared spectroscopy (fNIRS) estimates
regional cortical activity by measuring local changes in
hemoglobin concentration. This neuroimaging modality has
numerous advantages including the capacity to measure
cortical hemodynamics associated with activity in real time
with higher temporal resolution than functional magnetic
resonance imaging (fMRI) and positron emission tomog-
raphy (PET). fMRI measures the hemodynamic response
associated with neuronal activity based on nuclear magnetic
resonance. PET also detects the brain activity by measuring
cerebral hemodynamics and oxygen metabolism. While they
have higher spatial resolution than fNIRS, their temporal res-
olution is poor (e.g., a few seconds for fMRI, minutes for PET,

and milliseconds for fNIRS). Furthermore, fNIRS permits
a greater range of tasks during acquisition because the
measurement diode array is fixed to the subject’s scalp. Thus,
the problem of movement artifacts is minimal compared to
fMRI (but still needs attention). fNIRS presents advantages
in its fully noninvasiveness, ease of use, portability, and low
cost. These advantages have resulted in broad use of fNIRS
for human cognitive studies [1–4].

However, there are also limitations to fNIRS. Activity
is measured as a relative change because there is no con-
sistent relationship between cortical activity and local oxy-
hemoglobin (oxy-Hb) concentration. In addition, estimation
of hemoglobin concentration based on the modified Beer–
Lambert law requires knowledge of local optical path length
(i.e., the distance from the scalp surface to the cortical
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surface), which varies with scalp position and among indi-
viduals. These limitations make it difficult to compare data
from different channels between individuals as well as within
the individual. Thus, it is necessary to utilize a summary
static approach. Moreover, despite the high temporal res-
olution, fNIRS data is treated as a feature quantity (e.g.,
oxy-Hb) for comparison, and all temporal information is
lost. Extensive preprocessing of fNIRS data is also required,
including correction for motion artifacts and baseline drift
(low-frequency fluctuations). Setting parameters for these
processes is difficult or arbitrary because the optimal settings
differ for each individual subject and task.

However, most current fNIRS studies use dozens of
individual channels distributed over a broad region of the
scalp, therebymaking it possible to perform network analysis
between channels or functional connectivity analysis (FCA).
FCA is a form of seed-based analysis or independent com-
ponent analysis. In this case, it is necessary to determine
the most appropriate region of interest (ROI) as the seed;
however, this decision is also highly subjective.

Resolution of these analytical problems is necessary to
fully realize the potential of fNIRS as a noninvasive, safe,
and accessible alternative to fMRI for human studies. Among
the required developments of seminal importance are the
automation of preprocessing and determination of the seed
ROI to facilitate group analysis of fNIRS data while retaining
the temporal information in the time series acquired from
each measurement channel.

Previously, the authors have proposed a gender clas-
sification method for fNIRS time series data using deep
learning [5], a type of machine learning. In the proposed
method, a stacked denoising autoencoder (SDA) [6] and
a deep neural network (DNN) are used and trained to
classify the gender of a subject from given fNIRS data.
One advantage of using deep learning methodology is that
it requires minimal preprocessing because optimal settings
are learned automatically [7]. Our classifier achieved 81%
accuracy for gender classification.

In this study, we focus on another aspect of the deep
learning methodology regarding ROI determination. If we
can derive the gender classifier for each fNIRS channel,
we can determine which channel provides better classifi-
cation accuracy. These channels are simply the best ROIs
for classification/differentiation of the subjects. We apply a
convolutional neural network (CNN) [8], which is a type
of deep learning method, to construct the gender classifier.
One major advantage of CNNs is that feature extraction
and classification are integrated into a single structure and
optimized automatically. fNIRS time series data of human
subjects were input to the CNN, and then the features
of the data were learned to classify the gender of the
subjects. The proposed CNN-based classifier for automatic
determination of the most suitable ROI is described in
detail and its performance is verified experimentally. To
examine the effectiveness of the proposed method, a simple
memory task for visually presented single-digit numbers
was performed by adult subjects in a white noise environ-
ment. We verify that CNN analysis can identify an ROI
(seed region) to distinguish males from females based on

differences in the hemodynamic response pattern during the
task.

2. Materials and Methods

2.1. Selection of ROIs for Subject Classification. When we deal
with fNIRS data, we often compare them among multiple
groups. In this case, a major problem is determining which
regions should receive focus. To overcome this issue, we
extract ROIs that are prominent to separate human subjects
into some groups. As these ROIs maximize the difference
between the groups, it will be useful to compare the brain
activity among them.

To extract such ROIs, a classifier-based approach is
proposed. First, a group classifier is constructed from all
subject fNIRS data using supervised learning. The group
classifier is constructed for each channel of an fNIRS mea-
surement system, and a group label is supervised during each
learning process. After the learning process is completed,
the classification accuracy of the classifier for each channel
is compared among all channels, and the channel whose
classifier has better accuracy is extracted as the critical ROI
for group classification. In this study, we use a CNN as the
supervised learning algorithm.

2.2. Convolutional Neural Network. A CNN is a type of feed-
forward artificial neural network that has two hidden layers,
convolution and pooling. The weights of these hidden layers
within the connected network are learned through repetition.

Figure 1 shows the structure of the CNN used for image
recognition. Here𝑀 × 𝑁 pixel image is input to the convo-
lution layer. In the convolution layer, 𝐾 numbers of feature
extraction filters, referred to as “kernels,” are convoluted over
the entire image using 𝑚 × 𝑛 window. After convolution
between the image and the kernel, the convolution process
is formulated as follows:

𝑢𝑖𝑗𝑘 =
𝑚−1

∑
𝑎=0

𝑛−1

∑
𝑏=0

𝑥(𝑖+𝑎)(𝑗+𝑏)𝑤𝑎𝑏𝑘, (1)

where 𝑥𝑖𝑗 is the pixel (𝑖, 𝑗) of the input image matrix, 𝑤𝑖𝑗𝑘 is
the weight to the pixel (𝑖, 𝑗) of the kth kernel, and 𝑢𝑖𝑗𝑘 is the
convoluted output with the kth kernel at the pixel (𝑖, 𝑗).

Then, the convoluted output is processed by the activation
function, and this is the final output in the convolution layer:

𝑦𝑖𝑗𝑘 = 𝑓 (𝑢𝑖𝑗𝑘) . (2)

Finally,𝐾 feature maps are obtained in the convolution layer.
Ordinary artificial neural networks (ANN) require prepro-
cessing of feature extraction before learning; however, a CNN
includes the feature extraction process in its architecture.
This is the reason that we choose the CNN as the classifier
for our problem. As mentioned in Section 1, it is difficult
to appropriately preprocess the fNIRS data so as to extract
feature value for classification. CNN can automatically do it.

Feature maps obtained through the convolution layer are
then processed by the pooling layer. In the pooling layer,
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Figure 1: CNN structure.

extra feature information for learning is discarded. Although
several types of pooling are proposed, we use a max pooling
method. In this method, 𝑝 × 𝑞 pixels (referred to as pooling
size) are extracted from each feature map, and the maximum
value is adopted as a single representative output value as
follows:

𝑦𝑐𝑑𝑘 = max
(𝑎,𝑏)∈𝑃𝑖𝑗𝑘
𝑦𝑖𝑗𝑘, (3)

where𝑃𝑖𝑗𝑘 is the pooling block with pixel (𝑖, 𝑗) at the left top of
the block in the 𝑘th feature map. Then, (𝑀/𝑝) × (𝑁/𝑞) pixel
image is obtained because each 𝑝 × 𝑞 pixel outputs a single
output value. In other words, 𝑦𝑐𝑑𝑘 is the output of each pixel
(𝑐, 𝑑) in the (𝑀/𝑝) × (𝑁/𝑞) image. The features of the image
are preserved even in the reduced image size. Several series of
convolution and pooling layers can be connected repetitively.

The output layer comprises a fully connected neural
network, similar to ordinary ANNs. In the output layer, the
number of neurons is equivalent to the number of classes
in the data classification. Each neuron in the output layer
is connected to all neurons in the previous layer (the final
pooling layer), and its output is calculated using (4) and the
softmax function of (5):

𝑢𝑗 =
(𝑀/𝑝)×(𝑁/𝑞)×𝐾

∑
𝑖=1

𝑤𝑖𝑗𝑦

𝑖 + 𝑏𝑗, (4)

𝑝𝑗 =
𝑒𝑢𝑗

∑𝐶𝑘=1 𝑒𝑢𝑘
, (5)

where 𝑢𝑗 is the input to the neuron 𝑗 in the output layer, 𝑦𝑖 is
an output of the pooling layer, 𝑤𝑖𝑗 is the weight from neuron
𝑖 in the pooling layer to neuron 𝑗 in the output layer, 𝑏𝑗 is the

bias, C is the number of classes in the data classification, and
𝑝𝑗 is the probability that the input data is classified to class
j.

Backpropagation is used to learn theweights.This process
is the same as ordinary ANNs. The backpropagation opti-
mizes the weights of each layer tominimize the error between
the output of the fully connected layer and the supervised
output. By repeating the forward and backward propagation,
the CNN is trained to classify the input data.

2.3. Gender Classification by Cerebral Blood Flow Changes
Using Convolutional Neural Network Analysis. Cortical activ-
ity was estimated bymultiple fNIRS channels positioned over
the left hemisphere.The objective was to classify each human
subject asmale or female based on the fNIRS response during
the task (described in the following section). Therefore, we
construct a two-class classifier using the CNN.The CNN can
extract the features of small local parts of the input because
the plural local filters (kernels) are convolved with the input.
The extracted local features are mixed and integrated into a
global feature in the fully connected output layer. The SDA
and DNN, which have been used in a previous study [5],
do not extract local features because they employ a fully
connected architecture.

In this study, the input data is time series cerebral blood
flow change (oxy-Hb versus time) measured at each fNIRS
channel, and the CNN is trained to classify the input fNIRS
data as either “male” or “female.”The output values of the two
neurons in the final layer of the CNN are the probabilities
that the input data belong to male or female. In backprop-
agation, “male” data are supervised as 0, and 1 is used for
“female” data. The proposed CNN for gender classification
is illustrated in Figure 2. The fNIRS time series data of each
channel is 1 × 𝑁 and is input to the convolution layer. The
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Figure 2: CNN for gender classification by fNIRS data.

weight filters are initialized randomly and optimized in back-
propagation. A single set of convolution and pooling layers is
utilized.

After CNN training, we obtain the gender classifier for
each fNIRS channel. The average value of the leave-one-
out cross-validation for each channel was compared, and the
channel that yielded the highest average value was defined as
the critical ROI (seed) for generating a label set for the task.
As the convolution is performed in the sliding windowmanner,
the feature extraction process of CNN retains the temporal
information of the time series data obtained by fNIRS, which
is novel among analysis methods for group trends in fNIRS
studies.

2.4. Experiments. To confirm the effectiveness of the tech-
niques described in the previous section, the ROI of this task
was identified using the CNN by classifying the differences
in regional cortical blood flow of male and female subjects
during a number memory task.

2.4.1. Experimental Outline. In the number memory experi-
ment, subjects were required to memorize eight single-digit
numbers presented on an LCD monitor while white noise
was presented (sound pressure level 65.0 ± 0.5 dB) through
speakers positioned at the left and right of the display.
It has been reported that the cerebral blood flow pattern
during this specific task differs between males and females
[4].

2.4.2. Task Design. The phases of the task are illustrated in
Figure 3. In the rest phase (1), the subjects simply move their
fingers while watching a blank screen for 30 s. In the memory
phase (2), the subjects memorize eight numbers in 3 s. The
numbers were displayed randomly and arranged in a circle.

Task
RestRest

1
0

3
64

5 2
9

92630145

White noise SilentSilent
30 s 180–330 s 30 s

Memory: 3 s Answer: ≤7 s

Figure 3: Flow of measurement of the number memory task.

In the retention phase (3), the subjects were required to retain
the numbers in memory for 1 s. In the input/retrieval phase
(4), the subjects entered the remembered numbers in order
(counterclockwise) within 7 s.

The subjects repeated phases (2)–(4) 30 times (phase 5),
followed by a final rest phase (6) identical to phase (1). For
fNIRS acquisition, the low-pass filter was set to 1.0Hz, and
the period of the moving average was set to 10 s.

2.4.3. Experimental Environment. Cerebral blood flow
changes were measured by an fNIRS device (ETG-7100,
Hitachi Medical Corporation) at a sampling frequency
of 10Hz. The subjects were 11 adult males (average age:
22.5 ± 0.5 years; all but one were right-handed) and 11 adult
females (average age: 22.5 ± 0.5 years). In the measurement
environment, the room temperature was 22.4–25.1∘C, and
the humidity was 40–61%. All trials were conducted between
11 a.m. and 5 p.m. The fNIRS probes were placed according



Computational Intelligence and Neuroscience 5

21

14

7

24

17

10

3

20

13

6

23

16

9

2

19

12

5

22

15

8

1

18

11

4

Figure 4: Placement of fNIRS probes (channels) over the left
hemisphere.
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Figure 5: Example of the extracted feature amplitude.

to the International 10–20 system. The scalp sites of the
channels (CH) are shown in Figure 4.

2.4.4. Preprocessing of fNIRS Data. The cerebral blood flow
changes were measured by the feature quantity derived
from the oxy-Hb concentration changes for each channel
over the temporal region extracted for all 22 subjects. As
the “feature value,” the average value over 1 s from initi-
ation of the task was used. The signals of each channel
were normalized to the min–max and labeled “gender.” An
example of the extracted feature amplitude is shown in
Figure 5.

2.4.5. Configuration of CNN. We distinguished males from
females using the regional cortical blood flow change feature.
Each neuron in the input layer receives the extracted feature
value from one channel. The output layer performs learning
of the weight so as to approach the labeled value “gender.”
The number of samples was 22 (subjects), and the total
number of epochs for learning was 5000. We calculated the
identification rate for each of the 24 channels (Figure 6). We
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Figure 6: Gender-based differentiation accuracy of each fNIRS
channel.
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Figure 7: Locations of channels with the highest discrimination
accuracy.

Table 1: Configuration of CNN.

Type Parameter
Learning rate 0.05
Momentum 0.998
Kernel shape 1 × 10
Kernel stride 1
Pool shape 1 × 2
Pool stride 1

then identified the channels with the highest discriminating
value for males and females (the most reliable difference in
the feature quantity). To verify accuracy, leave-one-out cross-
validation was performed for all 22 subjects. The parameters
of the CNN are shown in Table 1.

3. Results and Discussion

Figure 6 shows the gender-based differentiation accuracy for
each channel. Each bar is the average value of the leave-one-
out cross-validation.

The channels with the highest identification rates were 5,
6, 7, 20, and 24 (Figure 7; red). In other words, the cortical
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regions showing the largest difference in the feature between
males and females for this specific task were measured by
channels 5, 6, 7, 20, and 24. Channels 6 and 7 were over
the inferior frontal gyrus, which is associated with memory
and attention. Channels 20 and 24 were located over the
premotor area and were presumably activated by the retrieval
task (inputting the remembered numbers).

Finally, channel 5 is over the primary auditory cortex
and is likely activated by the white noise. Therefore, under
white noise sound environment, we suggest that the greatest
gender-related differences in cortical activity are related to
attention, memory, and task motor response.

Next, we assessed the structure of the time series epoch
with the highest identification rate by the network. Figure 8
shows the filters derived after learning. In Figure 8, (1)–(9)
represent the filters. Each converts the feature quantity of the
input data and passes the converted data to the pooling layer.
Figures 9 and 10 show examples of the output results of the
pooling layer for males and females, respectively.

Filter 9 in Figures 9 and 10 shows the greatest ten-
dency to differ between genders. Finally, Figure 11 shows
the results obtained by multiplying the weight of the fully
connected layer to the output of the pooling layer for filter
9.

Figure 11 shows a clear difference in the output between
male and female subjects. Although no significant difference
was observed between the genders in the first half of the task
period, the feature quantity formenwas close to 0 in the latter
half, while that for females decreased rapidly. Figure 12 shows

the input data formales and females. FromFigures 11 and 12, it
is clear that the CNN was modified to allow classification of
males and females based on the unique cerebral blood flow
patterns during the task.

4. Conclusion

In this study, we have performed a preliminary evaluation
of a CNN-based method for automatic determination of the
ROI for fNIRS group analysis. The proposed method retains
the temporal information of the fNIRS data in contrast
to conventional summary static approaches for group-level
analysis.

We propose that this method for determining the critical
ROI for a given task by learning the identity of the subject
labels could be employed for revealing unexpected differ-
ences between groups in fNIRS data. The effectiveness of the
proposed method has been confirmed using a visual number
memory task under a white noise sound environment, which
is a task known to induce distinct hemodynamic changes in
males and females. An ROI was established by learning the
feature value. In this task, the inferior frontal gyrus, premotor
area, and primary auditory cortex were extracted as the ROI,
which are sites related to memory storage, attention, answer
output, and detection of white noise. Gender differences in
hemodynamic response in this ROIwere identified accurately
during the second half of the task. Further work is required to
reveal why this task evokes distinct hemodynamic responses
in males and females.
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subjects ((a) men; (b) women).
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Figure 12: Input data ((a) male; (b) female).
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