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In eukaryotic genes, exons are generally interrupted by introns. Accurately removing introns and joining exons together are essential
processes in eukaryotic gene expression. With the avalanche of genome sequences generated in the postgenomic age, it is highly
desired to develop automated methods for rapid and effective detection of splice sites that play important roles in gene structure
annotation and even in RNA splicing. Although a series of computationalmethods were proposed for splice site identification,most
of them neglected the intrinsic local structural properties. In the present study, a predictor called “iSS-PseDNC” was developed for
identifying splice sites. In the new predictor, the sequences were formulated by a novel feature-vector called “pseudo dinucleotide
composition” (PseDNC) into which six DNA local structural properties were incorporated. It was observed by the rigorous cross-
validation tests on two benchmark datasets that the overall success rates achieved by iSS-PseDNC in identifying splice donor site
and splice acceptor site were 85.45% and 87.73%, respectively. It is anticipated that iSS-PseDNC may become a useful tool for
identifying splice sites and that the six DNA local structural properties described in this paper may provide novel insights for
in-depth investigations into the mechanism of RNA splicing.

1. Introduction

In eukaryotic genomes, exons that code for proteins are typi-
cally interrupted by introns termed as protein noncoding
regions. The borders between exons and introns are called
splice sites (Figure 1). A splice site can be located at either
the upstream or the downstream part of an intron. For the
former, it is called the 5 splice site or donor site; for the
latter, it is called the 3 splice site or acceptor site. The vast
majority of the donor and acceptor sites are canonical or
regular splice sites that are characterized by the presence of
the GT and AG, respectively. During RNA splicing, both
the donor and acceptor sites will be recognized by a large
macromolecule called spliceosome that is comprised of more
than 300 proteins and five small nuclear RNAs (snRNAs U1,
U2, U4, U5, and U6) [1]. Once the splice sites are recognized,

the spliceosome will remove introns through two sequential
transesterification reactions (Figure 1). Removing introns
from precursor messenger RNA (pre-mRNA) so that exons
can be joined together to form mature mRNA is an essential
step of gene expression. Therefore, to better understand the
splicing process andmechanism, it is important to accurately
detect the splice sites in the genome.

Although biochemical experimental approaches can pro-
vide some details about the splice sites, it is both time-
consuming and expensive to rely on the biochemical exper-
imental techniques alone. Hence, it is a big challenge and
also highly desirable to develop computational methods for
timely and effectively identifying the splice sites. In view of
this, the present study was initiated in an attempt to develop
a computational method for predicting splice sites.
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Figure 1: A schematic drawing to show the pathways of RNA splicing. (a) The 2OH of the branchpoint nucleotide within the intron (solid
line) carries out a nucleophilic attack at the first nucleotide of the intron at the 5 splice site (GU) forming the lariat intermediate. (b) The
3OH of the released 5 exon then performs a nucleophilic attack at the last nucleotide of the intron at the 3 splice site (AG). (c) Joining the
exons and releasing the intron lariat.

According to a comprehensive review [2] and demon-
strated by a series of recent publications [3–9], to establish
a really useful statistical predictor for a biological system, we
need to consider the following procedures: (i) construct or
select a valid benchmark dataset to train and test the pre-
dictor; (ii) formulate the biological samples with an effective
mathematical expression that can truly reflect their intrinsic
correlation with the target to be predicted; (iii) introduce
or develop a powerful algorithm to operate the prediction;
(iv) properly perform cross-validation tests to objectively
evaluate the anticipated accuracy of the predictor. Below, let
us describe how to deal with these procedures one by one.

2. Materials and Methods

2.1. Benchmark Dataset. The human splice site-containing
sequences were obtained from the database HS3D (http://
www.sci.unisannio.it/docenti/rampone/), which contained
the sequences of exons, introns, and splice regions extracted
from GenBank Rel.123. All the splice site-containing
sequences in HS3D obey the GT-AG rule; that is, begin
with the dinucleotides GT (GU in RNA) and end with the
dinucleotides AG, and their lengths are of 140 nucleotides
with the splice donor site GT (or acceptor site AG) in the
middle positions.

At present, there are 2,796 (2,880) true splice donor
(acceptor) site-containing sequences and 271,937 (329,374)
false splice donor (acceptor) site-containing sequences in
HS3D. To balance the number of the true and false splice site-
containing sequences and to avoid the overfitting problem
in the model-training processes, we randomly selected out
2,800 false splice donor (acceptor) site-containing sequences
from the 271,937 (329,374) false splice donor (acceptor) site-
containing sequences.

As pointed out in a comprehensive review [10], there
is no need to separate a benchmark dataset into a training
dataset and a testing dataset for examining the performance
of a prediction method if it is tested by the jackknife test or
subsampling cross-validation test.

Finally, we obtained two benchmark datasets, one for the
splice donor site-containing sequence, while the other for the
splice acceptor, as can be formulated by

S
1
= S
+

1
∪ S
−

1
for splice donor,

S
2
= S
+

2
∪ S
−

2
for splice acceptor,

(1)

where the positive datasetS+
1
contains 2,796 true splice donor

site-containing sequences while the negative dataset S−
1

contains 2,800 false splice donor site-containing sequences;
S+
2

contains 2,880 true splice acceptor site-containing
sequences, while S−

2
contains 2,800 false splice acceptor

site-containing sequences, and the symbol ∪ means the
union in the set theory. The detailed sequences in the two
benchmark datasets S

1
and S

2
are given in Supplemen-

tary Information S1 and Supplementary Information S2,
respectively; see Supplementary Material available online at
http://dx.doi.org/10.1155/2014/623149.

2.2. DNA Sample Formulation. Given a DNA sample D with
𝐿 nucleic acid residues, the most straightforward way to
express the sample is to use the following sequential model:

D = 𝑅
1
𝑅
2
𝑅
3
𝑅
4
𝑅
5
𝑅
6
𝑅
7
⋅ ⋅ ⋅ 𝑅
𝐿
, (2)

where 𝑅
1
represents the first nucleic acid residue at position

1, 𝑅
2
represents the second nucleic acid residue at position

2, and so forth. Although the sequential formulation of (2)
contains the complete information of the DNA sample, it
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is difficult to be handled for statistical prediction. This is
because all the existing operation engines, such as optimi-
zation approach [11], covariance discriminant (CD) [12],
neural network [13], support vector machine (SVM) [14–
16], random forest [17, 18], conditional random field [8],
nearest neighbor (NN) [19], K-nearest neighbor (KNN) [20],
OET-KNN [21], fuzzy K-nearest neighbor [22–24], ML-KNN
algorithm [25], and SLLE algorithm [26], can only handle
vector but not sequence samples. Although some sequence-
similarity-search-based tools, such as BLAST [27], can be
used to directly search for those sequences with high simi-
larity to the query sample, unfortunately, this kind of straight-
forward and intuitive approach failed to work when the
query sample did not have significant similarity to any of the
character-known sequences. Therefore, various nonsequen-
tial or discrete models to represent the DNA samples were
proposed in hopes of establishing some sort of correlation or
cluster manner through which the prediction could be more
effectively carried out.

The simplest discrete model used to represent a DNA
sample is its nucleic acid composition or NAC, as given
below:

D = [𝑓(A) 𝑓(C) 𝑓(G) 𝑓(T)]T, (3)

where 𝑓(A), 𝑓(C), 𝑓(G), and 𝑓(T) are the normalized
occurrence frequencies of adenine (A), cytosine (C), guanine
(G), and thymine (T) in the DNA sequence, respectively; the
symbol T is the transpose operator. However, as we can see
from (3), all its sequence-order information is completely
lost if using NAC to represent a DNA sample. Actually,
one of the most important but also most difficult problems
in computational biology is how to effectively formulate a
biological sequence with a discrete model or a vector, yet still
keep considerable sequence-order information.

One way to cope with such a problem is to represent
the DNA segment with the 𝑘-tuple nucleotide composition,
a vector with 4𝑘 components; that is,

D = [𝑓

𝐾-tuple
1

𝑓

𝐾-tuple
2

⋅ ⋅ ⋅ 𝑓

𝐾-tuple
𝑖

⋅ ⋅ ⋅ 𝑓

𝐾-tuple
4
𝑘

]

T
, (4)

where 𝑓𝐾-tuple
𝑖

is the normalized occurrence frequency of the
𝑖th 𝑘-tuple nucleotide in the DNA segment. As we can see
from (4), the dimension of the vector is

4

𝑘
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

64 𝑘 = 3,

256 𝑘 = 4,

1024 𝑘 = 5,

4096 𝑘 = 6,

16384 𝑘 = 7,

...
...

(5)

indicating that by increasing the value of 𝑘, although the
coverage scope of sequence order will be gradually increased,
the dimension of the vector D will be rapidly increased as
well. This will cause the high-dimension disaster [28] as
reflected by the following disadvantages: (i) the overfitting

problem that will make the predictor with a serious bias and
extremely low capacity for generalization; (ii) the information
redundancy or noise that will bring about the error of
misrepresentation resulting in very poor prediction accuracy;
and (iii) unnecessarily increasing the computational time.

To avoid the high-dimension disaster, here, the dinu-
cleotide composition (DNC) was used to formulate the DNA
sample, as given by

D = [𝑓

2-tuple
1

𝑓

2-tuple
2

⋅ ⋅ ⋅ 𝑓

2-tuple
𝑖

⋅ ⋅ ⋅ 𝑓

2-tuple
16

]

T

= [𝑓 (AA) 𝑓 (AC) 𝑓 (AG) 𝑓 (AT) ⋅ ⋅ ⋅ 𝑓 (TT)]T,
(6)

where 𝑓2-tuple
1

= 𝑓(AA) is the normalized occurrence fre-
quency of AA in the DNA sequence, 𝑓2-tuple

2
= 𝑓(AC) is that

of AC, 𝑓2-tuple
3

= 𝑓(AG) is that of AG, and so forth. By doing
so, we can only incorporate the local sequence-order info-
rmation between the most contiguous nucleotides, but none
of the global or long-range sequence-order information can
be reflected.

Actually, similar problem also occurred in computational
proteomics, where, in order to incorporate the global or long-
range sequence-order information for proteins, the pseudo
amino acid composition [29] or Chou’s PseAAC [30] was
proposed. Since the concept of PseAAC was proposed in
2001 [29], it has been penetrating into almost all the fields
of protein attribute predictions (see, e.g., [31–73]). Because
it has been widely used, recently two types of open access
software, called “PseAAC-Builder” [51] and “propy” [74],
were established for generating various modes of PseAAC.

Encouraged by the successes of introducing the PseAAC
approach into computational proteomics, Chen et al. [4]
proposed the “pseudo dinucleotide composition” or PseDNC
to identify recombination spots of DNA. The formulation of
PseDNC is given by

DPseDNC = [𝑑1 𝑑2 ⋅ ⋅ ⋅ 𝑑16 𝑑16+1 ⋅ ⋅ ⋅ 𝑑16+𝜆]
T
, (7)

where

𝑑
𝑢
=

{
{
{
{
{

{
{
{
{
{

{

𝑓

2-tuple
𝑢

∑

16

𝑖=1
𝑓

2-tuple
𝑖

+ 𝑤∑

𝜆

𝑗=1
𝜃
𝑗

, 1 ≤ 𝑢 ≤ 16,

𝑤𝜃
𝑢

∑

16

𝑖=1
𝑓

2-tuple
𝑖

+ 𝑤∑

𝜆

𝑗=1
𝜃
𝑗

, (16 + 1) ≤ 𝑢 ≤ (16 + 𝜆) ,

(8)

where 𝑓2-tuple
𝑖

(𝑖 = 1, 2, . . . , 16) have the same meaning as
those in (6), while 𝜃

𝑗
is the 𝑗th tire correlation factor that

reflects the sequence-order correlation between all the 𝑗th
most contiguous dinucleotides along a DNA sequence (see
Figure 2), as formulated by

𝜃
𝑗
=

1

𝐿 − 𝑗 − 1

𝐿−𝑗−1

∑

𝑖=1

Θ(𝑅
𝑖
𝑅
𝑖+1
; 𝑅
𝑖+𝑗
𝑅
𝑖+1+𝑗

)

(𝑗 = 1, 2, . . . , 𝜆 < 𝐿) .

(9)
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Figure 2: A schematic illustration to show the correlations of dinucleotides along a DNA sequence. (a) The first-tier correlation reflects
the sequence-order mode between all the most contiguous dinucleotides. (b) The second-tier correlation reflects the sequence-order mode
between all the second-most contiguous dinucleotides. (c) The third-tier correlation reflects the sequence-order mode between all the third-
most contiguous dinucleotides.

In the above two equations, 𝜆 is the number of the total
counted ranks or tiers of the correlations along a DNA
sequence, and𝑤 is the weight factor. Their concrete values as
well as the final value for 𝑘will be further discussed later.The
correlation functionΘ(𝑅

𝑖
𝑅
𝑖+1
; 𝑅
𝑖+𝑗
𝑅
𝑖+1+𝑗

) in (9) is defined by

Θ(𝑅
𝑖
𝑅
𝑖+1
; 𝑅
𝑖+𝑗
𝑅
𝑖+1+𝑗

) =

1

𝜇

𝜇

∑

]=1
[𝑃](𝑅𝑖𝑅𝑖+1) − 𝑃](𝑅𝑖+𝑗𝑅𝑖+1+𝑗)]

2

,

(10)

where 𝜇 is the number of local DNA structural properties
considered that is equal to 6 in the current study as will
be explained below, 𝑃](𝑅𝑖𝑅𝑖+1) is the numerical value of the
]th (] = 1, 2, . . . , 𝜇) DNA local structural property for
the dinucleotide 𝑅

𝑖
𝑅
𝑖+1

at position 𝑖, and 𝑃](𝑅𝑖+𝑗𝑅𝑖+1+𝑗) is
the corresponding value for the dinucleotide 𝑅

𝑖+𝑗
𝑅
𝑖+1+𝑗

at
position 𝑖 + 𝑗, as will be given below.

2.3. DNA Local Structural Property Parameters. A lot of
evidences have shown that DNA local structural properties
play important roles in many biological processes, such as
protein-DNA interactions [75], formation of chromosomes
[76], and meiotic recombination [4]. Generally speaking, the
spatial arrangements of two successive base pairs can be
characterized by six parameters, of which three are the local

translational ones and the other three are the local angular
ones (Figure 3), as formulated by

translational =
{
{

{
{

{

slide,
shift,
rise,

angular =
{
{

{
{

{

roll,
tilt,
twist.

(11)

The six structural parameters of dinucleotides have been
calculated by Goñi et al. [75] based on the long atomistic
molecular dynamics (MD) simulations in water, and their
concrete values are given in Table 1, which will be used to
calculate the global or long-range sequence-order effects for
the DNA sequences via (9) and (10).

Note that before substituting the values of physicochem-
ical property into (10), they were all subjected to a standard
conversion as described by the following equation:

𝑃] (𝑅𝑖𝑅𝑖+1) =
𝑃

0

] (𝑅𝑖𝑅𝑖+1) − ⟨𝑃
0

] (𝑅𝑖𝑅𝑖+1)⟩

SD ⟨𝑃

0

] (𝑅𝑖𝑅𝑖+1)⟩
,

(12)

where the symbols ⟨⟩mean taking the average of the quantity
therein over the 16 different combinations of A, C, G, T for
𝑅
𝑖
𝑅
𝑖+1

and SD means the corresponding standard deviation
[10]. The converted values obtained by (12) will have a zero
mean value over the 16 different dinucleotides andwill remain
unchanged if going through the same conversion procedure
again. Listed in Table 2 are the values of 𝑃](𝑅𝑖𝑅𝑖+1) (V =

1, 2, . . . , 6) obtained via the standard conversion of (12) from
those of Table 1.
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Figure 3: A schematic drawing to illustrate the six spatial arrangements between two neighboring base pairs in DNA. Of the six panels, three
are for the local translational arrangements and the other three are for the local angular ones [6].

Table 1: The original values for the six DNA dinucleotide physical structures.

Dinucleotide Physical structuresa

𝑃
1
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

2
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

3
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

4
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

5
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

6
(𝑅
𝑖
𝑅
𝑖+1
)

AA 0.026 0.038 0.020 1.69 2.26 7.65
AC 0.036 0.038 0.023 1.32 3.03 8.93
AG 0.031 0.037 0.019 1.46 2.03 7.08
AT 0.033 0.036 0.022 1.03 3.83 9.07
CA 0.016 0.025 0.017 1.07 1.78 6.38
CC 0.026 0.042 0.019 1.43 1.65 8.04
CG 0.014 0.026 0.016 1.08 2.00 6.23
CT 0.031 0.037 0.019 1.46 2.03 7.08
GA 0.025 0.038 0.020 1.32 1.93 8.56
GC 0.025 0.036 0.026 1.20 2.61 9.53
GG 0.026 0.042 0.019 1.43 1.65 8.04
GT 0.036 0.038 0.023 1.32 3.03 8.93
TA 0.017 0.018 0.016 0.72 1.20 6.23
TC 0.025 0.038 0.020 1.32 1.93 8.56
TG 0.016 0.025 0.017 1.07 1.78 6.38
TT 0.026 0.038 0.020 1.69 2.26 7.65
aIn this table, the following symbols were used to represent the six physical structures of dinucleotide: 𝑃

1
for “twist”, 𝑃

2
for “tilt”, 𝑃

3
for “roll”, 𝑃

4
for “shift”, 𝑃

5

for “slide”, and 𝑃
6
for “rise”. The data was obtained from [75].

2.4. Support Vector Machine (SVM). Support vector machine
(SVM) is an effective method for supervised pattern recog-
nition and has been widely used in the realm of bioinfor-
matics [4, 14, 77, 78]. The basic idea of SVM is to trans-
form the data into a high dimensional feature space and

then determine the optimal separating hyperplane. A brief
introduction about the formulation of SVM has been
given in [14]. In this study, the SVM implementation was
based on the freely available package LIBSVM 2.84 writ-
ten by Chang and Lin [79], which can be downloaded
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Table 2: The normalized values for the six DNA dinucleotide physical structures.

Dinucleotide Physical structuresa

𝑃
1
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

2
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

3
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

4
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

5
(𝑅
𝑖
𝑅
𝑖+1
) 𝑃

6
(𝑅
𝑖
𝑅
𝑖+1
)

AA 0.06 0.5 0.27 1.59 0.11 −0.11
AC 1.50 0.50 0.80 0.13 1.29 1.04
AG 0.78 0.36 0.09 0.68 −0.24 −0.62
AT 1.07 0.22 0.62 −1.02 2.51 1.17
CA −1.38 −1.36 −0.27 −0.86 −0.62 −1.25
CC 0.06 1.08 0.09 0.56 −0.82 0.24
CG −1.66 −1.22 −0.44 −0.82 −0.29 −1.39
CT 0.78 0.36 0.09 0.68 −0.24 −0.62
GA −0.08 0.5 0.27 0.13 −0.39 0.71
GC −0.08 0.22 1.33 −0.35 0.65 1.59
GG 0.06 1.08 0.09 0.56 −0.82 0.24
GT 1.50 0.50 0.80 0.13 1.29 1.04
TA −1.23 −2.37 −0.44 −2.24 −1.51 −1.39
TC −0.08 0.5 0.27 0.13 −0.39 0.71
TG −1.38 −1.36 −0.27 −0.86 −0.62 −1.25
TT 0.06 0.5 0.27 1.59 0.11 −0.11
aSee footnote a of Table 1 for further explanation.

from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. Because of
its effectiveness and speed in training process, the radial
basis kernel function (RBF) was used to obtain the best
classification hyperplane.The regularization parameter𝐶 and
the kernel width parameter 𝛾 were tuned via the grid search
method in the 10-fold cross-validation.

The predictor obtained via the above procedures is
called iSS-PseDNC, where “i” stands for “identifying,” “SS”
for “splice site,” “Pse” for “pseudo,” “D” for “di,” “N” for
“nucleotide,” and “C” for “composition.”

2.5. Criteria for Performance Evaluation. To provide a more
intuitive and easier-to-understand method to measure the
prediction quality, the following set of four metrics based
on the formulation used by Chou [80] in studying signal
peptide prediction was adopted. According to Chou’s formu-
lation, the sensitivity (Sn), specificity (Sp), overall accuracy
(Acc), and Matthew’s correlation coefficient (MCC) can be
expressed as follows [4, 7–9]:

Sn = 1 −
𝑁

+

−

𝑁

+
,

Sp = 1 −
𝑁

−

+

𝑁

−
,

Acc = 1 −
𝑁

+

−
+ 𝑁

−

+

𝑁

+
+ 𝑁

−
,

MCC =

1 − ((𝑁

+

−
/𝑁

+
) + (𝑁

−

+
/𝑁

−
))

√(1 + (𝑁

−

+
− 𝑁

+

−
) /𝑁

+
) (1 + (𝑁

+

−
− 𝑁

−

+
) /𝑁

−
)

,

(13)

where𝑁+ is the total number of the true splice site-containing
sequences investigated, while𝑁+

−
is the number of true splice

site-containing sequences incorrectly predicted as the false
splice site-containing sequences; 𝑁− is the total number
of the false splice site-containing sequences investigated,
while 𝑁−

+
is the number of the false splice site-containing

sequences incorrectly predicted as true splice site-containing
sequences. From (13), we can easily see the following. When
𝑁

+

−
= 0 meaning that none of the true splice site-containing

sequences was incorrectly predicted to be a false splice site-
containing sequence, we have the sensitivity Sn = 1. When
𝑁

+

−
= 𝑁

+ meaning that all the true splice site-containing
sequences were incorrectly predicted to be the false splice
site-containing sequences, we have the sensitivity Sn = 0.
Likewise, when𝑁−

+
= 0meaning that none of the false splice

site-containing sequences was incorrectly predicted to be a
true splice site-containing sequence, we have the specificity
Sp = 1, whereas when 𝑁−

+
= 𝑁

− meaning that all the false
splice site-containing sequences were incorrectly predicted
to be the true splice site-containing sequences, we have the
specificity Sp = 0. When 𝑁

+

−
= 𝑁

−

+
= 0 meaning that

none of the true splice site-containing sequences and none
of the false splice site-containing sequences were incorrectly
predicted, we have the overall accuracyAcc = 1 andMathew’s
correlation coefficient MCC = 1; when 𝑁

+

−
= 𝑁

+ and
𝑁

−

+
= 𝑁

− meaning that all the false splice site-containing
sequences and all the true splice site-containing sequences
were incorrectly predicted, we have Acc = 0 and MCC =

−1, whereas when 𝑁+
−
= 𝑁

+
/2 and 𝑁−

+
= 𝑁

−
/2, we have

Acc = 0.5 and MCC = 0 meaning no better than random
prediction. As we can see from the above discussion based
on (13), the meanings of the four metrics have become much
more intuitive and easier to understand than the conventional
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formulation often used in the literature, particularly for
Mathew’s correlation coefficient, which is usually used for
measuring the quality of binary (two-class) classifications as
in the case of the current study. However, it is instructive to
point out that the set of the metrics in (13) is valid only for
the single-label systems. For the multilabel systems whose
existence has become more frequent in system biology [81–
83] and system medicine [24, 84], a completely different set
of metrics as defined in [25] is needed.

3. Results and Discussions

3.1. Graphic Profiles of True and False Splice Site-Containing
Sequences. It has been reported that the DNA local struc-
tural properties, that is, angular parameters (twist, tilt, and
roll) and translational parameters (shift, slide, and rise),
play important roles in prokaryotic transcription initiation,
protein-DNA interactions, andmeiotic recombination [4, 75,
76, 85]. Accordingly, it is quite natural to ask whether these
DNA structural properties may also play some role in reg-
ulating RNA splicing. Here, let us use the graphic approach
to address this question. This is because using graphical
approaches to study biological problems can provide an
intuitive picture or useful insights for helping in analyzing
complicated relations in these systems [30], as demonstrated
by many previous studies on a series of important bio-
logical topics, such as enzyme-catalyzed reactions [86–89],
inhibition of HIV-1 reverse transcriptase [90–93], inhibition
kinetics of processive nucleic acid polymerases and nucleases
[94], protein folding kinetics [95], drug metabolism systems
[96], protein sequence evolutionary analysis [97], protein
remote homology detection [5], and usingWenxiang diagram
or graph [98] to study protein-protein interactions [99–102].
Shown in Figure 4 is a comparison of the graphic profiles
between the true and false splice site-containing sequences.
As we can see there, the divergence between the true and false
splice site-containing sequence profiles is remarkable, clearly
indicating that the six structural property parameters can
indeed play important roles in RNA splicing. That was why
we used them to calculate the global sequence-order effects
as elaborated in Section 2.3.

3.2. Cross-Validation. How to properly evaluate the antici-
pated accuracy is an important step in developing a new
predictor. Generally speaking, to avoid the “memory effect”
[10] of the resubstitution test in which a same dataset was
used to train and test a predictor, the following three cross-
validation methods are often used to examine a predictor for
its effectiveness in practical application: independent dataset
test, subsampling or 𝐾-fold (such as 5-fold, 7-fold, or 10-
fold) test, and jackknife test. However, as elaborated by a
penetrating analysis in [2], considerable arbitrariness exists in
the independent dataset test. Also, as demonstrated by (28)–
(30) in [2], the subsampling test (or 𝐾-fold cross-validation)
cannot avoid arbitrariness either. Only the jackknife test is the
least arbitrary that can always yield a unique result for a given
benchmark dataset. Therefore, the jackknife test has been
widely recognized and increasingly adopted by investigators
to examine the quality of various predictors (see, e.g., [42,

Table 3: The prediction quality as measured by metrics of (13)
by iSS-PseDNC in identifying the splice donor and acceptor sites,
respectively.

Splice sites Optimal parameters Metrics
𝜆 𝑤 Sn (%) Sp (%) Acc (%) MCC

Donora 4 0.3 86.66 84.25 85.45 0.71
Acceptorb 2 0.3 88.78 86.64 87.73 0.75
aSee Supplementary Information S1 for benchmark dataset of donor.
bSee Supplementary Information S2 for benchmark dataset of acceptor.

Table 4: The prediction quality as measured by metrics of (13) by
using BLAST [109] and sequence similarity principle in identifying
splice acceptor and donor sites, respectively.

Splice sites Metrics
Sn (%) Sp (%) Acc (%) MCC

Acceptora 39.09 40.20 39.62 −0.21
Donorb 42.75 37.63 40.23 0.20
aSee footnote a of Table 3 for further explanation.
bSee footnote b of Table 3 for further explanation.

58, 59, 62, 64, 66, 67, 70, 103–107]). Therefore, in this study,
the jackknife test was also used to examine the performance
of the predictor. During the jackknife test, each sequence in
the benchmark dataset S

1
(or S
2
) was in turn singled out as

an independent test sample and all the rule-parameters were
derived based on the remaining data without including the
one under the prediction.

3.3. Parameter Optimization. As we can see from (8), the
predictive accuracy of the present model depends on the two
parameters 𝑤 and 𝜆, where 𝑤 is the weight factor which was
usually within the range from 0 to 1 and 𝜆 is the number of
the correlation tiers to be counted for the global sequence-
order information. Generally speaking, the greater the 𝜆
is, the more global sequence-order information the model
will contain. However, if 𝜆 is too large, it would reduce the
cluster-tolerant capacity [108] so as to lower down the cross-
validation accuracy due to overfitting or “high dimension dis-
aster” [28] problem.Therefore, our searching for the optimal
values of the two parameters was confined in the range

0 ≤ 𝑤 ≤ 1,

1 ≤ 𝜆 ≤ 10.

(14)

Furthermore, to reduce the computational time during the
search process, the 10-fold cross-validation approach was
adopted. Once the optimal values thus obtained for the two
parameters were determined, the rigorous jackknife test was
utilized to evaluate the anticipated accuracy of the predictor.

Listed in Table 3 are the jackknife test results of the
iSS-PseDNC predictor in identifying the splice donor site-
containing sequences and the splice acceptor site-containing
sequences on the benchmark datasetsS

1
andS

2
, respectively,

where the optimal values for𝑤 and 𝜆 are also explicitly given.
To further show the power of the iSS-PseDNC predictor,

we also did some comparison calculations as described below.
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Figure 4:Graphic profiles to show the difference between the true and false splice site-containing sequences.Theprofiles of sixDNAstructural
properties (i.e., rise (black), slide (red), shift (blue), twist (orange), roll (green) and tilt (purple)) for (a) true splice donor site-containing
sequences, (b) false splice donor site- containing sequences, (c) true splice acceptor site-containing sequences, and (d) false acceptor donor
site-containing sequences. The profiles are plotted with a window size of 10 bp and a step size of 5 bp.

First, based on the sequence similarity principle, we used
BLAST [109] to conduct the jackknife test on the same
benchmark dataset as used by the iSS-PseDNC predictor.The
results thus obtained are given in Table 4, from which we can
see that the percentage rates for Sn, Sp, and Acc by BLAST
are about 40% lower than those by iSS-PseDNC and that the
rates of MCC by BLAST are about 0.5 lower than those by
iSS-PseDNA, for the cases of both donor and acceptor.

Second, rather than pseudo dinucleotide composition
(7), we used the dinucleotide compositions (6) to represent
the DNA samples for prediction. The corresponding results
thus obtained are given in Table 5, from which we can see
that the rates for Sn, Sp, Acc, and MCC are all lower than
those reported in Table 3, clearly implying that the additional
components in the pseudo nucleotide composition did play a
role in enhancing the prediction quality.

All these results indicate that the iSS-PseDNC model as
proposed in this paper is quite promising and may become a
useful tool in identifying splice sites.

Table 5: The prediction quality as measured by metrics of (13) by
using the dinucleotide composition (6) to formulate the DNA sam-
ples in identifying the splice donor and acceptor sites, respectively.

Splice sites Metrics
Sn (%) Sp (%) Acc (%) MCC

Donora 81.23 84.42 82.58 0.67
Acceptorb 83.39 85.60 83.78 0.68
aSee footnote a of Table 3 for further explanation.
bSee footnote b of Table 3 for further explanation.

4. Conclusions

RNA splicing is a complicated biological process that involves
interactions among DNA, RNA, and proteins. Hence, it is
reasonable to analyze the structural properties that can be
used to describe these interactions. In view of this, we firstly
plotted the profiles of the six DNA structural properties
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(twist, tilt, roll, shift, slide, and rise) for splice site-containing
sequences and found the differences between true and false
splice site-containing sequences. The structural divergences
surrounding splice sites may facilitate the removal of the
introns by spliceosome.

By defining PseDNC using the above six DNA structural
properties, we proposed a model, namely, iSS-PseDNC, for
identifying splice sites. The predictive performance demon-
strated that our model is helpful for splice site recognitions.
Since user-friendly and publicly accessible web-servers rep-
resent the direction of developing practically more useful
models [110], simulated methods, or predictors, we will make
efforts in our future work to provide a web-server for the
approach presented in this paper.

It has not escaped our notice that the web-server PseKNC
(pseudo 𝐾-tuple nucleotide composition) developed very
recently [111] will be very useful for further improving the
prediction quality in identifying the splicing sites.
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“DNAlive: a tool for the physical analysis ofDNAat the genomic
scale,” Bioinformatics, vol. 24, no. 15, pp. 1731–1732, 2008.

[77] P.M. Feng,H.Ding,W.Chen, andH. Lin, “Naive Bayes classifier
with feature selection to identify phage virion proteins,” Com-
putational and Mathematical Methods in Medicine, vol. 2013,
Article ID 530696, 6 pages, 2013.

[78] W. Chen, P. Feng, and H. Lin, “Prediction of replication origins
by calculating DNA structural properties,” FEBS Letters, vol.
586, no. 6, pp. 934–938, 2012.

[79] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vec-
tor machines. pp.Software,” 2001, http://www.csie.ntu.edu.tw/∼
cjlin/libsvm.

[80] K.-C. Chou, “Using subsite coupling to predict signal peptides,”
Protein Engineering, vol. 14, no. 2, pp. 75–79, 2001.

[81] X. Xiao, Z.-C. Wu, and K.-C. Chou, “A multi-label classifier
for predicting the subcellular localization of gram-negative
bacterial proteins with both single and multiple sites,” PLoS
ONE, vol. 6, no. 6, Article ID e20592, 2011.

[82] X. Xiao, Z.-C. Wu, and K.-C. Chou, “iLoc-Virus: a multi-label
learning classifier for identifying the subcellular localization of
virus proteins with both single and multiple sites,” Journal of
Theoretical Biology, vol. 284, no. 1, pp. 42–51, 2011.

[83] Z.-C. Wu, X. Xiao, and K.-C. Chou, “ILoc-Plant: a multi-
label classifier for predicting the subcellular localization of
plant proteins with both single and multiple sites,” Molecular
BioSystems, vol. 7, no. 12, pp. 3287–3297, 2011.

[84] L. Chen, W.-M. Zeng, Y.-D. Cai, K.-Y. Feng, and K.-C. Chou,
“Predicting anatomical therapeutic chemical (ATC) classifica-
tion of drugs by integrating chemical-chemical interactions and
similarities,” PLoS ONE, vol. 7, no. 4, Article ID e35254, 2012.

[85] T. Abeel, Y. Saeys, E. Bonnet, P. Rouzé, and Y. van de Peer,
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