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In this paper we study the relationship between functional forward-backward stochastic systems and path-dependent PDEs. In the
framework of functional It6 calculus, we introduce a path-dependent PDE and prove that its solution is uniquely determined by a

functional forward-backward stochastic system.

1. Introduction

It is well known that quasilinear parabolic partial differen-
tial equations are related to Markovian forward-backward
stochastic differential equations (see [1-3]), which generali-
zes the classical Feynman-Kac formula. Recently in the
frame-work of functional It6 calculus, a path-dependent PDE
was introduced by Dupire [4] and the so-called functional
Feynman-Kac formula was also obtained. For a recent ac-
count and development of this theory we refer the reader to
[5-11].

In this paper, we study a functional forward-backward
system and its relation to a quasilinear parabolic path-depen-
dent PDE. In more details, the functional forward-backward
system is described by the following forward-backward SDE:

X9 =y 0+ [ b dr+ [0 () aw o),

X" (r)y=vy(), 0<r<t,

T (1)
YV (s) = g (X}) - j (XYY" (r), 2" (r))dr

T
—j Z" () dw (r), seltT].

N

Equation (1) is an uncoupled functional forward-back-
ward system, its general the results of [8], and there are many
applications of the uncoupled functional forward-backward
system in optimal control problem. The main difference is
that we give a weaker requirement of g and h about X, and
we also establish some estimates and regularity results for
the solution with respect to paths. Then, we prove that the
solution of (1) is the unique classical solution of the following
path-dependent PDE:

Dy (y,) + Zu(y,) = h(ypu(v), Dt (y:) 0 (¥,))

yr €A

(2)
u(yr) =g (yr)s

where
PLu = %tr [O‘O‘TDxxu] +(b,D,u). (3)

The paper is organized as follows: in Section 2, we give the
notations and results on functional FBSDEs and functional
It6 calculus. Some estimates and regularity results for the
solution of FBSDEs are established in Section 3. Finally, we
prove the relationship between functional FBSDEs and path-
dependent PDEs in Section 4.



2. Preliminaries

2.1. Functional FBSDEs. Let ) = C([O,T];IRd) and let P
be the Wiener measure on (Q, B(Q))). We denote by W =
(W (t)se0,r7) the cannonical Wiener process, with W(t, w) =
w(t),t € [0,T],w € Q. Foranyt € [0,T] we denote by &, the
P-completion of (W (s), s € [0,1]).

For any t € [0,T], we denote by L*(Q, F,; R") the set
of all square integrable &,-measurable random variables,
M?(0,T; R") the set of all R"-valued %,-adapted processes
9(:) such that

T
EJ 19 (s)’ds < +oo. (4)
0

Lett € [0,T] and y, € A. For every s € [t,T], we consider
the following functional forward-backward SDEs:

X" (s) = 7, (8) + J b(XV)dr + j o (X")dW (1), (5)
t t

T
Y (s) = g (X1) _J h(X"YY (r), 2% (r)) dr
) (6)
T
- J ZV (r)dW (r),

N

where
X" (s) =y(s), se€l0,t]. (7)

The processes X, Y, Z take values in R”, R", R™% b, h, &, and
g take values in R", R", R™4, and R". Equations (5) and (6)
can be rewritten as

dX¥ (s) =b(XV)ds+ o (X')dW (s),
dy (s) = h (XV,Y" (s),Z% (s)) ds + Z" (s) AW (s), (8)
X" =y, YD) =g(X}).

For z € R™ we define |z| = {tr(zz")}'/?. For z' € R™,
ZZ € Rnxd

((z,2%)) =tr (zl(zz)T), ©)
and for u' = (y',2") e R" x R™4, 4% = (y*,2%) € R" x R™4
W= LR+ ().

We give the following assumption.

Assumption 1. For all x;, x% € A, b(xh), o(x!) € M? and
t € [0,T], there exists a constant ¢; > 0, such that

'b(xtl) - b(xf)' + |a (xtl) - 0(xf)| <q "xt1 - x?" , ae.
a1

and for all x, € A,

[b(x)]|+]|o(x)| < (1+|x]), ae (12)
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Definition 2. X : [0,T] x Q@ — R" is called an adapted
solution of (5), if X € M*(0, T; R™), and it satisfies (5) P-a.s.

Then we have the following theorem (see [12]).

Theorem 3. Let Assumption 1 hold, then there exists a unique
adapted solution X for (5).

2.2. Functional Ité6 Calculus. The following notations and
tools are mainly from Dupire [4]. Let T > 0 be fixed. For
each t € [0,T], we denote by A, the set of cadlag R?-valued
functions on [0, t]. For each y € A the value of y at time s €
[0, T]is denoted by y(s). Thus y = y(s) o<,y is a cadlag process
on [0,T] and its value at time s is y(s). The path of y up to
time ¢ is denoted by y,, that is, y, = y(s)y<s<; € A,. We denote
A = Useror) Ay Foreach y, € Aand x € R? we denote by
7,(s) the value of y, at s € [0,¢] and ;" := (Y,(8)g<ser» 2 (t) +X)
which is also an element in A,.

Let (-,-) and | - | denote the inner product and norm in
R". We now define a distance on A. Foreach 0 < t, f < T'and
Y5> V7 € A, we denote

”Yt“ = sup |Yt (5)|’
s€[0,t]

lye =7l = sup [y (sAt)=pp(snt)l, (13)

se[0.tvi]

doo (Yo ¥7) = sup |y, (sAt) =y (sAD)| + |t -1

O<s<tvt

It is obvious that A, is a Banach space with respect to || - | and
d., is not a norm.

Definition 4. A function u : A — R is said to be A-
continuous at y, € A, if for any ¢ > 0 there exists § > 0
such that for each y; € A with d(y,,y;) < &, we have
[uy;) — u(y;)| < e uis said to be A-continuous if it is A-
continuous at each y, € A.

Definition 5. Letu : A — R and y, € A be given. If there
exists p € R?, such that

as x — 0, x € Rd,
(14)

u(y) =u(y) +(px) +o(x))

then we say that u is vertically differentiable at y, and denote
the gradient of D, .u(y,) = p. If D, u(y,) exists for each y, € A,
u is said to be vertically differentiable in A.

We can similarly define the Hessian D, u(y,). It is an
S(d)-valued function defined on A, where S(d) is the space
of all d x d symmetric matrices.

For each y, € A we denote
Ves (1) =y (N Loy (1) +y, ) 1 (r), re€[0,s]. (15)

Itis clear that y,; € A .

Definition 6. For a given y, € A if we have

as s — f, s>1,
(16)

“(Vt,s) =u(y)+a(s—t)+o(ls—t|)
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then we say that u(y,) is (horizontally) differentiable in t at y,
and D,u(y,) = a. u is said to be horizontally differentiable in
A if D,u(y,) exists for each y, € A.

Definition 7. Define C/*(A) as the set of function u :=
(u(y,))y,ep defined on A which are j times horizontally and
k times vertically differentiable in A such that all these deriv-
atives are A-continuous.

The following It6 formula was firstly obtained by Dupire
[4] and then generalized by Cont and Fournié [5-7].

Theorem 8 (functional It6’s formula). Let (Q, F,(F)sepo.1)>
P) be a probability space, if X is a continuous semi-martingale
and u is in CY2(A), then for any t € [0,T),

w(X,) —u (Xg) = jot Dot (X.)ds + jot Do (X.)dX (s)

1 t
*3 L D, u(X,)d(X)(s), P-as.

17)

3. Regularity

We first recall some notions in Pardoux and Peng [2].
C"(RP; RY), C)(RP; RT), CZ(IRP; R?) will denote, respectively,
the set of functions of class C" from R” into R, the set of
those functions of class C, whose partial derivatives of order
less than or equal to n are bounded, and the set of those
functions of class C; which, together with all their partial
derivatives of order less than or equal to #, grow at most like
a polynomial function of the variable x at infinity.

Now we give the definition of derivatives in our context.
Under Assumption 1 we have that

dx" (s) =b(X¥)ds+o(XV)dW (s),

(18)
X" () =y (1),
has a unique solution. For t < s < T, set
Ky[,s = {75 ?(h) = X% (h’w)>0 < h <Sw € Q},
(19)

>

Ao=JA,, A=1J

V€A t<s<T

t,s*

Then the following definition of derivatives will be used
frequently in the sequel.

Definition 9. An R"-valued function g is said to be in
CZ(KY[’T), iffory, € K%‘T andy, € Kyty,T’ there exist p, € R

and p, € &% (8 is the set of all d order symmetric matrix)
such that

1
g()=g(n) =(poy) + 5 (payoy) o), xeRe
(20)

We denote g;t (y1) == p;»>and g;: (y1) == p,- g is said to be in
cf,iP(K ¢ if g)'/t (y)and g}',i (y) existforeachy, € A,,and there

exist some constants C > 0 and k > 0 depending only on g
such that for each y,7 € A, t,5 € [0,T],

g -a@ (W) ly-71. @

and foreachy € A, 1, y € A p, t,5 € [0,T],

@, () - @, @] < (W + I71°) e = st + Iy - 71)
(22)

with © = g}l,t()/%g)',i()/). We can also define C*(A,,),
Clz,lip(xt,s)’ Cll,lip(xt,s)s Cl’lip(xm) and CZ(Kt)’ Clz,liP(K[)’
Chip(R ), Cryip (R ).

Now we consider the solvability of (6).

Assumption 10. Let g be an R"-valued function on A .
Moreover g € C,z,,ip(K + ) with the Lipschitz constants C and
k.

Assumption 11. Let h(y,, y,z) = h(t, y(t), ¥, z), where h o
[0,T] x R" x R" x R™® — R"is such that (t,7, Y,2)
¥(t,7, y,z) is of class Cg’3([0, T] x R" x R" x R™%; R") and
the first order partial derivatives in r, y, and z are bounded,
as well as their derivatives of up to order two with respect to

¥, 2.
It is obvious under Assumptions 1, 10, and 11 the FBSDE

(5) and (6) has a unique solution (see [12-14]).

3.1. Regularity of the Solution of FBSDEs. We assume the
Lipschitz constants with respect to b, g, h are C and k. Then

we have the following estimates for the solutions of FBSDE
(5) and (6).

Lemma12. Under Assumptions 1, 10, and 11, for all p > 2 there
exist C, and q depending only on C, T, k, x such that

E[ sup [ X" <s>|f’] <G (1L+ ul?),
se(t,T]

Bl s o] cc.(ebl). e
se(t,T]

([Nl ora) | <c (i)

Proof. To simplify presentation, we only study the case n =
d=1,and p =2.



The application of Itd’s formula to (Y},t’x(s))zeﬁls yields
that

T
(Y™ (5))’ePrs + J P [(ZV‘ (r) + B, (Y" (r))z] dr
=g' (x}) "

T (24)
- J 2PTYY () (XY, Y (r), 2% (1)) dr

N

T
- J 2ePTYY (7)) 2V (r) AW (7).

N

So

Ve 2 3 B (r—s) Ye 2
(Y (s)) +E“ e [(2" (7))

6,0 ()] dr | 5,
=E[g (x}) T | 7] (25)

T
— E [J zeﬁl(”*S)Y]’t (T)

N

xh (XYY" (r),Z"% (r))dr | 95] )

Then we have

Esup (Y" (s))°

t<s<T
T
+E U HD (27 (1) + B (Y (D)] dr]
< E[g* (x}) 7] 6)

T
vE “ eﬁl“*f’ﬁihz (X%, Y (1), 2% () dr]
t 1

+E [LT P %(Y”’ (r))zd (r)] ,

Esup (Y" (s))°

t<s<T

T r—t 2 ﬁl 2
+E [J ePlrD [(ZV’ (n) + T(Y% () ] dr]
‘ (27)
<[5 (A7)

T
+E “ eﬁl"“’/;h2 (XYY" (r), 2" (1)) dr] :
t

1
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Applying It0’s formula to (X" (s))? yields that

(X" () = y,(t)* + J 2XY (r) b (X")dr

+ JS 2X" (r)o (X¥)dW (r) + JS o (X)dr.
t t
(28)

By inequality 2ab < a* + b* and Burkholder-Davis-Gundy’s
inequality, there is a C,, such that

Esup (X" ()’

t<r<s
N
<Gy [W)z +E J b (X)) dr (29)
t
+E J (X" (r))’dr + E J o’ (X1) dr] :
t t
By Assumption 1 and Gronwall’s inequality, from (29) we have
(note that C, will change line by line)

E sup (X" (r)* < Co (1+ |ni])- (30)

t<r<T

By Assumptions 10 and 11 and taking 8, = 4C* + 1, from (27)
we have

Esup (Y" (5))°

t<s<T

+E “f (2" () + (v ()] dr] (3D

< C, (1 + Py,P7),

where g = 2(1 + k). Similarly we can get the same result for
p=2.
This completes the proof. O

Now we study the regularity properties of the solution of
FBSDE (5), (6) with respect to the “parameter” y,. For 0 < s <
t < T,define Y"(s) = Y"(sVvt) and Z"(s) = 0.

Theorem 13. Under Assumptions 1, 10 and 11, for all p > 2
there exist C, and q depending only on C, c,, x such that for

anyt,t € [0, T, y,, ¥ and h,h € R \ {0}
(i)

E [ sup |Y” (w) - Y (u)|P}

[veT] (32)

_ - P12
<Gy (1+ el + [el) (v = 96l + 1= 717).

P/z]
(33)

_ _ —1p/2
< Gy (1+ Iyl + 17" (v = 7l + e - 177),

(ii)

d

T . 2
va | 2" (u) - 27 (u)| du
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(iii)
E [ sup 'Aithf (1) - A Y (“)|p]
ue[tve,T|
< Gy (1+ ]+ [wel* + 1mi? + [
< (| =B+l =7l + - 77),
(iv)
T X N 2 P2
E J |ALZ" () - A, 27 ()| du ]
tvt
< Gy (1+ ]+ [wel* + 1mi? + [
x(Jp =+ by =7l + e -877),
where

Ny =3 (Y 971 9),

&, 5. (1) = R (X2 Y7 (r), 27 (r)) = (XD, Y 7 (r), 277 (7)),
3 ! oh ; 5
B3 (r) = L 3 (X1, UY (r) + 6 (U™ (r) - U" (r))) d6,

. 1 _ _
G4) 0,5 (n = J %(Xff,UW(r)+0(U% (r)-U" (r))) do.

0 0z
(38)
Under Assumptions 10, 11, using the same method as in
Lemma 12, we get the first three inequalities.

For the next three inequalities, we write (A’, Y", A%, Z%) as
the solution of the following linearized BSDE:

Aihy)’r (s)
1 i
(35) = z<g<X¥ >_g(X¥))
T 1 —~ ;
N J [ﬁ&%,yﬁ% () + B, m (1) ALY (1) (39)

S iV
+8, M2 ) | dr

T
- J AYLZY (r)dW (r).
t

(36)
Afh Z% (s) = % < " (s) = Z" ( 5)> Then the same calculus implies that
) » T , P2
and (ey,...,e,) is an orthonormal basis of R". E [ sup 'AhY% (5)| + J 'AhZ%| dr :|
se[t,T] t (40)
Proof. (Y" - Y, Z" — Z¥7) can be formed as a linearized c. (1 CBNTAT:
BSDE: for each s € [t V1, T], = 2( + " + 1 )
B Consider
Y (s) = YV (s) . R
B ALY (s) =AY (s)
- g (X¥) B g (X;?) 1 he; 1 7581' ks
. =ﬁ<g<X¥f )—g(X?’))—E(g(X?‘ )—9(?@?))
+ J [ (XYY (r), 2" (1))
s T
o _ - AL 2V (r) = ALZY (1)) AW (r
(XI5, YP (), 27 ()| dr J (&42" () - 8527 () dW (1)
" ; —{ﬂl* (- =& 5 (1)
+ J (Zyt (r) - 2" (1’)) dw (r) (37) . ho‘%’y:‘e,' r E(X%?;e,. r

=g (X)) -g(XT)
T _ _
[ [ 0+ By, (7 (=77 )

+‘§w; (z% (r)- 2" (r))] dr

T _
+ ZV%(r) = Z¥ () dW (r),
[ )

N

where (with U" = (Y, Z™))

)

By (VMY () =B 5 () YT (1)

By 2 (1) =3, (1) 2 (r)] dr} .
(41)
Set
(Y(5).Z(9)
(42)

= (ALY (s) = ALY (5), AL Z" (5) = ALZ7E (s)) .



Then it solves the following BSDE:

Y (s)

< (o (8)-o0m) 1 (o (") -0 03
_ LT [ﬁwhe,. (DY () +8, 0 Z(r)+h (r)] g

T Py
- J Z (r)dW (r),
S (43)
where

h(r)

B -8 5 0| 2370

(44)
- [SM%,. -8 s (r)] ALZY (r)

Iy

>_.

& e (1) = h . e, (1)

Thus, under Assumptions 10, 11, similarly as in Lemma 12, we
can get the last three inequalities. O

Theorem 14. For each y, € A, {Y”‘z (s),s € [t,T],z € R"} has
a version which is a.e. of class C*([0,T] x R™.

Proof. We only consider one dimensional case. Applying
Lemma 12, for each h,h € R\ {0} and k, k € R,

[ k
E| sup [Y" (u) -
L uelt,T]

Il

[ i yk i y; P
E| sup AhY'(u)—AEY’l
L uelt,T]

ed (u)| ] o (1+ ] |k k|

_ p/2
2% (u) - Zy’k|Pdu <G, (1+ ”%"q) 'k - %|p,

<Gy (L4 If* + [l + 11 + [

X ('k —E|P + 'h—ﬁr),
T X k . k P/z

E [lj |A’hZ"‘ (1) = AZZ" (u) ]
t

<Cy (14 Il + Il + 1h1? + [

X ('k—E|p+ 'h—ﬁ|p>.

2
du

(45)
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By Kolmogorov’s criterion, there exists a continuous deriva-
Z
tive of Yt (s) with respect to z. There also exists a mean-

square derivative of Z" (s) with respect to z, which is mean
square continuous in z. We denote them by

(D.Y",D,Z"). (46)
By Theorem 13 and Definition 9, (D,Y", D,Z") is the solu-
tion of the following BSDE:

T
DY) =g, (X))~ | D.2" 0w ()

T
- J [, (XYY (r), 2% (r))
+ h'y (X%, YY" (r), Z" (r)) DY (r)
+h (XYY (r), 2% (r)) D,Z" (r)] dr.
(47)

It is easy to check that the above BSDE has a unique solution.
Thus the existence of a continuous second order derivative of
Y (s) with respect to z is proved in a similar way. O

Define
u(y,) =Y" (1),
We have the following results about u(y,).

for y, € A. (48)

Lemma 15. Forallt, <t <T, one has u(Xty”) =Y (¢).

Proof. For given y, , t; < t, set X, = y,. Consider the
solutions of FBSDE (5) and (6) on [t, T]:

X" (s) = X" (£) + J b(X y’l)dr+J o (X[ )dw (r),
t

Y (S)

=g (Xz;’l) - JTh (X),/’1 Y a (r), Zn (r)) dr

N

T
—J 2% (r)dW (r), se[tT).

(49)
We need to prove u(X,") = Y (t).

For each fixed t € [0,T] and positive integer n, we
introduce a mapping y"(y,) : A — A

y" (’_}s) (1") = ?s (T‘) I[O,tl)
n—-1
+ 2?5 (tes1 As) I[tZ/\s,tZH/\s) (r) + 7y, () Iy (r),
k=0
s €[0,t],
(50)
wheret} =t, + (k(t —t,)/n),k=0,1,...,n,
Denote
Y () () = X" (), t<rst (51)
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Set
n,N; al i
XM= Y, A, (52)
i=1
where {A,}Y is a division of #,, x' € A,,i=1,2,...,N. For

any i, (Y (s), VA (s)) is the solution of the following BSDE:
Y9 (s) =g (X;>

- JT n(XE Y .25 ) dr (o)

s

T .
—J Z5 (1) dW (r), seltT].

s

Multiplying by I, and adding the corresponding terms, we
obtain

N i
DI Y (s)
i=1

N i
i=1
(54)
T N i N i N i
- J h( Ly X3 ) I, Y™ (r), )T, 2% (r)> dr
s i=1 i=1 i=1

TN ,-
—J Y1, 2% (r)dW (r), sel[tT].

S =1

By the uniqueness and existence theorem of BSDE, we have

Xn,N;ytl N xi Xn,N;yt1 N x,-
Yo ()= Y I, Y (), ARNOEDY WAION
i=1 i=1
P-as.
(55)

Then, by the definition of u, we get

HaRO! N i N . n,N;
O = Y1y (0 = Yu(x) = u (X{ y)
i=1 i=1

(56)

Note that
,,}yiTOOX:l,N% = X1, P-as. (57)
This completes the proof. O

By Theorem 13 and 14 and the definition of vertical deriv-
ative, we have the following corollary.

Corollary 16. u(y,) is A-continuous and D, u(y,), D, u(y,)
exist; moreover they are both A-continuous.

Proof. By Theorem 14 we know that D, u(y,) and D, u(y,)
exist. In the following, we only prove u(y,) is A-continuous.
The proof for the continuous property of D, u(y,) and
D, u(y,) is similar. Taking expectation on both sides of (6),

u(y) = Eg(Xy) - E LT h(X)Y (), 2% (r)) dr. (58)
Fory,, y; € A, t > t, we have
Jut (e) = (7)]
<ot -o(27)|

+E “t | (XYY (r), 2" (n))] d’]
t
T

k[ [ ey .20 0)
—h (XY, Y (r), 277 (r))| dr]

<[, (1o b+ <] ) b -

t

+3(E-1)"° (J (|h (X7 (1,0, 0)|2
t
1/2
oyt @[ + oy (r)‘2> dr>

+C f (7" o) =Y ()] + |2" (r) - 27 (r)]) dr].
(59)

By Theorem 13, for some constant C, depending on C, k, and
T,

|u (y,) —u (7?)'

— — -1/
< Cy (14 Il 17l (v =7l + 1= 717)

This completes the proof. O

(60)

3.2. Path Regularity of Process Z. In Pardoux and Peng [2],
BSDE is only state-dependent, that is, h = h(t, y(t), y, z) and
g = g(y(T)). Under appropriate assumptions, Y and Z are
related in the following sense:
Z%(s)=Vau(s,y®)+W(s)-W()), P-as. (61)

Under the conditions (H;) and (H,) in [8], Peng and
Wang extend this result to the path-dependent case. The
corresponding BSDE is

Y (S)

T
- g - [ B 0.2 ) g

T
—J Z¥ () dwW (r), seltT],

N



where
WX =T_7, )+ Leer (y, ) + W (s) =W (). (63)
Then under some assumptions, they obtained
Z"(s)=Du(W})), P-as. (64)

In our context, we have the following theorem.

Theorem 17. Under Assumptions 1, 10, and 11, for each y, €
A, the process (Z" (8))sefs,) has a continuous version with the
form

ZV (s) =0 (X")Du(X"), forsel[t,T] P-as. (65)

To prove the above theorem, we need the following
lemma essentially from Pardoux and Peng [2].

Lemma 18. Let y, and somet € [t, T] be given. Suppose that
g =9 (®).yM-y), (66)

where ¢ is in C;(Rm x R™;R™). For b, 0, h, suppose that

b (ys) = bl (5’ Vs (S)) I[O,f) (S)
+ b2 (S’ Vs (s) - Vs (Z)) I[T,T] (s),
o (¥:) = 01 (5,75 () Io g (5)
~ (67)
+ 0, (S> Vs (5) — Vs (t)) I[?,T] (S) >
h(yo 3,2) = hy (5,%5(5), 3,2) Ijgg) ()
+ h2 (S’ Ys (S) — s (f) > Vs Z) I[?,T] (S) >
whereb;, 0, h; € C*,i = 1,2. Then for each s € [t, T],

Z"(s)=0(X")Du(XY), forsel[t,T] P-as. (68)

Proof. We only consider the one dimensional case.
For s € [t, T], the FBSDE (5), (6) can be rewritten as

X" (u)
1@+ [ b0X O -y @)dr

N j o, (r, X" (5) =y, (E)) dW (1),

N

Y* (u)

T
.. X M-, O)- | 2 aw )

[ @ X 0 @1 00,22 )

u
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For s € [t,1],

X" (u) =y, (s) + Ju b, (r, X" (s))dr

+ r a, (r, X" (s))dW (r),

u€ s t],
X% () = X* (7) + j b, (r, X" (5) - X" (B)) dr

" j o, (1, X (5) - X* (B) dW (1),

N

ueltT],
YY" (u) = ¢ (X" (£), X" (T) - X* ()

T
- J ZY (r) dW (r)

u

T
- [ mxr 0.x7 o)

-X"(£),Y" (r), 2" (r))dr,
uelt,T],

Y™ (u)

0 @)~ [y 0 (@), 7% 0,20 ) dr

- Jt Z¥ (r)dW (r), uc€|[st].
' (70)

Now consider the following system of quasilinear parabolic
differential equations, which is defined on [, T] x R? and
parameterized by x € R:

oy (s,%,y) + Luy (s, x, y)
=h, (s, X, Yoty ($,%,¥),0,u, (s,x,y) 0 (rs)) , (7))

u, (T, %, y) = ¢ (x, y),

where & = (1/2)0%(0*/0,,) + b(d/d,). The other one is
defined on [¢t, 1] x R:

o, (s,x) + ZLu, (s, x)
=h (r, x,uy (s, x) ,Byul (s,x)0 (r)) , (72)
u, (£,x) = u, (£,x,0),

where & = (1/2)02(82/axx) + b(0/9,). By Corollary 16
and Theorems 3.1, 3.2 in Paroux-Peng [2], we have u, €
CY([£, T] x R%; R), u; € CY*([t,t] x R;R), and

u(ys) = uy (95 () Iz (9)

+ 14y (5,95 (£) 57 () = 95 (6) Iy ).

(73)
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Then we obtain

YV (s)=u (s, X7 (s)), t<s<ft,
YV (s) = u, (s, X7 (£), X" (s) - X" (£)), t<s<T,
Z% (s) = 0uy (5, X" (5)) 0q (XV), t<s<i, (74)

ZY (s) = Dy (5, X" (£), X" (s) = X" (1)) 0, (X),

F<s<T.
Finally, for each s € [t,T1],
ZV(s)=0(X")Du(XV), P-as. (75)
In particular,
Z%(t)=0(y,)Du(y), vy €A (76)
This completes the proof. O

Now we give the proof of Theorem 17.

Proof. For each fixed t € [0,T] and positive integer n, we
introduce a mapping y"(y,) : A — A

Y () (1)
n—-1
= ?s (r) I[O,t) + Z?s (tZ+1 A 5) I[t;‘/\s,tﬂﬂl\s) () (77)
k=0

+y, () Iig (r), s€[0,T],

wheret) =t + (k(T —t)/n),k=0,1,...,n

W (o 2) = h(y" (7)), :2).
(78)

g ®=90"®),

For each n, there exist some functions ¢, defined on A, x
R™ and y,, ¢,, $, defined on [t, T]x A , x R™? x R™ x R™*4
such that

g ()
=0, (P 7 () =70, 7 (8) =7 (62)
v (v,)
=y (V0 Vs (] AS) =7, (1)
=Y (th1 A9)),
" (y,) (79)
= (5P Vs (] AS) =7, (1), 7, (A )
=Y (a1 A5)),
W' (Yo 3:2)
=Y, (VY (1 AS) =, (1),

_?s (t;l—l /\S),y,Z) :

’?s (tz A 5)

AGE)

9
Indeed, if we set
@ (Vo X105 %,)
= g( <?t (8) Iio ($)
+Zxk1[t2_l,tz) (s) + x,Iipy (5)) ) ,
k=1 0<s<T
(80)

P (Vo X155 %)

=9, ()_/t’?t + XY, () +x,

n
X505 Yy (t)+in>,

i=1

then by Assumptions 1, 10, and 11, we obtain that, for each

fixed y,, @,(¥,, X15...,%,) is a C;-function of x;,...,x,. In
particular, for each p € A,
0 n (Vo ¥ (1) =¥ ... ¥ (1) - ¥ (5,1))
(81)

=g, (0'®).

Foranyt > t, y; € Ay, we consider the following FBSDE:

y™ve (s) (82)

_ T _ _ _
_ gn (X;‘:V?) _ J W (X:”Y?, Y™y r), ZmYE (r)) dr

N

T _
- J Z"(r)dW (r), t<s.

S

We denote
u' (7)== Y (),  yre A (83)

Following the argument as in Lemma 18, for each s € [¢t,T],
we have

Zn’?? (S) _ O_n (X;’lj?) Dxun (')_/?) s P-a.s. (84)
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By the definition of g",b", 0", h" and (82) we have

lim X" = XX, P-as,
n

lim (Y™ (s), 2" () = (Y (), 27 (5)),  (85)
ae. s€[t,T], P-as,
limu" (y;) =u(y;),  limDu" (y;) = Dot (¥7),

lirrln Dxxu" (??) =D,u (??) ,
7 7 - (86)
hrl;n (un (X?)Yt) > Dxun (X?’yt) 4 Dxxun (X:L)Yt>)

= (u(X3), Do (X1), Dt (X1)).

ae. s€[t,T], P-as.
Therefore

ZV(s)=o (Xf‘) D,u (Xff) , ae s€[t,T], P-as. (87)

This completes the proof. O

4. The Related Parabolic
Path-Dependent PDEs

In this section, we relate FBSDE (5), (6) to the following path-
dependent partial differential equation:

Dyu(y,) + Zu(y;) = h(you(y), o (v,) Dyu(y)) =0,

u(yr) =g(yr), yreA

(88)

where
Su = %tr [(O‘O'T) Dxxu] +(b,Du) . (89)

Theorem 19. Suppose that Assumptions 1, 10, and 11 are
fulfilled, and ifu € C"*(A), and that u is the solution of (88), u
is uniformly Lipschitz continuous, and bounded by C(1 + ||y,)),
then the solution is unique, and for any y, € A, u(y,) is
determined by (5) and (6).

Proof. By the assumptions of this theorem, we know that
b(y;) and o(y,) are uniformly Lipschtiz continuous and the
following SDE has a uniqueness solution:

dx" (s) =b(X¥)ds+o(XV')dW (s),
(90)

X, =9y, selt,T].

SetY(s) = u(X"), t <s < T.ApplyingIt6’s formulato Y(s) =
u(X"), we have

dy (s)
=-h(X",Y (s),Z(s))dr —o(X")Du(X")dW (s).

Y(T)=g(X}) seltT].

(o1
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Then by the uniqueness and existence theorem of the func-
tional FBSDE, we obtain the result. O

Now we prove the converse to the above result.

Theorem 20. Under Assumptions 1, 10, and 11, the function
u(y,) = YY(t) is the unique C“*(A)-solution of the path-
dependent PDE (88).

Proof. We only study the one dimensional case. u € C**(A)
follows from Corollary 16. Let § > 0 satisfying t + § < T. By
Lemma 15 we can get

Y
u (Xt+6

)=Y"(t+9). (92)
Hence

u (Yt,t+8) —u (Vt)
=u (Yt,t+8) —u (Xr«[us) tu (iji(?) —u(y,),

By the proof of Theorem 17, we obtain

(93)

u (Vt,t+5) —u(y,)

= Jim, [ (yps0) - 0" (X135

+0
+ Jt (XYY (), 2" (s))ds %)
t

t+0
+ J ZV(s)dW (s).
t

By Lemma 3.1 and Theorem 3.2 of Pardoux and Peng [2] and
Theorem 4.4 of Peng and Wang [8], we deduce that

u' (Vt,t+6) -u" (Xg/is)
t+6 t+6
- | parrds- [ Dat(x1)as
t t

t+8 (95)
- j D" (X¥) dX™ (s)

t

1 (0
3], P () ax ©),

Thus by (86) and the dominated convergence theorem, we
have

u (Yt,t+6) ~u(y,)
t+6
. I Du (X") dX" (s)

1 t+8 » »
5[ Dy @

2 ) (96)

t+6
+ J (XYY (s), 2" (s)) ds
t

t+3
Vi : n
+ L Z% (s)dW (s) + nlLIIéOC ,
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where
t+0 t+6
c'= J D" (y,,) ds — J D" (X¥)ds. (97)
t t

Note that 1" (y,) € c*?

i P(A)' By Lemma 12, we have

|Dsun (Yt,s) - Dsun (Xrt)l sc "Vt - Xrt " >
(98)
ae. se[t,T], P-as
for some constant ¢ depending on C, T, y;, and k. Hence

|Cn| <cd sup ]|X% () =, (t)| , P-as. (99)

se[t,t+8

Taking expectation on both sides of (96), we have

u (Vt,t+6) —u(y,)

lim
5-0 1) (100)
=-Zu(y,) +h(ypu(y), Deu(y) o (v,))-
Thus u(y,) belongs to C™(A) and satisfies (88). O
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