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Thepresence of outliers can result in seriously biased parameter estimates. In order to detect outliers in panel datamodels, this paper
presents a modeling method to assess the intervention effects based on the variance of remainder disturbance using an arbitrary
strictly positive twice continuously differentiable function.This paper also provides a Lagrange Multiplier (LM) approach to detect
and identify a general type of outlier. Furthermore, fixed effects models and random effects models are discussed to identify outliers
and the corresponding LM test statistics are given.The LM test statistics for an individual-basedmodel to detect outliers are given as
a particular case. Finally, this paper performs an application using panel data and explains the advantages of the proposed method.

1. Introduction

Outliers are observations in the dataset that appear to be
unusual and discordant. If the sample contains outliers, the
inappropriate estimation from contaminated observations
may be strongly distorted and leads to unreliable results.
Intervention effects may cause serious bias in estimating
parameters as explained in the work of Fox [1], Martin and
Yohai [2], Chang et al. [3], and Verardi and Croux [4].
Therefore, it is very important to identify these outliers in
large datasets for both natural science and social science
disciplines such as engineering, biology, education,medicine,
economy, and sociology.

Detection of potential outliers plays a very important
role in obtaining valuable and accurate information partic-
ularly in the field of engineering. An outlier of engineering
observations may be due to an error in data transmission
or human error in measurement. Some experts in the field
of engineering noted the importance of identification of
outliers. Febrero et al. [5] highlighted its importance: the
analysis of outliers is an important aspect of any statistical
analysis of data and especially is important to identify days or
periods in which the NO

𝑥
levels are significantly large. Out-

lier identification is important to analyze the traffic volume
data collected and used for a variety of purposes in intelligent
transportation system [6]. Outlier detection is also important

in the field of ecological engineering, as identification of
atypical observations is an important concern inwater quality
monitoring [7].

Initial researches in outlier detection focused on time
series-based outliers. Some influential studies have made
contributions to the detection and identification of outliers
[1, 3, 8–13]. Fox [1] proposed a fundamental approach for
detecting and identifying outliers in a time series model. For
linear regression models, it is a general approach to detect
outliers to employ the mean-shift outlier model and some
test statistics equivalent to the external studentized residuals
[8, 9]. Chang et al. [3] provided an iterative procedure
to detect and identify the outliers. Two distinct kinds of
outliers are considered, namely, additive outlier (AO) and
innovation outlier (IO), and the outliers in time series
are regarded as being generated by dynamic intervention
models at unknown time points. In recent years, researchers
begin to be concerned about the outliers’ detection of more
complicated models. Shi and Chen [14] developed outlier
detection for multilevel models and the proposed test can
be used to detect outliers at any level in multilevel models
and for any combinations of units. Chen [15] provided an
approach to estimate the panel data model with a mixed
fractional ARIMA remainder process, in which the data may
contain different types of outliers. By the modified inverse
Fourier transform, the outliers for the spectral Whittle
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approach can be quickly detected and identified. Willems
et al. [16] diagnosed multivariate outliers. Riani et al. [17]
found an unknown number of multivariate outliers. Cerioli
[18] developed multivariate outlier tests based on the high-
breakdown Minimum Covariance Determinant estimator.
Yan [19] proposed a novel method integrating self-organizing
map (SOM) with adaptive nonlinear map (ANLM) for multi-
variate outlier detection. Yuen andMu [20] proposed a novel
probabilistic method for robust parametric identification and
outlier detection in linear regression problems. The crux of
this method is to calculate the probability of outlier, which
quantifies how probable a data point is an outlier. Rapallo
[21] made use of log-linear models and exact goodness-
of-fit tests to specify the notions of outlier and pattern of
outliers. Kuhnt et al. [22] introduced a new technique for the
detection of outliers in contingency tables, where outliers are
unusual cell countswith respect to classical log-linear Poisson
models.

It is very difficult to identify outliers directly by eye,
especially when faced by a panel data model with unfamiliar
features and uncertain large datasets. As pointed out in
Bramati and Croux [23], outliers are not always detectable by
looking at residuals from a least squares fit, and diagnostic
measures like the Cook distance suffer from the masking
effect, as soon as multiple outliers are present. Not much
effort has been given to the diagnostics and influence
assessment of outliers in panel data models. Although a few
researchers tend to be aware of this, there is little literature on
the detection of outlier in a panel data model as an important
issue.

This paper focuses on the detection and identification of
outliers in panel data models with individual effects. Because
of the presence of individual effects in panel data models, the
traditional mean-shift model cannot differentiate individual
effects from the mean disturbance. Thus, the mean-shift
model cannot be applied in detecting outliers for panel data
models with individual effects. A panel data model with
outliers is likely to contaminate the residuals. This means
that the variance of error term probably has a large deviation
in the outlier model. Therefore, in this paper, a variance
intervention effects model is proposed to study the detection
of outlier. This paper is concerned with outlier detections
through a method of variance intervention effects on the
remainder disturbance using arbitrary strictly positive twice
continuously differentiable function. Even if the error term
𝑢 was observable in Baltagi [24], the equations of maximum
likelihood (ML) estimator would still be highly nonlinear
and difficult to solve explicitly. The test statistics based on
Lagrange Multiplier (LM) approach are derived, since this
LM test is based on the parameters’ estimation under the
null hypothesis and its computation is simple only requiring
residuals.This paper focuses on amore general type of outlier
that has specific impacts on subsequent observations, of
which an individual outliermodel is a particular case.The test
statistics of a general type of outlier and an individual outlier
are, respectively, calculated through Lagrange Multiplier
(LM) approach. Furthermore, this paper would demonstrate
outlier detection of fixed effects models and random effects
models by the corresponding LM test statistics.

The rest of the paper is organized as follows. Section 2
briefly presents panel data models with individual effects.
Section 3 proposes the variance intervention effects out-
lier model based on the remainder disturbance. Section 4
describes maximum likelihood estimator. Section 5 provides
an LM testing approach for the detection and identification
of a general type of outlier. Furthermore, fixed effects and
random effects models are discussed with outliers and the
corresponding LM test statistics are given. The LM test
statistics of an individual outlier model as a particular case
are given. Section 6 performs an application of the proposed
method using a panel data and explains the advantages of the
method. Finally, Section 7 provides the concluding remarks.
Proofs of the main results are provided in the appendix.

2. Panel Data Models with Individual Effects

Firstly, the following panel data model with individual effects
is considered:

𝑦
𝑖𝑡
= 𝛼
𝑖
+ 𝑥
󸀠

𝑖𝑡
𝛽 + 𝜀
𝑖𝑡
, 𝑖 = 1, 2, . . . , 𝑁; 𝑡 = 1, 2, . . . , 𝑇, (1)

where the subscript 𝑖 denotes individuals and 𝑡 denotes time.
This means that 𝑖 represents the cross-section dimension and
𝑡 denotes the time series dimension. Here 𝑦

𝑖𝑡
is a dependent

variable observed for individual 𝑖 at time 𝑡, 𝑥
𝑖𝑡
is a 𝐾 × 1

column vector of observable independent variables (𝑥󸀠
𝑖𝑡
=

(𝑥
𝑖𝑡1
, 𝑥
𝑖𝑡2
, . . . , 𝑥

𝑖𝑡𝐾
)), 𝛽 is a𝐾 × 1 column vector of regression

parameters, 𝛼
𝑖
is the unobserved time-invariant individual

effect, and 𝜀
𝑖𝑡
denotes the remainder disturbance term that

is uncorrelated over time and across cross-sectional units.
Thepanel datamodel can be represented in amatrix form,

and then

𝑦 = 𝑥𝛽 + 𝑧
𝛼
𝛼 + 𝜀, (2)

where 𝑦 = (𝑦
11
, 𝑦
12
, . . . , 𝑦

𝑁𝑇
)
󸀠 is an 𝑁𝑇 × 1 vector of the

dependent variable, 𝑥 = (𝑥
11
, 𝑥
12
, . . . , 𝑥

𝑁𝑇
)
󸀠 is an 𝑁𝑇 × 𝐾

matrix,𝐾 is the number of explanatory variables,𝑍
𝛼
= 𝐼
𝑁
⊗𝑙
𝑇
,

𝑙
𝑇
= (1, 1, . . . , 1)

󸀠, 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑁
)
󸀠 is the𝑁 × 1 vector of

individual effects coefficients,⊗ is theKronecker product, and
𝜀 is an𝑁𝑇 × 1 vector.

3. An Intervention Effects Outlier Model
Based Variance

In a panel data model the standard assumption is that
the majority of data follow a certain specified distribution.
Unfortunately, a certain small percentage of the panel data
take values unlikely to follow this same distribution. The
residuals are likely to be contaminatedwith outliers in a panel
data model. This means that the error term has the deviation
of variance in the model. Since the main purpose of this
paper is to propose a method of outlier detection based on
the remainder disturbance, it will be assumed that there is no
intervention effects problembased on variance if𝛼

𝑖
is present,

and therefore this paper will not deal with the inference with
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the variance of 𝛼
𝑖
. The following is the panel data model for

(1):

𝑦
𝑖𝑡
= 𝛼
𝑖
+ 𝑥
󸀠

𝑖𝑡
𝛽 + 𝜀
𝑖𝑡
, 𝑖 = 1, 2, . . . , 𝑁; 𝑡 = 1, 2, . . . , 𝑇. (3)

Suppose outliers interferewith the remainder disturbance
𝜀
𝑖𝑡
and there are the following two conditions.One is variation

across both individuals and time where var(𝜀
𝑗𝑡
) = 𝜎

2

𝑗𝑡
; the

other is variation across only individuals where var(𝜀
𝑗𝑡
) = 𝜎
2

𝑗
.

Here deviations of the variance across only individual can be
assumed, so the variance of the remainder disturbance will be

var (𝜀
𝑗
) = 𝜎
2

𝜀
𝑓
𝜀
(𝜃
𝜀𝑗
) 𝐼
𝑇
, 𝜃
𝜀𝑗
̸= 0,

var (𝜀
𝑖
) = 𝜎
2

𝜀
𝐼
𝑇
, 𝑖 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗,

(4)

where 𝑓
𝜀
(𝜃
𝜀
) is arbitrary strictly positive twice continuously

differentiable function satisfying the conditions 𝑓
𝜀
(𝜃
𝜀
) > 0,

𝑓
𝜀
(0) = 1, and 𝑓(1)

𝜀
(0) ̸= 0. 𝑓(1)

𝜀
(𝑥) denotes the first derivative

of 𝑓
𝜀
(𝑥) with respect to 𝑥.
The panel data outlier model is based on the variance of

remainder disturbance in a matrix form, and then

𝑦 = 𝑥𝛽 + 𝑧
𝛼
𝛼 + 𝜀, 𝜀 ∼ (0, Ω

𝜀
) , (5)

where Ω
𝜀
= 𝜎
2

𝜀
[diag(𝐼

𝑇
, 𝐼
𝑇
, . . . , 𝑓

𝜀
(𝜃
𝜀𝑗
)𝐼
𝑇
, 𝐼
𝑇
, . . . , 𝐼

𝑇
)] and

𝜃
𝜀𝑗

̸= 0. 𝑓
𝜀
(𝜃
𝜀𝑗
)𝐼
𝑇
denotes the 𝑗th diagonal matrix. It is the

𝑗th individual variance interventions’ effects model. If the
outliers impact not only the 𝑗th individual observations, but
also the subsequent observations, then without loss of gen-
erality, it can be assumed that the outliers employ sequence
impacts, which are respectively, 𝑓

𝜀
(𝜃
𝜀𝑗1
), 𝑓
𝜀
(𝜃
𝜀𝑗2
), . . . , 𝑓

𝜀
(𝜃
𝜀𝑗𝑘

);
then Ω

𝜀
= 𝜎
2

𝜀
[𝐼
𝑁𝑇

− ∑
𝑗∈𝐽
(1 − 𝑓

𝜀
(𝜃
𝜀𝑗
))𝐷
𝑗
]; here 𝐽 =

{𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑘
}. 𝐷
𝑗
denotes a 𝑁𝑇 × 𝑁𝑇 matrix with its 𝑗th

diagonal matrix being 𝐼
𝑇
and other matrixes being zeros.

Remark 1. The research scholars of science subjects such as
applied mathematics, statistics, and engineering have made
active and useful contributions to the detection of outliers
and provided some methods to identify outliers, such as
Grubbs test, 𝑡-test, Dixon test, and Nair test. Grubbs test and
Dixon test are not generally effective against identification
of multiple outliers. 𝑡-test calculation is more complex and
generally used for small samples. Nair test requires variance
which is assumed to be known. A number of observations
do not contain only one outlier, but there are several outliers;
thus, the traditional methods especially for detection of a
single outlier have less resistance for the pollution of multiple
outliers and are highly likely producing the shielding effect
once when there are multiple outliers in the sample data.

Remark 2. The outlier model with intervention effects based
variance can be applied in a wide range and considers the case
in which there are multiple outliers in the observations. By
hypothesis testing to construct a valid test statistic, thismodel
develops a new method for the detection of multivariate
outliers. It has a strong ability to resist the pollution from
outliers. This method can avoid the shielding effect due to
the presence of multivariate outliers and also can be used
continuously for the detection of multiple outliers.

4. Maximum Likelihood (ML) Estimation

Under the assumption of normality, the log-likelihood func-
tion for the model (2) can be written as

𝐿 (𝑦 | 𝑥; 𝛽, 𝜎
2

𝜀
, 𝜎
2

𝛼
) = 𝑐 −

1

2

ln |Ω| − 1
2

𝑢
󸀠

Ω
−1

𝑢

= 𝑐 −

1

2

𝑁

∑

𝑖=1

ln 󵄨󵄨󵄨
󵄨
Ω
𝑖

󵄨
󵄨
󵄨
󵄨
−

1

2

𝑁

∑

𝑖=1

𝑢
󸀠

𝑖
Ω
−1

𝑖
𝑢
𝑖
,

(6)

where 𝑢 = 𝑦 − 𝑥𝛽 and 𝑢
𝑖
= 𝑦
𝑖
− 𝑥
𝑖
𝛽. Ω is the

variance-covariancematrix of the error term 𝑢.The variance-
covariance matrix can be computed as

Ω = 𝐸 (𝑢𝑢
󸀠

) = 𝑍
𝛼
𝐸 (𝛼𝛼

󸀠

)𝑍
󸀠

𝛼
+ 𝐸 (𝜀𝜀

󸀠

)

= 𝜎
2

𝛼
(𝐼
𝑁
⊗ 𝐽
𝑇
) + 𝜎
2

𝜀
𝐼
𝑁𝑇
,

(7)

where Ω
𝑖
= 𝐸(𝑢

𝑖
𝑢
󸀠

𝑖
) = 𝜎
2

𝛼
𝑙
𝑇
𝑙
󸀠

𝑇
+ 𝜎
2

𝜀
𝐼
𝑇
and 𝑙
𝑇
= (1, 1, . . . , 1)

󸀠 is
the 𝑇 × 1 column vector. In order to obtain the ML estimator
of the regression coefficients,Ω−1 needs to be computed as

Ω
−1

= 𝜎
−2

𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

diag [𝐽
𝑇
, . . . , 𝐽

𝑇
] ,

Ω
−1

𝑖
= 𝜎
−2

𝜀
(𝐼
𝑇
−

𝜎
2

𝛼

𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀

𝑙
𝑇
𝑙
󸀠

𝑇
) .

(8)

The maximum likelihood estimators of 𝛽, 𝜎2
𝛼
, and 𝜎2

𝜇
are

obtained by solving the following normal equations:

𝜕𝐿

𝜕𝛽

= 𝑥
󸀠

Ω
−1

𝑦 − (𝑥
󸀠

Ω
−1

𝑥) 𝛽 = 𝑥
󸀠

Ω
−1

𝑢 = 0,

𝜕𝐿

𝜕𝜎
2

𝜀

= −

1

2

trΩ−1 + 1
2

𝑢
󸀠

Ω
−2

𝑢 = 0,

𝜕𝐿

𝜕𝜎
2

𝛼

= −

1

2

trΩ−1 (𝐼
𝑁
⊗ 𝐽
𝑇
) +

1

2

𝑢
󸀠

Ω
−2

(𝐼
𝑁
⊗ 𝐽
𝑇
) 𝑢 = 0.

(9)

It can be noted that these equations would be nonlinear
and difficult to solve explicitly. Let ̃𝛽, 𝜎̃2

𝜀
, and 𝜎̃2

𝛼
denote the

ML estimates of 𝛽, 𝜎2
𝜀
, and 𝜎2

𝛼
.

5. Outlier Detection and Testing

In the following context, outliers in panel datawill be detected
and the corresponding LM test for the variance intervention
effects model will be derived.

5.1. LM Test with a General Type of Outlier for 𝐻
0
: 𝜃
𝜀
= 0.

The log-likelihood function for variance intervention effects
model can be written as

𝐿 (𝑦 | 𝑥; 𝛽, 𝜌) = 𝑐 −

1

2

ln |Ω| − 1
2

𝑢
󸀠

Ω
−1

𝑢, (10)

where 𝜌 = (𝜎2
𝜀
, 𝜎
2

𝛼
, 𝜃)
󸀠

= {𝜌
𝑟
}.
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The Hessian matrix of 𝐿 can be obtained:

𝐻 =

[

[

[

[

𝜕
2

𝜕𝛽𝜕𝛽
󸀠

𝜕
2

𝜕𝛽𝜕𝜌
󸀠

𝜕
2

𝜕𝜌𝜕𝛽
󸀠

𝜕
2

𝜕𝜌𝜕𝜌
󸀠

]

]

]

]

. (11)

Following Magnus [25], Lejeune [26], and Baltagi [24],
the information matrix is given by 𝜓 = −𝐸

0
[𝐻 | 𝑥; 𝛽, 𝜌]

denoting expectation taken with respect to the true distri-
bution. To calculate the information matrix, it is noted that
𝜕
2

/𝜕𝛽𝜕𝛽
󸀠

= 𝑥
󸀠

Ω
−1

𝑥 and the first derivatives of the likelihood
function with respect to 𝛽, evaluated at the restricted MLE of
𝛽, are zero. Thus, cov(𝜕𝐿/𝜕𝛽, 𝜕𝐿/𝜕𝜌) = 0.

Thus the information matrix under the null hypothesis is

𝜓 = −𝐸
0
[𝐻 | 𝑥; 𝛽, 𝜌] =

[

[

[

[

𝜕
2

𝜕𝛽𝜕𝛽
󸀠

0

0

𝜕
2

𝜕𝜌𝜕𝜌
󸀠

]

]

]

]

. (12)

The information matrix is block-diagonal between 𝛽 and
𝜌, and the part of the information matrix corresponding to
𝛽 is ignored in computing the LM statistic since the null
hypothesis only involves 𝜌. Therefore, the LM statistic may
be written as

LM = 𝐷
󸀠

𝜌
𝜓̃
−1

𝜌
𝐷
𝜌
, (13)

where 𝐷
𝜌
= 𝜕𝐿/𝜕𝜌(𝜌) is a vector of partial derivatives of the

log-likelihood with respect to each element of 𝜌, evaluated
at the restricted MLE 𝜌. 𝜓̃

𝜌
= 𝐸[−𝜕

2

𝐿/𝜕𝜌𝜕𝜌
󸀠

](𝜌) is the
informationmatrix, evaluated at the restrictedMLE 𝜌. Under
the null hypothesis, this statistic is asymptotically distributed
as a 𝜒2 with 𝑘

𝜌
degrees of freedom, 𝑘

𝜌
being the number of

parameters in the vector 𝜌.
The first derivative𝐷

𝜌
can be obtained as

𝜕𝐿

𝜕𝜌
𝑟

= −

1

2

tr [Ω−1 (𝜕Ω
𝜕𝜌
𝑟

)] +

1

2

[𝑢
󸀠

Ω
−1

(

𝜕Ω

𝜕𝜌
𝑟

)Ω
−1

𝑢] .

(14)

For the information matrix, the formula is given by Baltagi
[24]:

𝜓
𝑟𝑠
= 𝐸[−

𝜕
2

𝐿

𝜕𝜌
𝑟
𝜕𝜌
𝑠

] =

1

2

tr [Ω−1 (𝜕Ω
𝜕𝜌
𝑟

)Ω
−1

(

𝜕Ω

𝜕𝜌
𝑠

)] .

(15)

Based on (10), log-likelihood function may be written as

𝐿 (𝑦 | 𝑥; 𝛽, 𝜎
2

𝜀
, 𝜎
2

𝛼
, 𝜃
𝜀𝑗
) = 𝑐 −

1

2

ln |Ω| − 1
2

𝑢
󸀠

Ω
−1

𝑢. (16)

Here

Ω = 𝜎
2

𝛼
(𝐼
𝑁
⊗ 𝐽
𝑇
) + 𝜎
2

𝜀
(𝐼
𝑁𝑇
−∑

𝑖∈𝐽

(1 − 𝑓
𝜀
(𝜃
𝜀𝑗
))𝐷
𝑗
) .

(17)

Testing for outliers in this model 𝐻
0
: Ω
𝜀
= 𝜎
2

𝜀
𝐼
𝑁𝑇
∼ 𝐻
1
:

Ω
𝜀
̸= 𝜎
2

𝜀
𝐼
𝑁𝑇

amounts to testing 𝐻
0
: 𝜃
𝜀𝑗
= 0 ∼ 𝐻

1
: 𝜃
𝜀𝑗

̸=

0, 𝑗 ∈ 𝐽. Let 𝜌1 = (𝜎2
𝜀
, 𝜎
2

𝛼
, 𝜃
𝜀𝑗1
, . . . , 𝜃

𝜀𝑗𝑘

)
󸀠, and under the null

hypothesis𝐻
0
, the inverse matrix of the covariance matrix is

Ω
−1
󵄨
󵄨
󵄨
󵄨
󵄨𝐻0

= 𝜎
−2

𝜀
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2

𝛼
+ 𝜎
2

𝜀
)

−1

diag [𝐽
𝑇
, . . . , 𝐽

𝑇
] .

(18)

Theorem 3. If 𝜎̃2
𝜀
, 𝜎̃
2

𝛼
denote the ML estimates of 𝜎2

𝜀
, 𝜎
2

𝛼
,

𝐽 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑘
}. Outliers interfere with the remainder

disturbance 𝜀
𝑖𝑡
. The LM test statistic is given by

𝐿𝑀 = 𝐷
󸀠

𝜌
𝜓̃
−1

𝜌
𝐷
𝜌

=

2
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2
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𝑘

∑

𝑟=1

V2
𝑟
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1
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𝑘
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V
𝑟
V
𝑠
) ,

(19)

where

𝜆 = 𝜎̃
2

𝛼
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

,

V
𝑟
= −

𝑇

2

(1 − 𝜆) +

1

2

𝜎̃
−2

𝜀

𝑇

∑

𝑠=1

𝑢̃
2

𝑗𝑟𝑠

+ (−𝜎̃
−2

𝜀
𝜆 +

𝜎̃
−2

𝜀
𝑇𝜆
2

2

)(

𝑇

∑

𝑠,𝑡=1

𝑢̃
𝑗𝑟𝑠
𝑢̃
𝑗𝑟𝑡
) .

(20)

Under the null hypothesis 𝐻
0
, this statistic is asymptotically

distributed as 𝜒2 with 𝑘 degrees of freedom.

5.2. 𝐿𝑀 Test of Fixed Effects or Random Effects Model with
Outliers for 𝐻

0
: 𝜃
𝜀
=0. This section would consider fixed

effects model of panel data with outliers and random effects
model of panel data with the 𝑟th individual outliers.

Proposition 4. If 𝑘 > 1 and 𝜎2
𝛼
= 0, so the LM statistic for

fixed effects model of panel data with a number of individuals
outliers is given by

𝐿𝑀 = 𝐷
󸀠

𝜌
𝜓̃
−1

𝜌
𝐷
𝜌
=

2

𝑇

(

𝑘

∑

𝑟=1

𝜏
2

𝑟
+

1

𝑁 − 𝑘

𝑘

∑

𝑟,𝑠=1

𝜏
𝑟
𝜏
𝑠
) , (21)

where 𝜏
𝑟
= −(𝑇/2) + (1/2)𝜎̃

−2

𝜀
∑
𝑇

𝑠=1
𝑢̃
2

𝑗𝑟𝑠
.

Under the null hypothesis𝐻
0
, this statistic is asymptotically

distributed as 𝜒2 with 𝑘 degrees of freedom.

Proposition 5. If 𝑘 = 1 and 𝜎2
𝛼
> 0, so the LM statistic for

random effects model of panel data with the 𝑟th individual
outliers is given by

𝐿𝑀 = 𝐷
󸀠

𝜌
𝜓̃
−1

𝜌
𝐷
𝜌
=

2𝑁V2
𝑟

𝑇 (1 − 2𝜆 + 𝑇𝜆
2
) (𝑁 − 1)

, (22)

where V
𝑟
= −(𝑇/2)(1 − 𝜆) + (1/2)𝜎̃

−2

𝜀
∑
𝑇
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2

𝑟𝑠
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𝜀
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(𝜎̃
−2

𝜀
𝑇𝜆
2

/2))(∑
𝑇

𝑠,𝑡=1
𝑢̃
𝑟𝑠
𝑢̃
𝑟𝑡
).

Under the null hypothesis𝐻
0
, this statistic is asymptotically

distributed as 𝜒2 with one degree of freedom.
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Figure 1: Residual plots of the basic model.

Proposition 6. If 𝑘 = 1 and 𝜎2
𝛼
= 0, so the LM statistic for

fixed effects model of panel data with the 𝑟th individual outliers
is given by

𝐿𝑀 = 𝐷
󸀠

𝜌
𝜓̃
−1

𝜌
𝐷
𝜌
=

2𝑁𝜏
2

𝑟

𝑇 (𝑁 − 1)

, (23)

where 𝜏
𝑟
= −(𝑇/2) + (1/2)𝜎̃

−2

𝜀
∑
𝑇

𝑠=1
𝑢̃
2

𝑟𝑠
.

Under the null hypothesis𝐻
0
, this statistic is asymptotically

distributed as 𝜒2 with one degree of freedom.

6. Application Analysis

In this section, an application of the above proposed method
using a panel data will be performed and the advantages of
the proposed method will be explained.

To evaluate the performance and advantages of the
proposed method to detect outliers in panel data, a sample
is used as the test dataset to explore main variables’ effects
on regional environment. The dataset consists of 570 obser-
vations for 30 provinces in China from 1992 to 2010.The basic
model is

ln CO2
𝑖,𝑡
= 𝛼
𝑖
+ 𝛽
1
ln EX
𝑖,𝑡
+ 𝛽
2
ln IM
𝑖,𝑡
+ 𝛽
3
lnGP

𝑖,𝑡
+ 𝜀
𝑖,𝑡

(24)

with the regional carbon emissions CO
2
as dependent envi-

ronmental variable, regional export volume EX and import
volume IM asmain independent trade variables, and regional
gross domestic product GP as main regional development
level variables. The source data of independent variables are
mainly downloaded from National Bureau of Statistics of
China and carbon emissions are obtained by following the
method of Lin and Sun [27] based on the quantity of fossil fuel
consumption data and the CO2 emissions factors of various
types of energy from the Intergovernmental Panel on Climate
Change (IPCC) reference approach.

6.1. Outlier Detection of the Tested Panel Data. Although the
residual plots (Figure 1) of the basic model show that some
data points can be initially judged as abnormal, detection of

Table 1: Outlier detection results of the basic model through LM
test.

Individual ∑𝑇
𝑠=1
𝑢̃
2

𝑟𝑠
∑
𝑇

𝑠,𝑡=1
𝑢̃
𝑟𝑠
𝑢̃
𝑟𝑡

LM-value Outlier (yes/no)
#1 56.22 1052.80 1.38 No
#2 41.05 772.05 0.74 No
#3 17.56 330.87 5.23 No
#4 25.51 472.84 0.05 No
#5 7.01 98.36 42.88 Yes
#6 0.10 0.00 6.51 No
#7 0.42 4.76 4.57 No
#8 0.94 10.85 1.29 No
#9 52.52 996.65 7.29 No
#10 1.37 20.05 2.00 No
#11 5.11 95.80 7.22 No
#12 8.73 160.28 2.29 No
#13 16.05 282.91 9.26 No
#14 0.49 3.97 2.47 No
#15 3.38 56.06 0.66 No
#16 25.91 490.25 6.13 No
#17 8.19 153.57 6.16 No
#18 8.93 163.99 2.23 No
#19 8.92 146.43 10.90 Yes
#20 1.47 17.22 0.01 No
#21 68.49 1230.12 275.30 Yes
#22 31.74 599.70 4.51 No
#23 32.49 609.28 0.69 No
#24 3.79 63.53 0.51 No
#25 34.95 648.53 1.55 No
#26 2.73 48.91 4.93 No
#27 10.66 196.21 1.69 No
#28 1.82 23.83 0.01 No
#29 2.60 26.70 10.25 Yes
#30 0.34 2.12 3.42 No

the outliers only from the residual plots is not strict enough
because the standard of diagnostic of outliers from residual
plots is very vague and even sometimes we will encounter
some tougher cases to judge outliers from residual plot. This
paper would apply the LM test method to identify outliers
accurately.

For those nonidentified outlier tests, which mean that we
do not know in advance which data is outlier point, the test
statistic LMmax = LM

𝑖
.TheBonferroni inequality will be used

to approximate the function, and then the process to identify
nonidentified outliers with the confidence level as 𝛼 will be
as follows: if LMmax ≥ 𝜒

2

𝛼/𝑛
(1) (𝑛 is sample size), the data

estimated will be outliers.
Let the confidence level 𝛼 = 0.05, and then the critical

value𝜒2
0.05/30

(1) = 9.88 for detection of nonidentified outliers.
Thus, we can find that individuals such as #5, #19, #21, and #29
in Table 1 are detected as outliers as their LM test statistics are
more than the critical value.

When data analysis, it can be probably happened that
univariate does not meet the characteristics of structure and
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Table 2: Regression results of the basic and correction models.

Model 𝛽
1

𝛽
2

𝛽
3

𝑛

Coef. Std. err. 𝑃 > |𝑡| Coef Std. err. 𝑃 > |𝑡| Coef Std. err. 𝑃 > |𝑡|

Basic 0.50 0.05 0.00 0.03 0.05 0.58 −0.67 0.09 0.00 570
Correction 1 0.46 0.05 0.00 0.08 0.05 0.09 −0.70 0.08 0.00 494
Correction 2 0.48 0.03 0.00 0.05 0.03 0.05 −0.73 0.05 0.00 494

Table 3: Unit root test results of correction models.

Model LLC HT IPS Fisher-ADF
Correction 1

Statistic −8.7425 −6.3660 −5.8678 −9.8327
𝑃 value 0.0000 0.0000 0.0000 0.0000

Correction 2
Statistic −8.8354 −5.3912 −6.6452 −9.2965
𝑃 value 0.0000 0.0000 0.0000 0.0000

The null hypothesis of LLC, HT, IPS, and Fisher-ADF test is the data which contain a unit root.

correlation among the variables. With the LM test method,
significant outliers which could disrupt such relationship can
be effectively identified, while the traditional test methods
are not in a position to deal with this. Outliers can provide
us with valuable information; for example, some significant
discoveries often can be obtained on the condition of obser-
vations beyond the degree of dispersion of the next random
errors. Also, outliers could help us to get an approach of
model modification and optimization.

6.2. Correction Model. The following would propose an
adjustment model based on above results of the panel model
outlier test. After establishing correction model, the outlier
test results will be validated by the contrast of the merits of
correction model and the original model. The following are
the adjustment plan of correction models.

6.2.1. Correction Model 1. As the results of Table 1 show
that individuals #5, #19, #21, and #29 are outliers and #21
especially has a higher degree of abnormality, the correction
model 1 would exclude the above abnormal individuals. This
corrected sample size is 494 and regression results of this
model are shown in Table 2.

6.2.2. Correction Model 2. Individuals #5, #19, #21, and #29
have been detected as outliers. Let such abnormal data reflect
in the following model, and then the correction model 2 will
be as follows:

ln CO2
𝑖,𝑡
= 𝛼
𝑖
+ 𝛽
1
ln EX
𝑖,𝑡
+ 𝛽
2
ln IM
𝑖,𝑡
+ 𝛽
3
lnGP

𝑖,𝑡
+ 𝜀
𝑖,𝑡
,

𝜀
𝑖𝑡
∼ 𝑁(0, 𝜎

2

𝜀
) , 𝑖 ̸= 5, 19, 21, 29,

𝜀
5𝑡
∼ 𝑁(0,

𝜎
2

𝜀

𝜅
1

) , 𝜀
19𝑡
∼ 𝑁(0,

𝜎
2

𝜀

𝜅
2

) ,

𝜀
21𝑡
∼ 𝑁(0,

𝜎
2

𝜀

𝜅
3

) , 𝜀
29𝑡
∼ 𝑁(0,

𝜎
2

𝜀

𝜅
4

) .

(25)

When taking into account the presence of outliers, the
regression results of correctionmodels are comparedwith the
basic model and the estimated value is changing. 𝑃 value of
the basic model shows that the coefficient of ln IM does not
pass the test, while the coefficient of the correction model
1 passes the test at 10% confidence level and the correction
model 2 passes the test at 5% confidence level.The coefficients
of other two variables (ln EX, lnGP) in two correctionmodels
pass the test at 1% confidence level. The results in Table 2
show that the indicators of 𝑃 value and std. err. are improving
in two correction models; thus, it can be explained that the
presence of outliers does affect the accuracy of the estimated
value and correction based on the suggested method allows
the regression results to be more accurate.

To further evaluate the regression results of correction
models, the residuals will be tested whether they are stable
or not, following the methods such as LLC test [28], HT test
[29], IPS test [30], and Fisher-ADF test [31]. Table 3 shows
the results of the diagnostic test for residuals of panel data.
The results show that the correction models have smooth
residuals of panel data at the 1% significance level, which
indicates that regression results of correction models are
better than the basic model with evaluated robustness.

This application case shows the efficiency of LM test to
identify outliers and reflects the good effect of detection
through avoidance of shielding effect.

7. Conclusion
The presence of individual outliers’ properties in panel
data can affect parameter estimates and statistical test in a
dramatic way. There are some literatures available on time
series model with respect to outlier, whereas there are very
few studies on panel data models. In case of the existence of
individual effect, the traditional mean-shift model cannot be
applied in detecting the outliers for panel data with individual
effect. Therefore, this paper developed the variance interven-
tion effects model based on the remainder disturbance to
detect outliers. Note that the equations of MLE with outliers’
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model would be nonlinear and difficult to solve explicitly and
directly. These methods of the outlier detection are available
through the Lagrange Multiplier (LM) test in panel data.
The accurate distribution of the test statistics is not available.
Although the test statistics based on LM are asymptotically
distributed as 𝜒2, some researches prove that LM test is also
very effective even in small samples. This paper presented
a more effective LM testing approach for a general type
of outliers’ detection based on variance intervention effects
model. Furthermore, the corresponding LM test statistics of
fixed effects model and random effects model with outliers
are obtained. The LM test statistics of an individual outlier
model as a particular case are given. This maximum likeli-
hood estimation (ML) can be performed in Stata by using
the regress command.Through the implemented estimation,
the ML estimates of 𝜎2

𝜀
and 𝜎2

𝛼
are obtained under the null

hypothesis. The LM test statistics of outlier detection for
each individual are calculated as proposed. Following the
procedure, this paper recognized and identified individual
outliers by using the results of the LM test statistics. Outlier
detection and identification can provide some additional and
valuable information which improve the robust direction of
statistical model.

Appendix

This appendix derives the LM test for the intervention model
with the variance of 𝜀

𝑖𝑡
, and the null hypothesis is given by

𝐻
0
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= 0. Under𝐻
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, the following are obtained:

𝜕Ω

𝜕𝜎
2

𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐻0

= 𝐼
𝑁𝑇
, (A.1)

𝜕Ω

𝜕𝜎
2

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐻0

= 𝐼
𝑁
⊗ 𝐽
𝑇
, (A.2)

𝜕Ω

𝜕𝜃
𝜀𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐻0

= 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗
, (A.3)

𝜕𝐿

𝜕𝜎
2

𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐻0

= −

1

2

tr {{𝜎̃−2
𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝐼
𝑁𝑇
}

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝐼
𝑁𝑇

× {𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝑢̃

= −

1

2

tr {{𝜎̃−2
𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝐼
𝑁𝑇
}

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]}

2

𝑢̃

= −

𝑁𝑇

2

𝜎̃
−2

𝜀
+

𝑁𝑇𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

2

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]}

2

𝑢̃

= 0,

(A.4)
𝜕𝐿

𝜕𝜎
2

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐻0

= −

1

2

tr {{𝜎̃−2
𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} (𝐼
𝑁
⊗ 𝐽
𝑇
)}

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} (𝐼
𝑁
⊗ 𝐽
𝑇
)

× {𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝑢̃

= −

1

2

tr {{𝜎̃−2
𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} (𝐼
𝑁
⊗ 𝐽
𝑇
)}

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]}

2

(𝐼
𝑁
⊗ 𝐽
𝑇
) 𝑢̃

= −

𝑁𝑇

2

𝜎̃
−2

𝜀
+ 𝑁𝑇

2
𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

2

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]}

2

(𝐼
𝑁
⊗ 𝐽
𝑇
) 𝑢̃

= 0,

(A.5)

𝜕𝐿

𝜕𝜃
𝜀𝑗𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐻0

= −

1

2

tr {{𝜎̃−2
𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝜎̃
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
}

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1
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× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} (𝜎̃
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
)

× {𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝑢̃

= −

𝑇

2

𝑓
󸀠

𝜀
(0) +

𝑇

2

𝜎̃
2

𝛼
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

𝑓
󸀠

𝜀
(0)

+

1

2

𝑢̃
󸀠

{𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
− 𝜎̃
2

𝛼
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× 𝑓
󸀠

𝜀
(0) diag [𝐽

𝑇
, . . . , 𝐽

𝑇
]𝐷
𝑗𝑟
}

× {𝜎̃
−2

𝜀
𝐼
𝑁𝑇
− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]} 𝑢̃

= −

𝑇

2

𝑓
󸀠

𝜀
(0) +

𝑇

2

𝜎̃
2

𝛼
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

𝑓
󸀠

𝜀
(0)

+

1

2

𝑢̃
󸀠

{𝜎̃
−2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
− 2𝜎̃
2

𝛼
𝜎̃
−2

𝜀
𝑓
󸀠

𝜀
(0)

× (𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

× diag [𝐽
𝑇
, . . . , 𝐽

𝑇
]𝐷
𝑗𝑟

+ 𝑇𝜎̃
4

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−2

× 𝑓
󸀠

𝜀
(0) diag [𝐽

𝑇
, . . . , 𝐽

𝑇
]𝐷
𝑗𝑟
} 𝑢

= −

𝑇

2

𝑓
󸀠

𝜀
(0) +

𝑇

2

𝜎̃
2

𝛼
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−1

𝑓
󸀠

𝜀
(0)

+

1

2

𝜎̃
−2

𝜀
𝑓
󸀠

𝜀
(0)

𝑇

∑

𝑠=1

𝑢̃
2

𝑗𝑟𝑠

− 𝜎̃
2

𝛼
𝜎̃
−2

𝜀
𝑓
󸀠

𝜀
(0) (𝑇𝜎̃

2

𝛼
+ 𝜎̃
2

𝜀
)

−1

𝑇

∑

𝑠,𝑡=1

(𝑢̃
𝑗𝑟𝑠
⋅ 𝑢̃
𝑗𝑟𝑡
)

+

𝑇

2

𝜎̃
4

𝛼
𝜎̃
−2

𝜀
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)

−2

𝑓
󸀠

𝜀
(0)

𝑇

∑

𝑠,𝑡=1

(𝑢̃
𝑗𝑟𝑠
𝑢̃
𝑗𝑟𝑡
) .

(A.6)
Using (15), the elements of the information matrix are given
by

𝜓
11
= 𝐸[−

𝜕
2

𝐿

𝜕 (𝜎
2

𝜀
)
2
]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

2

]

=

𝑁𝑇

2

𝜎
−4

𝜀
− 𝑁𝑇𝜎

2

𝛼
𝜎
−4

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

+

𝑁𝑇
2

2

𝜎
4

𝛼
𝜎
−4

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−2

,

𝜓
22
= 𝐸[−

𝜕
2

𝐿

𝜕 (𝜎
2

𝛼
)
2
]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× (𝐼
𝑁
⊗ 𝐽
𝑇
)

× (𝜎
−2

𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× (𝐼
𝑁
⊗ 𝐽
𝑇
)]

=

1

2

𝜎
−4

𝜀
𝑁𝑇
2

− 𝜎
2

𝛼
𝜎
−4

𝜀
𝑁𝑇
3

(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

+

1

2

𝜎
4

𝛼
𝜎
−4

𝜀
𝑁𝑇
4

(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−2

,

𝜓
12
= 𝐸[−

𝜕
2

𝐿

𝜕 (𝜎
2

𝜀
) 𝜕 (𝜎
2

𝛼
)

]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× (𝜎
−2

𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× (𝐼
𝑁
⊗ 𝐽
𝑇
)]

=

1

2

𝜎
−4

𝜀
𝑁𝑇 − 𝜎

2

𝛼
𝜎
−4

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

𝑁𝑇
2

+

1

2

𝜎
4

𝛼
𝜎
−4

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−2

𝑁𝑇
3

= 𝜓
21
,

𝜓
1𝑗𝑟
= 𝐸

[

[

−

𝜕
2

𝐿

𝜕 (𝜎
2

𝜀
) 𝜕 (𝜃
𝜀𝑗𝑟
)

]

]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

2

× 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
]

=

𝑇

2

𝜎
−2

𝜀
𝑓
󸀠

𝜀
(0) − 𝜎

2

𝛼
𝜎
−2

𝜀
𝑇 (𝑇𝜎

2

𝛼
+ 𝜎
2

𝜀
)

−1

𝑓
󸀠

𝜀
(0)

+

1

2

𝜎
4

𝛼
𝜎
−2

𝜀
𝑇
2

(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−2

𝑓
󸀠

𝜀
(0)

= 𝜓
𝑗𝑟1
,

𝜓
2𝑗𝑟
= 𝐸

[

[

−

𝜕
2

𝐿

𝜕 (𝜎
2

𝛼
) 𝜕 (𝜃
𝜀𝑗𝑟
)

]

]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× (𝐼
𝑁
⊗ 𝐽
𝑇
)
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× (𝜎
−2

𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
]

=

1

2

tr [(𝜎−4
𝜀
(𝐼
𝑁
⊗ 𝐽
𝑇
) − 2𝜎

2

𝛼
𝜎
−4

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

× (𝐼
𝑁
⊗ 𝐽
𝑇
)
2

+ 𝜎
4

𝛼
𝜎
−4

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−2

(𝐼
𝑁
⊗ 𝐽
𝑇
)
3

)

× 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
]

=

1

2

𝑇𝜎
−2

𝜀
𝑓
󸀠

𝜀
(0) − 𝑇

2

𝜎
2

𝛼
𝜎
−2

𝜀
𝑓
󸀠

𝜀
(0) (𝑇𝜎

2

𝛼
+ 𝜎
2

𝜀
)

−1

+

1

2

𝑇
3

𝜎
4

𝛼
𝜎
−2

𝜀
𝑓
󸀠

𝜀
(0) (𝑇𝜎

2

𝛼
+ 𝜎
2

𝜀
)

−2

= 𝜓
𝑗𝑟2
,

𝜓
𝑗𝑟𝑗𝑟
= 𝐸

[

[

[

−

𝜕
2

𝐿

𝜕 (𝜃
𝜀𝑗𝑟
)

2

]

]

]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟

× (𝜎
−2

𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟
]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

2

× 𝜎
4

𝜀
(𝑓
󸀠

𝜀
(0))

2

(𝐷
𝑗𝑟
)

2

]

=

1

2

tr [(𝑓󸀠
𝜀
(0))

2

(𝐷
𝑗𝑟
)

2

− 2𝜎
2

𝛼
(𝑓
󸀠

𝜀
(0))

2

× (𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
) (𝐷
𝑗𝑟
)

2

+ 𝜎
4

𝛼
(𝑓
󸀠

𝜀
(0))

2

(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−2

(𝐼
𝑁
⊗ 𝐽
𝑇
)
2

(𝐷
𝑗𝑟
)

2

]

=

1

2

𝑇 (𝑓
󸀠

𝜀
(0))

2

− 𝑇𝜎
2

𝛼
(𝑓
󸀠

𝜀
(0))

2

(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

+

1

2

𝑇
2

𝜎
4

𝛼
(𝑓
󸀠

𝜀
(0))

2

(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−2

,

𝜓
𝑗𝑟𝑗𝑠
= 𝐸

[

[

−

𝜕
2

𝐿

𝜕 (𝜃
𝜀𝑗𝑟
) 𝜕 (𝜃

𝜀𝑗𝑠
)

]

]

=

1

2

tr [(𝜎−2
𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑟

× (𝜎
−2

𝜀
𝐼
𝑁𝑇
− 𝜎
2

𝛼
𝜎
−2

𝜀
(𝑇𝜎
2

𝛼
+ 𝜎
2

𝜀
)

−1

(𝐼
𝑁
⊗ 𝐽
𝑇
))

× 𝜎
2

𝜀
𝑓
󸀠

𝜀
(0)𝐷
𝑗𝑠
]

= 0 (𝑟 ̸= 𝑠)

= 𝜓
𝑗𝑠𝑗𝑟
.

(A.7)

The derivative vector with respect to 𝜌1 under𝐻
0
is given by

𝐷
𝜌
=

(

(

(

(

(

(

0

0

𝜕𝐿

𝜕𝜃
𝜀𝑗1

.

.

.

𝜕𝐿

𝜕𝜃
𝜀𝑗𝑘

)

)

)

)

)

)

. (A.8)

The information matrix evaluated under𝐻
0
is given by

𝜓̂
𝜌
=

(

(

(

(

(

(

(

𝜓̂
11

𝜓̂
12

𝜓̂
1𝑗1

⋅ ⋅ ⋅ 𝜓̂
1𝑗𝑘

𝜓̂
21

𝜓̂
22

𝜓̂
2𝑗1

⋅ ⋅ ⋅ 𝜓̂
2𝑗𝑘

𝜓̂
𝑗11

𝜓̂
𝑗12

𝜓̂
𝑗1𝑗1

⋅ ⋅ ⋅ 𝜓̂
𝑗1𝑗𝑘

.

.

.

.

.

.

.

.

. d
.
.
.

𝜓̂
𝑗𝑘1

𝜓̂
𝑗𝑘2

𝜓̂
𝑗𝑘𝑗1

⋅ ⋅ ⋅ 𝜓̂
𝑗𝑘𝑗𝑘

)

)

)

)

)

)

)

= (

𝐴
11
𝐴
12

𝐴
21
𝐴
22

) .

(A.9)

Let 𝜆 = 𝜎̃2
𝛼
(𝑇𝜎̃
2

𝛼
+ 𝜎̃
2

𝜀
)
−1,

𝐴
11
= (

𝜓̂
11
𝜓̂
12

𝜓̂
21
𝜓̂
22

)

= (

𝜎̃
−4

𝜀
(

𝑁𝑇

2

− 𝑁𝑇𝜆 +

𝑁𝑇
2

2

𝜆
2

) 𝜎̃
−4

𝜀
(

𝑁𝑇

2

− 𝑁𝑇
2

𝜆 +

𝑁𝑇
3

2

𝜆
2

)

𝜎̃
−4

𝜀
(

𝑁𝑇

2

− 𝑁𝑇
2

𝜆 +

𝑁𝑇
3

2

𝜆
2

) 𝜎̃
−4

𝜀
(

𝑁𝑇
2

2

− 𝑁𝑇
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(A.10)

Next, the corresponding Lagrange Multiplier (LM) test for
null hypotheses𝐻

0
is derived:

LM = 𝐷
󸀠

𝜌
𝜓̃
−1

𝜌
𝐷
𝜌
= (𝐷
𝜃𝜀𝑗
)

󸀠

𝜓̃
−1

𝜃𝜀𝑗

(𝐷
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)

= (𝐷
𝜃𝜀𝑗
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22
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11
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12
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(𝐷
𝜃𝜀𝑗
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(A.11)
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), (A.12)

𝐴
21
𝐴
−1

11
𝐴
12
=

1

2

(𝑓
󸀠

𝜀
(0))

2

𝑇

𝑁

×(

1 − 2𝜆 + 𝑇𝜆
2

⋅ ⋅ ⋅ 1 − 2𝜆 + 𝑇𝜆
2

.

.

. d
.
.
.

1 − 2𝜆 + 𝑇𝜆
2

⋅ ⋅ ⋅ 1 − 2𝜆 + 𝑇𝜆
2

),

(A.13)

𝐴
22
− 𝐴
21
𝐴
−1

11
𝐴
12
=

(𝑓
󸀠

𝜀
(0))

2

𝑇 (1 − 2𝜆 + 𝑇𝜆
2

)

2𝑁

×(

𝑁− 1 −1 ⋅ ⋅ ⋅ −1

−1 𝑁 − 1 −1

.

.

.

.

.

. −1 d −1

−1 ⋅ ⋅ ⋅ −1 𝑁 − 1

),

(A.14)



Mathematical Problems in Engineering 11

(𝐴
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(A.15)

where

Γ =

(
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Using (A.6), the following is obtained as
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and then
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Using (A.11), get
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Under the null hypothesis 𝐻
0
, this statistic is asymptotically

distributed as 𝜒2 with 𝑘 degrees of freedom.
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