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Curves are the building blocks of shapes and designs in computer aided geometric design (CAGD). It is important to ensure these
curves are both visually and geometrically aesthetic to meet the high aesthetic need for successful product marketing. Recently,
magnetic curves that have been proposed for computer graphics purposes are a particle tracing technique that generates a wide
variety of curves and spirals under the influence of a magnetic field. The contributions of this paper are threefold, where the first
part reformulates magnetic curves in the form of log-aesthetic curve (LAC) denoting it as log-aesthetic magnetic curves (LMC)
and log-aesthetic magnetic space curves (LMSC), the second part elucidates vital properties of LMCs, and the final part proposes
G2 LMC design for CAD applications. The final section shows two examples of LMC surface generation along with its zebra maps.
LMC holds great potential in overcoming the weaknesses found in current interactive LAC mechanism where matching a single
segment with G2 Hermite data is still a cumbersome task.

1. Introduction

Curves are widely used in various fields, most commonly in
art and designs. The fairness of a curve dictates the product’s
quality and, in turn, its sales. The definition of a beautiful
curve in the eye of an artist is a curve which exhibits constant
variation of curvaturemonotonically and no part of the curve
is a circular arc, as expressed by Ruskin [1]. It is the same
for aesthetic designs in CAGD. However, lines and circles
are considered fair or beautiful because of their simplicity
[2]. The definition of a fair curve still remains subjective and
unclear, which makes the condition required for ending a
fairing process seems rather ambiguous. Conventional curves
such as NURBS and Bezier have obvious oscillation in their
curvature profile making it less visually pleasing. They also
have more complex curvature formulas compared to those of
natural spirals.

Harada et al. [3] noted that fair curves observed in
nature have linear logarithmic curvature histograms (LCHs).

It was later that curves which satisfy the stated condition
are categorized as log-aesthetic curve (LAC) [4, 5] which
comprises a huge family of fair curves, including logarithmic
spiral, circle involute, and clothoid. LAC is derived from
logarithmic curvature graph (LCG)which is the analytic form
of logarithmic distribution diagram of curvature (LDDC).
Yoshida and Saito [5] also proposed an algorithm for inter-
active generation of LAC. These curves satisfy G1 Hermite
data. However, due to the scaling of the curve at the end of
the algorithm, it is difficult to match G2 Hermite data with
one LAC segment alone, albeit it can be solved by joining two
LACs with G1-continuity, then scaling one of the triangles
such that the joint is G2-continuous.

Gobithaasan andMiura [6] proposed the general form of
the LAC’s formula known as the generalized LAC (GLAC).
It has an extra degree of freedom compared to LAC
which results in increased flexibility [7]. Furthermore, GLAC
extends the family of LAC to include generalized cornu
spiral [8]. Both curves mentioned have great potential for
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(a) Car model (side view)

(b) Original curve (c) Triple LA curve

Figure 1: Application of LAC: circular arc (1(b)) replaced by a LA
spline to achieve G2-continuity (1(c)) [10].

CAGD purposes but are highly compute intensive and time
consuming. Recent progresses in this subject matter include
the development of log-aesthetic spline and its application in
automobile design (see Figure 1). Recently, Gobithaasan et al.
[9] proposed Runge Kutta methods to compute LAC/GLAC,
proven to achieve tremendous speedup.

There are also curves whose LCGs are approximately
linear. These curves are known as quasi-aesthetic curves,
coined by Yoshida and Saito [11]. They proposed quasi-
aesthetic curve segments in the form of rational cubic Bézier.
The resulting curve has monotone curvatures and has a
higher aesthetic value compared to the usual rational Bezier
splines. Class A Bézier [12] is another curve with monotonic
curvature known to have approximately linear LCG and can
be extended to space curves. However, its shape is limited to
that of a logarithmic spiral as the degree of the polynomial
increases. Furthermore, it is currently difficult to employ
Class A Bézier space curve for surface design. Recent study
by Nabiyev and Ziatdinov [13] shows that Bézier curves with
monotonic curvatures are not always aesthetic in terms of
the law of technical aesthetics. A study by Levien and Séquin
[14] suggested that LAC is the most promising family of fair
curves. Readers are referred to Miura and Gobithaasan [15]
for a comprehensive review on aesthetic curves for various
design feats.

In 2009, Xu and Mould proposed a particle tracing
method to produce magnetic curve which is categorized as
fair curve due to the monotonicity of its curvature function.
It was inspired by artistic motives and they further showed its
practicalities in computer graphics by rendering trees, hairs,
water, and fire. Magnetic curves are defined as a particle
tracing method that creates curves with constantly varying
curvature by utilizing the effect of amagnetic field.This paper
aims to reformulate magnetic curves for CAD practicalities
and further reformulates to construct splines which satisfyG2
Hermite data.

Section 1 elaborates in detail the physics behindmagnetic
curves. The contribution of this paper is threefold; the first
part elucidates the connection between magnetic curves and
LACs and the second part reformulates magnetic curves in
the form of 2D and 3D log-aesthetic curve and denotes it
as log-aesthetic magnetic curves (LMC) and log-aesthetic

magnetic space curves (LMSC) for CAD applications; finally
the third part proposes an algorithm for developing G2
continuous LMC.

2. Formulation of Magnetic Curves

In a uniformmagnetic field, themotion of a particle of charge
𝑞 and mass 𝑚, travelling with velocity V⃗ under magnetic
induction 𝐵⃗, is the result of Lorentz Force [16],

𝐹⃗ = 𝑞 (V⃗ × 𝐵⃗) , (1)

which can be rewritten as

𝑚
𝑑V⃗
𝑑𝑡

= 𝑞 (V⃗ × 𝐵⃗) , (2)

where × represents the cross product operation. It describes
the motion of charged particles experiencing Lorentz force.
For convenience, V⃗ is separated into two components, with
the first V

||
parallel to 𝐵⃗ and the second V

⊥
perpendicular to

𝐵⃗. The steps on detailed derivation are omitted for brevity,
albeit readers are referred to [17]. To vary the curvature of the
curve, 𝑞(𝑡) is set to be an arbitrary real function of 𝑡 instead of
a constant, 𝑞. Note that the magnitude of the magnetic field,
𝐵, should not be confused with its vector 𝐵⃗ and 𝐵 ≥ 0. We
obtain the components of magnetic curves as follows:

𝑑V
𝑥

𝑑𝑡
=
𝑞 (𝑡) 𝐵

𝑚
V
𝑦
,

𝑑V
𝑦

𝑑𝑡
= −

𝑞 (𝑡) 𝐵

𝑚
V
𝑥
,

𝑑V
𝑧

𝑑𝑡
= 0.

(3)

Note that V
𝑧
(𝑡) = V

𝑧
(𝑡
𝑜
) = V
||
, and 𝑡

𝑜
is the initial time, 𝑡 of the

trajectory. To simplify the expression, we take (𝑞(𝑡)𝐵)/𝑚 =

𝜔(𝑡). By using separation of variables method, we arrive at
the following equations:

V
𝑥
(𝑡) = 𝐴 cosΩ (𝑡) + 𝐷 sinΩ (𝑡) , (4)

V
𝑦
(𝑡) = 𝐷 cosΩ (𝑡) − 𝐴 sinΩ (𝑡) , (5)

V
𝑧
(𝑡) = V

||
, (6)

where Ω󸀠(𝑡) = 𝜔(𝑡) and 𝐴 and 𝐷 are arbitrary constants. In
order to set the point at the origin, the initial conditions are
set to be V

𝑥
(𝑡
𝑜
) = V
⊥
≥ 0 and V

𝑦
(𝑡
𝑜
) = 0, which are the 𝑥 and

𝑦 components of V
⊥
. These values are then substituted to (4).

These initial values dictate the direction andmagnitude of the
velocity vector at the origin of the Cartesian plane which can
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Figure 2: Circular particle (orbs) motion in uniformmagnetic field
with radius of gyration, 𝑟.
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Figure 3: Velocity vectors (arrows) of particle along its trajectory on
the Cartesian plane.

be represented as a vector of magnitude V2
⊥
= V2
𝑥
+ V2
𝑦
and the

direction is parallel to the 𝑥-axis. Thus we have

V
𝑥
(𝑡
𝑜
) = 𝐴 cosΩ(𝑡

𝑜
) + 𝐷 sinΩ(𝑡

𝑜
) ,

V
𝑦
(𝑡
𝑜
) = 𝐷 cosΩ(𝑡

𝑜
) − 𝐴 sinΩ(𝑡

𝑜
) .

(7)

Expressing 𝐴 and 𝐷 in (7) in terms of 𝑡
𝑜
and substituting

back into (4), we obtain the position of the particle on the
Cartesian plane at time, 𝑡, as

𝑥 (𝑡) = 𝑥
0
+ V
⊥
∫

𝑡

𝑡
𝑜

cos (Ω (𝑡
𝑜
) − Ω (𝑡)) 𝑑𝑡, (8)

𝑦 (𝑡) = 𝑦
0
+ V
⊥
∫

𝑡

𝑡
𝑜

sin (Ω (𝑡
𝑜
) − Ω (𝑡)) 𝑑𝑡, (9)

𝑧 (𝑡) = 𝑧
0
+ ∫

𝑡

𝑡
𝑜

V
||
𝑑𝑡, (10)

where (𝑥
0
, 𝑦
0
, 𝑧
0
) is the initial position of the particle.

Thus, the magnetic curve is two-dimensional when V
||
= 0

and three-dimensional otherwise. Note that although in this
paper the velocity vector at 𝑡

𝑜
is set to be ⟨V

⊥
, 0, 0⟩ to fix

the tangential angle to 0 at 𝑡
𝑜
at the origin, we can alter the

initial values V
𝑥
(𝑡
𝑜
) and V

𝑦
(𝑡
𝑜
) such that the tangential angle

is tan−1(V
𝑦
(𝑡
𝑜
)/V
𝑥
(𝑡
𝑜
)). Figures 2 and 3 depict the concept of

particle motion under the influence of a constant magnetic
field.

The main idea of magnetic curve is to vary the radius
of gyration constantly to obtain a curve with monotonic
curvature. The radius of gyration and gyro-frequency of
magnetic curves is given by the equations:

𝜌 (𝑡) =
V2
⊥
+ V2
||

V
⊥ |𝜔 (𝑡)|

=
𝑚 (V2
⊥
+ V2
||
)

󵄨󵄨󵄨󵄨𝑞 (𝑡)
󵄨󵄨󵄨󵄨 𝐵V⊥

,

𝜔 (𝑡) =
𝑞 (𝑡) 𝐵

𝑚
.

(11)

Note that the radius of gyration is actually the same as
the radius of curvature coined in CAGD while the gyro-
frequency of the particle is the angular velocity referred to in
physical theories. It can also be noted that 𝜃(𝑡) = Ω(𝑡

𝑜
)−Ω(𝑡)

is the tangential angle of the trajectory or curve.Thus, if 𝑞(𝑡) is
a constant, we will have 𝜌 as a constant resulting in a circular
trajectory. By setting 𝑞 as a function of 𝑡, value of𝜌 varies with
respect to 𝑡 creating a spiral trajectory. The radius of torsion
is governed by

𝜇 (𝑡) =
V2
⊥
+ V2
||

V
|| |𝜔 (𝑡)|

=
𝑚 (V2
⊥
+ V2
||
)

󵄨󵄨󵄨󵄨𝑞 (𝑡)
󵄨󵄨󵄨󵄨 𝐵V||

. (12)

Magnetic curves with constant initial velocities andmagnetic
field have total arc lengths of

𝑠 (𝑡) = √V2
⊥
+ V2
||
(𝑡 − 𝑡
𝑜
) . (13)

A summary of the properties of magnetic curves [18] are as
follows.

(i) Radius of gyration decreases while curvature
increases when 𝑞(𝑡) increases.

(ii) The direction of particle acceleration changes when
𝑞(𝑡) changes sign.

(iii) Arc length of magnetic curve grows in a constant rate
as 𝑡 increases when V

⊥
is a constant.

Xu and Mould [18] proposed to vary particle charge, 𝑞(𝑡), for
creating various spirals:

𝑞 (𝑡) = 𝑡
−𝛽
, 𝛽 ∈ R. (14)
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Figure 4: Influence of 𝐵 on the curvature function (a) and rate of change of curvature (b) when 𝛽 = −1. From bottom: 𝐵 =

1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 𝑞(𝑡) < 0.
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Figure 5: (a) and (b) Influence of 𝛽 on the curves’ shapes with 𝑞(𝑡) < 0. Figure (c) is the magnified figure of (b) at the origin.

Assuming 𝑚 = 1 such that the curve is on the 𝑥-𝑦 Cartesian
plane, the equation of the trajectory is

𝑥 (𝑡) = 𝑥
0
+

{{{{

{{{{

{

V
⊥
∫

𝑡

𝑡
𝑜

cos(
𝐵 (𝑡
1−𝛽

𝑜
− 𝑡
1−𝛽

)

1 − 𝛽
)𝑑𝑡, 𝛽 ̸= 1,

V
⊥
∫

𝑡

𝑡
𝑜

cos (𝐵 (ln (𝑡
𝑜
) − ln (𝑡))) 𝑑𝑡, 𝛽 = 1,

𝑦 (𝑡) = 𝑦
0
+

{{{{

{{{{

{

V
⊥
∫

𝑡

𝑡
𝑜

sin(
𝐵 (𝑡
1−𝛽

𝑜
− 𝑡
1−𝛽

)

1 − 𝛽
)𝑑𝑡, 𝛽 ̸= 1,

V
⊥
∫

𝑡

𝑡
𝑜

sin (𝐵 (ln (𝑡
𝑜
) − ln (𝑡))) 𝑑𝑡, 𝛽 = 1.

(15)

A space curve is obtained by introducing 𝑧(𝑡) as stated in (10).
For planar curve, it can also be written in a complex plane as
follows:

𝐶
𝑋𝑀

(𝑡) = 𝑃
0
+

{{{

{{{

{

V
⊥
∫

𝑡

𝑡
𝑜

𝑒
𝑖(𝐵(𝑡
1−𝛽

𝑜
−𝑡
1−𝛽

)/(1−𝛽))
𝑑𝑡, 𝛽 ̸= 1,

V
⊥
∫

𝑡

𝑡
𝑜

𝑒
𝑖𝐵(ln(𝑡

𝑜
)−ln(𝑡))

𝑑𝑡, 𝛽 = 1,

(16)

whose gyro-frequency and radius of curvature are

𝜔 (𝑡) = 𝐵𝑡
−𝛽
, 𝛽 ∈ R,

𝜌 (𝑡) =
V2
⊥
+ V2
||

󵄨󵄨󵄨󵄨𝑡
−𝛽󵄨󵄨󵄨󵄨 𝐵V⊥

.

(17)

Equation (16) generates planar trajectories or curves of
various shapes mainly spirals and circles. It produces straight
lines when 𝛽 = 1. Note that these curves are well-defined at
𝑡 = 0 when 𝛽 ≤ 1; otherwise 𝑡1−𝛽 is not a real number.

The particle velocity V
⊥
uniformly scales the entire trajec-

tory and its arc length whereas 𝐵, the magnitude of magnetic
field, uniformly scales the rate of change of curvature. The
effects of scaling with 𝐵 on the curvature and rate of change
of curvature can be seen in Figure 4. 𝛽 is a shape parameter
which determines the overall shape of the magnetic curves
and is directly related to LCG gradient; its effect on planar
curves is shown in Figure 5. The shapes of magnetic curves
are further discussed in the following section.

3. Magnetic Curves with Constant LCG and
LTG Gradient

In this section we further investigate the fairness of magnetic
curves with particle charge as a variant. Various aesthetic
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cases ofmagnetic curves will also be discussed in this section.
Shape interrogation tools used in the aesthetic analysis of
magnetic curve include curvature profile, logarithmic curva-
ture graph (LCG), and logarithmic torsion graph (LTG).

Given 𝜌(𝑡) and 𝑠(𝑡) are the radius of curvature and arc
length of a curve, the LCG is defined as a graph whose hor-
izontal and vertical axes are the logarithm of 𝜌(𝑡)𝑠󸀠(𝑡)/𝜌󸀠(𝑡)
and 𝜌(𝑡), respectively. A LAC is defined as a curvewhose LCG
is linear and its gradient function 𝜆(𝑡) = 𝛼, where 𝛼 is a real
constant. A LA space curve is defined as a curve whose LTG is
linear. The LCG, LTG, and their respective gradient function
[19] of a curve are given as

LCG (𝑡) = {log 𝜌 (𝑡) , log(
𝜌 (𝑡) 𝑠

󸀠
(𝑡)

𝜌󸀠 (𝑡)
)} , (18)

LTG (𝑡) = {log𝜇 (𝑡) , log(
𝜇 (𝑡) 𝑠

󸀠
(𝑡)

𝜇󸀠 (𝑡)
)} , (19)

𝜆 (𝑡) = 1 +
𝜌 (𝑡)

𝜌󸀠(𝑡)
2
(
𝜌
󸀠
(𝑡) 𝑠
󸀠󸀠
(𝑡)

𝑠󸀠 (𝑡)
− 𝜌
󸀠󸀠
(𝑡)) , (20)

𝜓 (𝑡) = 1 +
𝜇 (𝑡)

𝜇󸀠(𝑡)
2
(
𝜇
󸀠
(𝑡) 𝑠
󸀠󸀠
(𝑡)

𝜇󸀠 (𝑡)
− 𝜇
󸀠󸀠
(𝑡)) . (21)

The LCG and its gradient of (16) are

LCG (𝑡) =

{{

{{

{

log
V2
⊥
+ V2
||

𝐵
󵄨󵄨󵄨󵄨𝑡
−𝛽󵄨󵄨󵄨󵄨 V⊥

, log(
𝑡√V2
⊥
+ V2
||

𝛽
)

}}

}}

}

,

𝜆 (𝑡) = 𝛼 =
1

𝛽
.

(22)

The LCG and its gradient of (16) are

LTG (𝑡) =

{{

{{

{

log
V2
⊥
+ V2
||

𝐵
󵄨󵄨󵄨󵄨𝑡
−𝛽󵄨󵄨󵄨󵄨 V||

, log(
𝑡√V2
⊥
+ V2
||

𝛽
)

}}

}}

}

,

𝜓 (𝑡) = 𝛼 =
1

𝛽
.

(23)

Therefore (16) is guaranteed to be log-aesthetic curves or
space curves. It is also notable that neither 𝐵 nor V

⊥
has

an influence on the LCG nor LTG gradient. We are able
to classify some of the well-known aesthetic curves from
their LCG gradients. Xu andMould’smagnetic spirals include
clothoid curve, logarithmic spiral, and circle involute which
occur when 𝛽 = 𝛼 = −1, 𝛽 = 𝛼 = 1, and 𝛽 =

0.5 (𝛼 = 2). Generally, these spirals are divergent when 𝛽 < 0

and convergent when 𝛽 > 0. The result of the shape and
LCG analysis of these plane curves is depicted in Figure 6.
Inflection points occur at 𝑡 = 0 whenever 𝛽 < 0. Inflection
points occur at 𝑡 = ∞ when 𝛽 > 0.

Equation (16) cannot be used to derive Nielsen’s spiral
which occurs when 𝜆(𝑡) = 𝛼 = 0. However, magnetic curves
do comprise Nielsen’s spiral which is proven in (23)–(25).

Substituting 𝜃(𝑡) = Ω(𝑡
𝑜
) − Ω(𝑡) into (8), we employ the

general formula of radius of curvature to find

𝜌 (𝑡) =
𝑑𝑠/𝑑𝑡

𝑑𝜃/𝑑𝑡
=

V
⊥

𝑑𝜃/𝑑𝑡
=
𝑑𝑠

𝑑𝜃
. (24)

Substituting the equations and their derivatives of (14) and
(24) with respect to 𝑡 into (20) gives

𝜆 (𝑡) =
𝜃
󸀠
(𝑡) 𝜃
(3)

(𝑡)

𝜃󸀠󸀠(𝑡)
2

− 1 = 0, (25)

which yields the solution

𝜃 (𝑡) =
𝑒
𝑡𝑐
1𝑐
2

𝑐
1

+ 𝑐
3
, 𝛼 = 0, (26)

where 𝑐
1
, 𝑐
2
, and c

3
are arbitrary constants. Without loss

of generality, we can omit 𝑐
1
as it does not change the

overall shape of the curve. Note that (26) can be obtained by
translating or scaling 𝑡 by 𝑐

1
in the following equation:

Ω (𝑡) = 𝐵𝑒
𝑡
, 𝛼 = 0. (27)

We let 𝑐
2
= −𝐵 and 𝑐

3
= −Ω(𝑡

𝑜
) such that 𝜃(𝑡) = Ω(𝑡

𝑜
) −Ω(𝑡).

Thuswe haveDefinition 1 as follows.Note that (27) has a fixed
LCG and LTG gradient of 0; thus this curve will always have
the same basic shape despite influences of 𝐵 and V

⊥
. Figure 7

shows the parametric plots of magnetic curves with (27) and
(16) when 𝛽 = 𝛼 = 1 while Figure 8 shows plots of LM space
curve with inputs given in Table 1.

Definition 1. The equation of log-aesthetic magnetic curves
(LMC) in complex plane is

𝐶LMC (𝑡) = 𝑃
0
+ V
⊥
∫

𝑡

𝑡
𝑜

𝑒
𝑖𝜃(𝑡)

𝑑𝑡, (28)

where V
||
= 0 and 𝑃

0
is the initial position of the particle, and

the equation of log-aesthetic magnetic curve curves (LMSC)
is

𝐶LMSC (𝑡) = {V
⊥
∫

𝑡

𝑡
𝑜

cos 𝜃 (𝑡) 𝑑𝑡, V
⊥
∫

𝑡

𝑡
𝑜

sin 𝜃 (𝑡) 𝑑𝑡, ∫
𝑡

𝑡
𝑜

V
||
𝑑𝑡} ,

(29)
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Figure 6: Continued.
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Figure 6: Column from left: (i) magnetic spirals, (ii) its LCG, and (iii) curvature profile of magnetic spirals of various 𝛽 values with 𝑞(𝑡) < 0.
From top to bottom: (a) 𝛽 = −3, (b) 𝛽 = −1, (c) 𝛽 = 0.08, (d) 𝛽 = 0.5, (e) 𝛽 = 0.78, and (f) 𝛽 = 2.
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Figure 7: (a) Logarithmic spiral with 𝑡
𝑜
= 2, 𝐵 = 2, 𝑡 ∈ [0, 17]. (b) Nielsen’s spiral with 𝑡

𝑜
= −0.5, 𝐵 = 1, 𝑡 ∈ [−2, 3].

with

𝜃 (𝑡) =

{{{{

{{{{

{

𝐵 (𝑒
𝑡
𝑜 − 𝑒
𝑡
) , 𝛼 = 0,

𝐵 (log (𝑡
𝑜
) − log (𝑡)) , 𝛼 = 𝛽 = 1,

𝐵 (𝑡
1−𝛽

𝑜
− 𝑡
1−𝛽

)

(1 − 𝛽)
, 𝛼 = (

1

𝛽
) ̸= 1.

(30)

The particle charge is

𝑞 (𝑡) =
{

{

{

𝑡
−𝛽
, 𝛼 =

1

𝛽
∈ R

𝑒
𝑡
, 𝛼 = 0.

(31)

𝐵 is the magnitude of themagnetic field, V
⊥
≥ 0 is the particle

velocity, 𝑡
0
is the time when the velocity vector is ⟨V

⊥
, 0⟩, and
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(a) (b)

(c) (d)

Figure 8: LMSC plots with torsion (a), (c) and curvature (b), and (d) profiles.

𝛽 ∈ R is a parameter used for varying the gyro-frequency
to produce trajectories of various shapes.These curves have a
total arc length of (13). The curvature and torsion function is
given by

𝜅 (𝑡) =

{{{{{

{{{{{

{

−
𝐵𝑡
−𝛽V
⊥

V2
⊥
+ V2
||

, 𝛼 =
1

𝛽
∈ R,

−
𝐵𝑒
𝑡V
⊥

V2
⊥
+ V2
||

, 𝛼 = 0

(32)

𝜏 (𝑡) =

{{{{{

{{{{{

{

−
𝐵𝑡
−𝛽V
||

V2
⊥
+ V2
||

, 𝛼 =
1

𝛽
∈ R,

−
𝐵𝑒
𝑡V
||

V2
⊥
+ V2
||

, 𝛼 = 0.

(33)

As magnetic curves share the same general form of equation
and differential geometries (8)–(11), the influence of 𝐵 and V

⊥

on the curve’s curvature holds for all cases of (30) for LMC.
Note that Definition 1 is the formulation of magnetic curves
to represent LACs. One of the differences of LMC and LAC
equation proposed in [5] is that LMC is unable to form circle
with any other 𝛽 except for 𝛽 = 0 (𝛼 → ∞). However, this
formulation allows various parameterization and equation
manipulation for different application. The reparameteriza-
tion of LMC is discussed in Section 5. Figure 7 illustrates two
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6
𝛼 =
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Figure 9: End curvature parameterized LMC with 𝜅
0
= 1.67, 𝜅

1
=

3.52, 𝜃 = 7𝜋/18. From left, 𝛼 = −1, −1/6, 0, 1/3, 1.

configurations of LMC representing logarithmic spiral and
Nielsen’s spiral.

Since 𝑞(𝑡) can be any arbitrary function, there are
many possibilities of magnetic curves that can be generated.
Another particle charge function which produces LAC is
𝑞(𝑡) = (𝛽𝑡)

−1/𝛽. However, it has a LCG gradient of 𝛽, which
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Figure 10: Examples ofG2Hermite interpolation problem (a)𝛽 = 1.997474, error = 1.39144×10
−5 (b)𝛽 = 1.3319512, error = 2.69981×10

−13,
and (c) 𝛽 = 0.985866, error = 8.32667 × 10

−17.

means it is essentially the same as 𝑞(𝑡) = 𝑡
−𝛽 in terms of curve

shapes. Note that LMC does include curves with nonlinear
LCGs. An example of this case is when 𝑞(𝑡) = 2/𝑡 + 2𝑒

𝑡.
Figure 8 depicts examples of LMSC with inputs as stated in
Table 1.

4. Properties of Magnetic Curves

This section discusses that the properties which are round-
ness, monotone curvature and torsion, extensionality, and
locality hold for LMC or LMSC. These properties were first
introduced byHarary andTal [20] and Levien and Séquin [14]
for CAD applications. However, we need first to determine
the bound for 𝑡 or 𝑠 such that the resulting curve is regular
and well-behaved as shown in Table 2.

Table 1: Inputs for Figures 8(a)–8(d).

Figure 𝑡 𝑡
𝑜

𝐵 V
||

V
⊥

𝛽

Figure 8(a) (0, 4] 1 4 1 2 0.78
Figure 8(b) [1, 3] 1 4 1 2 −1
Figure 8(c) (0, 4] 1 4 1 2 1
Figure 8(d) [−2, 1.5] 0.5 4 1 2 0

The properties of LMC or LMSC are as follows.

Proposition 2. LMC and LMSC exhibit self-affinity property.

Self-similarity is an important fractal geometry charac-
teristic in which the geometry is invariance under uniform
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Table 2: Boundaries for both 𝑡 and 𝑠 of magnetic curves. ∗The point
where inflection points occur.

Boundaries for 𝑡 and 𝑠
1/𝛼 = 𝛽 < 0, 𝛽 ∈ Z (−∞, 0

∗
] ∪ [0

∗
,∞)

1/𝛼 = 𝛽 < 0, 𝛽 ∉ Z [0,∞)

𝛽 = 0 (−∞,∞)

0 < 1/𝛼 = 𝛽 < 1 [0,∞
∗
)

𝛼 = 1 [0,∞
∗
)

𝛼 = 0 (−∞
∗
,∞)

1/𝛼 = 𝛽 > 1 (0,∞
∗
)

scaling whereas self-affinity preserves the geometry under
nonuniform scaling operations.

Proof. These characteristics are inspected mathematically via
omitting a front portion of the curve and scaling it by 𝑎𝑡 + 𝑏.
Equation (30) now becomes

𝜃 (𝑎𝑡 + 𝑏) =

{{{{{{{{{{

{{{{{{{{{{

{

𝐵(𝑒
𝑡
𝑜 − 𝑒
𝑎𝑡+𝑏

) , 𝛼 = 0,

𝐵 (log (𝑡
𝑜
) − log (𝑎𝑡 + 𝑏)) , 𝛼 = 1,

𝐵 (𝑡
1−𝛽

𝑜
− (𝑎𝑡 + 𝑏)

1−𝛽
)

(1 − 𝛽)
, 𝛼 = (

1

𝛽
) ̸= 1.

(34)

Inspecting 𝜆(𝑎𝑡 + 𝑏) and 𝜓(𝑎𝑡 + 𝑏) for each case we can see
that 𝜆(𝑎𝑡 + 𝑏) = 𝜆(𝑡) and 𝜓(𝑎𝑡 + 𝑏) = 𝜓(𝑡). Thus the original
shape is preserved and (30) is proven to be self-affine. Note
that (30) becomes a logarithmic spiral when 𝛼 = 1; therefore
it is self-similar and inline as proven by Miura [4].

Proposition 3. LMC or LMCS forms circles (roundness prop-
erty).

If an interpolation problem involves interpolating a circle,
a desirable interpolation spline should form an exact circle.
Thus, given any two tangent points on a circle, LMC will be
able to form a circular arc and fit into these tangent points.

Proof. LMC readily forms a circular trajectory when 𝛽 = 0.

Proposition 4. LMC or LMSC has monotonically increasing
or decreasing curvature 𝜅(t) and torsion 𝜏(t) (note: set v

||
= 0

to restrict the curve to 𝑥-𝑦 plane to obtain LMC).

The monotonicity of curvature is the most basic criteria
for a fair curve as suggested by many researchers and design-
ers. Since human eyes are very sensitive towards curvature
extrema; the extrema should not appear on any point of the
curve segment except for its end points [14].

Table 3: Values of 𝜅󸀠(𝑡) and 𝜏󸀠(𝑡) with respective 𝛼 and 𝛽 values for
all 𝑡 > 0 or 𝑡 < 0.

Values of 𝛼 or 𝛽 𝜅
󸀠
(𝑡) 𝜏

󸀠
(𝑡)

𝑡 < 0 𝑡 > 0 𝑡 < 0 𝑡 > 0

1/(𝛼 = 1/𝜂) = 𝛽 < 0, 𝛽 ∈ 2𝑍 <0 >0 >0 <0
1/(𝛼 = 1/𝜂) = 𝛽 < 0, 𝛽 ∉ 𝑍 — >0 — <0
1/(𝛼 = 1/𝜂) = 𝛽 < 0, 𝛽 ∈ 2𝑍 + 1 >0 >0 <0 <0
𝛽 = 0 =0 =0 =0 =0
0 < 1/𝛼 = 1/𝜂 = 𝛽 < 1 — <0 — >0
𝛼 = 𝜂 = 1 <0 <0 >0 >0
𝛼 = 𝜂 = 0 — >0 — <0
1/𝛼 = 1/𝜂 = 𝛽 > 1 — <0 — >0

Proof. The rate of change of curvature of (30) is given by

𝜅
󸀠
(𝑡) =

{{{{{{

{{{{{{

{

𝐵𝑒
𝑡V
⊥

(V2
⊥
+ V2
||
)
, 𝛼 = 0,

−
𝐵𝑡
−1−𝛽

𝛽V
⊥

(V2
⊥
+ V2
||
)
, 𝛼 =

1

𝛽
,

(35)

𝜏
󸀠
(𝑡) =

{{{{{{

{{{{{{

{

−
𝐵𝑒
𝑡V
||

(V2
⊥
+ V2
||
)
, 𝛼 = 0,

𝐵𝑡
−1−𝛽V
||
𝛽

(V2
⊥
+ V2
||
)
, 𝛼 =

1

𝛽
.

(36)

The values of 𝜅󸀠(𝑡) and 𝜏
󸀠
(𝑡) for all 𝑡 > 0 or 𝑡 < 0 are as

given in Table 3 by inspecting (33) and (34). As the shapes
of the curve on the interval 𝑡 < 0 are either nonexisting or
mirror images of those on 𝑡 > 0 except for 1/𝛼 = 1/𝜂 =

𝛽 < 0, 𝛽 ∈ Z, thus we consider only the interval where
𝑡 > 0. Since 𝜅󸀠(𝑡) and 𝜏

󸀠
(𝑡) are always negative or positive

in the interval 𝑡 > 0, the proposition above holds. Note that
the sign of 𝜅󸀠(𝑡) and 𝜏

󸀠
(𝑡) may change if the sign of 𝑞(𝑡) is

inverted.

Proposition 5. LMCs have inflection points.

Inflection points are important in achieving G2-
continuous S-shaped splines and connecting a curve to a
straight line or vice versa in CAD applications.

Proof. From the inspecting the curvature function, the inflec-
tion is most obvious for (1/𝛼) = 𝛽 < 0, 𝛽 ∈ Z, as these
curves’ inflection points occur when 𝑡 = 0 and 𝜅

󸀠
(𝑡) ̸= 0

elsewhere (see (32) and (35)). Note that the circle (𝛽 = 0)
does not have any inflection points. For the rest of cases of
LMC, the inflection points may occur at 𝑡 → ∞. See Table 2
for more detail.
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Proposition 6. Increasing the scaling factor V
1
of anymagnetic

curves (including LMC) by dwill scale the original curvature by
a factor of V

1
/(V
1
+ 𝑑).

Proof. Assume a magnetic curve is originally scaled to a
factor of V

1
. We have 𝜅

1
(𝑡) = (𝐵𝑞(𝑡))/V

1
. Increasing the

scaling factor (V
1
) of magnetic curves by 𝑑, the new curvature

at 𝑡 is

𝜅
2
(𝑡) =

𝐵𝑞 (𝑡)

(V
1
+ 𝑑)

. (37)

Rearranging both 𝜅
1
(𝑡) and 𝜅

2
(𝑡) such that it forms a relation-

ship, we obtain

𝜅
2
(𝑡) =

V
1

(V
1
+ 𝑑)

𝜅
1
(𝑡) . (38)

This relationship aids the process of designingG2-continuous
aesthetic splines as we may anticipate how scaling affects the
curvatures at the end points of the splines.

Proposition 7. LMC is extensible.

When additional data point is placed on a LMC, the shape
of the curve does not change if it satisfies the extensionality
property.

Proof. Given LMC interpolating points 𝑝
0
and 𝑝

1
with tan-

gents 𝑇⃗
0
and 𝑇⃗

1
, for any data point 𝑝

𝑛
and respective tangent

𝑇⃗
𝑛
taken from the curve segment, the LMC interpolating

the point-tangent pairs (𝑝
0
,𝑇⃗
0
) and (𝑝

𝑛
,𝑇⃗
𝑛
) or (𝑝

𝑛
,𝑇⃗
𝑛
) and

(𝑝
1
,𝑇⃗
1
) coincides with original LMC which interpolates

(𝑝
0
, 𝑇⃗
0
) and (𝑝

1
,𝑇⃗
1
), provided that the shape parameter 𝛽 =

1/𝛼 of the smaller segment is the same as the original
segment.

Proposition 8. LMC has global characteristics.
Good locality is a property where a small local change in

the position of one data point will affect only the curve shape
near the local change position.

Proof. Similar to log-aesthetic curve, LMC is determined by
three control points, with two being the start and end points
and the other being the intersection point of the tangents at
start and end points. Local changes at any one of the control
point change almost the entire curve shape.

5. Reparameterization of LMC

In this section, the reparameterization of LMC for various
design application in two-dimensional spaces is discussed.
These parameterizations are tangential angles and end cur-
vature parameterization.

Table 4: Boundaries for 𝐵 in set notation.

1/𝛼 = 𝛽 ̸= 1 (0, 𝜃 ∗ (1 − 𝛽))

𝛼 = 𝛽 = 1 (0,∞)

𝛼 = 0 (0,∞)

The LMC in the form of tangential angles is parameter-
ized as follows:

𝐶TA (𝜃)

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

V
⊥
∫

𝜃

0

(
1

𝐵𝑒𝑡𝑜 + 𝜃
) 𝑒
𝑖𝜃
𝑑𝜃, 𝛼 = 0,

V
⊥
∫

𝜃

𝜃
𝑜

𝑡
𝑜
𝑒
𝜃/𝐵

𝑒
𝑖𝜃
𝑑𝜃, 𝛼 = 𝛽 = 1,

V
⊥
∫

𝜃

𝜃
𝑜

1

𝐵
(𝑡
𝑜

1−𝛽
+
𝜃 (1 − 𝛽)

𝐵
)

𝛽/(1−𝛽)

× 𝑒
𝑖𝜃
𝑑𝜃, 𝛼 =

1

𝛽
̸= 1,

(39)

where 𝑡
𝑜
is a user defined time parameter which satisfies

the range of 𝑡 presented in Table 4 which is the same as
𝑡
𝑜
stated in the first section of this paper. Fixing 𝑡

𝑜
to a

real value, the equation can be used to solve G1 Hermite
interpolation problem using Yoshida and Saito’s [5] curve
generation algorithm. For simplicity, we set 𝑡

𝑜
= 1. Instead

of searching for the shape parameter Λ in original LAC
equation,𝐵 in (39) is searched.The boundaries for𝐵 are given
in Table 4. Note that 𝑞(𝑡)’s sign is changed to negative in (39)
so that the curve is on quadrants I and II of the x-y plane.

In order to achieve G2-continuity, it is required to manip-
ulate the end curvature of a curve. LMC is parameterized to
directly manipulate both end curvatures while satisfying the
user defined tangential angles of the curve. The equation of
the end curvature parameterized curve is

𝐶
𝐾
(𝜅)

=

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

V
⊥
∫

𝜅

𝜅
0

𝜅
−1
𝑒
𝑖V
⊥
(𝜅−𝜅
0
)
𝑑𝜃, 𝛼 = 0,

𝐵∫

𝜅

𝜅
0

𝜅
−2
𝑒
𝑖𝐵((ln 1/𝜅)−(ln 1/𝜅

0
))
𝑑𝜃, 𝛼 = 𝛽 = 1,

−
V2
⊥

𝐵𝛽

×∫

𝜅

𝜅
0

𝑒
𝑖𝐵((𝐵/V

⊥
𝜅)
(1−𝛽)/𝛽

−(𝐵/V
⊥
𝜅
0
)
(1−𝛽)/𝛽

)/(1−𝛽)

×(
1

(𝐵/V
⊥
𝜅)
−(𝛽+1)/𝛽

)𝑑𝜅, 𝛼 =
1

𝛽
̸= 1.

(40)
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The following equations can be incorporated into (40) to fix
the end tangents so that the angle is stated by the user:

V
⊥
(𝜃) =

𝜃

𝜅
1
− 𝜅
0

, 𝛼 = 0,

𝐵 (𝜃) =
𝜃

(ln (1/𝜅
1
) − ln (1/𝜅

0
))
, 𝛼 = 𝛽 = 1,

(41)

V
⊥
(𝜃) = (

𝜃 (1 − 𝛽)

𝐵 ((𝐵/𝜅
0
)
(1−𝛽)/𝛽

− (𝐵/𝜅
1
)
(1−𝛽)/𝛽

)

)

−𝛽/(1−𝛽)

,

𝛼 =
1

𝛽
̸= 1,

(42)

where 𝜅
0
, 𝜅
1
, and 𝜃 are the user defined start curvature, end

curvature, and end tangential angles. Note that the tangential
angle at the origin (starting point of the curve) is always 0
as discussed in Section 1. Figure 9 shows LMC curves plotted
with (40) and (41). However, 𝐵will not affect the curve shape
when (41) is substituted in (40). This is because the 𝛽 terms
in (41) will cancel out in (40) when (40) is substituted with
(41) and the only parameters left in the resulting equation are
𝛽 = 1/𝛼, 𝜃, 𝜅

0
, and 𝜅.

We solve G2 Hermite interpolation for C-shaped curves
with the method shown in Algorithm 1.

Note

𝐶
𝑘1
(𝜅
1
) is 𝐶
𝑘
(𝜅
1
) when 𝛼 = 0.

𝐶
𝑘2
(𝜅
1
) is 𝐶
𝑘
(𝜅
1
) when 𝛼 = 1.

𝐶
𝑘3
(𝜅
1
) is 𝐶
𝑘
(𝜅
1
) when 𝛼 = 1/𝛽 ̸= 0 ̸= 1.

Consider 𝐶
𝑘3
(𝜅
1
)= {−Re[𝐶

𝑘3
(𝜅
1
)], Im[𝐶

𝑘3
(𝜅
1
)]}

𝜅
𝑆
and 𝜅
𝐸
are substituted and used in the equations in

the entire algorithm.

The following section presents implementation examples.

6. Numerical Examples

In this section, three examples of G2 Hermite interpolation
problem are presented. G2-continuous LMCs are also shown
to indicate the possibilities of joining segments with different
𝛼 matching end curvatures to produce S-shaped curves.
At the end of this section, LM surfaces are presented and
discussed.

Using the method proposed in the previous section, two
examples of implementation are provided in Figure 10. The
inputs for these figures are provided in Table 5.

We used Mathematica built-in minimization function
(Find Minimum) which employs principal axis method [21]
for the optimization process as it does not require the
computation of derivatives. The two initial search points are
set as 𝛽 = 6 and 𝛽 = 50 for 𝛽 = 1/𝛼 > 0 and 𝛽 =

−50 and 𝛽 = −6 for 𝛽 = 1/𝛼 < 0. These initial search
points do not determine the boundary of the search area.

x

y

0.6

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8

P0

P2

Figure 11: Solution of G2 Hermite interpolation problem does not
exist.

𝜅 = 1.4
𝜅 = 0.8 𝜅 = 0 𝜅 = −1.1

Figure 12: A G2-continuous LM spline, where left segment: 𝜅 ∈

[1.4, 0.8]; 𝛽 = 0.8; 𝐵 = 1; V
⊥
= 1; middle segment 𝜅 ∈ [0.8, 0];

𝛽 = −1; 𝐵 = 1; V
⊥
= 1; right segment: 𝜅 ∈ [0.8, 0]; 𝛽 = −0.4; 𝐵 = 3;

V
⊥
= 2.

There are cases where the solution does not exist due to the
number of constraints imposed on the curve. For example,
it is notable that even though Figure 10(a) seems to coincide
with the given end points, in fact, it has approximately 10−5
error (distance between the given end point and the end point
of the curve), which if we set the user tolerance to be below
10
−12, this curve is not acceptable leading to a conclusion that

a solution does not exist. Another obvious example is when
the given inputs are 𝜅

0
= 1.2, 𝜅

1
= 0.9, 𝑃

2
= {0.849, 0.621},

and 𝜃 = 𝜋/3, the solution is 𝛽 = 0.00904244 with error =

0.0950918 as shown in Figure 11.
LMC can be modified to control both start and end

curvatures and tangent angle directly using Algorithm 1. The
proposed method is to solve G2 Hermite data with only a
single segment of LAC which has not been achieved before.
It also preserves curvature monotonicity as only one segment
is used.

Figure 12 is a G2-continuous LM spline joined together
by matching the data points at the joints without using any
interpolationmethods. It is to show the possibility of creating
a G2-continuous spline with different 𝛼 values. It also shows
the possibility of creating G2-continuous C-shaped and S-
shaped LM spline with different 𝛼 values.

Algorithm 1 solves G2 Hermite data with only a single
segment of LAC which has not been achieved before for
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Three control points start and end curvatures, and user tolerance are given. Using Principal Axis
minimization method, shape parameter 𝛼 = 1/𝛽 is searched. Using the new parameter, a new curve
is transformed back into the original orientation and position, and be plotted.
Input: 𝑃

𝑎
, 𝑃
𝑏
, 𝑃
𝑐
, 𝜅
0
, 𝜅
1
, tol

Output: 𝛼 = 1/𝛽

Begin
Step 0. set 𝜅

𝑆
= |𝜅
0
|, 𝜅
𝐸
= |𝜅
1
| and 𝛽

1
= 𝛽
2
= 1

Step 1. if 𝜅
𝐸
> 𝜅
𝑆

𝑃
0
← 𝑃
𝑐
; 𝑃
2
← 𝑃
𝑎
;

else 𝜅
𝐸
≤ 𝜅
𝑆

𝑃
0
← 𝑃
𝑎
; 𝑃
2
← 𝑃
𝑐
;

Step 2. Translate 𝑃
0
to (0, 0)

Step 3. if 𝜅
𝐸
> 𝜅
𝑆

Reflect triangle over 𝑦-axis;
Step 4. Rotate triangle such that tangent vector at 𝑃

0
(𝑃
1
) coincides with 𝑥-axis;

Step 5. 𝜃 ← 𝜋 − cos−1 (
󵄩󵄩󵄩󵄩𝑃0𝑃2

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑃0𝑃1

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑃1𝑃2

󵄩󵄩󵄩󵄩

2

2
󵄩󵄩󵄩󵄩𝑃0𝑃1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑃1𝑃2

󵄩󵄩󵄩󵄩

);

Step 6. if 𝜅
𝐸
= 𝜅
𝑆

Set 𝛽 = 0; V
⊥
= 1/𝜅

𝐸
; 𝐵 = 1;

if min 󵄩󵄩󵄩󵄩𝐶TA(𝜃) 𝑃
2

󵄩󵄩󵄩󵄩 < tol
𝛽 ← 0

else
if 󵄩󵄩󵄩󵄩𝐶𝑘1(𝜅𝐸)𝑃2

󵄩󵄩󵄩󵄩 ≤ tol
𝛼 ← 0; go to Step 8

else if 󵄩󵄩󵄩󵄩𝐶𝑘2(𝜅𝐸)𝑃2
󵄩󵄩󵄩󵄩 ≤ tol

𝛼 ← 1; go to Step 8
else

if 𝜅
𝐸

̸= 0

𝛽
1
← 10;

𝛽
2
← argmin

𝛽>0

󵄩󵄩󵄩󵄩𝐶𝑘3− (
󵄨󵄨󵄨󵄨𝜅1

󵄨󵄨󵄨󵄨) 𝑃2
󵄩󵄩󵄩󵄩;

else
𝛽
1
← argmin

𝛽>0

󵄩󵄩󵄩󵄩𝐶𝑘3 (
󵄨󵄨󵄨󵄨𝜅1

󵄨󵄨󵄨󵄨) 𝑃2
󵄩󵄩󵄩󵄩;

𝛽
2
← argmin

𝛽<0

󵄩󵄩󵄩󵄩𝐶𝑘3− (
󵄨󵄨󵄨󵄨𝜅1

󵄨󵄨󵄨󵄨) 𝑃2
󵄩󵄩󵄩󵄩;

Find 𝛽 from {𝛽
1
, 𝛽
2
} such that 𝑒𝑟𝑟𝑜𝑟 = min{𝑒𝑟𝑟𝑜𝑟

1
, 𝑒𝑟𝑟𝑜𝑟

2
}

end if
Step 7. if 𝛽 = 1

Output: “Solution does not exist or method failed to converge”;
else

Transform LMC back to {𝑃
𝑎
, 𝑃
𝑏
, 𝑃
𝑐
}

Plot LMC
End

Algorithm 1

Table 5: Inputs for Figures 10(a)–10(c).

Transformed end point 𝑃
2

𝜅
𝑜

𝜅
1

𝜃

Figure 10(a) {1.966000000000, 0.655000000000} 2.000 0.125 7𝜋/18

Figure 10(b) {0.265969303943, 0.109176561142} 3.400 1.700 2𝜋/9
Figure 10(c) {0.145992027985, 0.084314886280} 9.000 0.000 𝜋/4

LA curve design. The feature of controlling end curvatures
opens up to new possibilities in creating more variation of
G2 splines, such as forming S-shaped G2 spline with two C-
shaped LACs.

Figure 13 shows the two-dimensional LMC profile and
reference curve and Figure 14 shows a surface generated using

Frenet sweeping method with the curves in Figure 13. The
LM surface is generated by sweeping a C-shaped LM profile
curve along S-shaped reference curve. This is achieved by
translating the profile curve along the reference curve while
rotating the profile curve to match the reference curve’s
Frenet frame. The inputs of the profile and reference LMC
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Figure 13: LMC reference curve (a) and profile curve (b). Note that the reference curve’s acceleration direction is in the opposite direction
by changing the sign of 𝑞(𝑡).

(a) (b)

Figure 14: A Frenet swept LM surface (a) and its surface analysis using horizontal (top (b)) and vertical (bottom (b)) zebra mapping.
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Figure 15: LM reference curve (a) and profile curve (b). (c) is the representation of (a) and (b) in space, where (i) is the space representation
of (a), (ii) is the space representation of (b) and (iii) is created by reflecting (ii).
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(a) (b)

Figure 16: A Frenet swept LM surface rendered in Mathematica (a); its surface analysis using horizontal (upper (b)) and vertical (bottom
(b)) zebra mapping.

Table 6: Inputs for Figures 13 and 14.

𝑡 𝑡
𝑜

𝐵 V
||

V
⊥

𝛽

Profile curve (C-shaped) [1, 1.6] 1 1 1 0 0.9

Reference curve (S-shaped) [−0.7, 1] −0.7 2 1 0 −1

Table 7: Inputs for Figures 15 and 16.

𝑡 𝑡
𝑜

𝐵 V
||

V
⊥

𝛽

Profile curve [1, 1.6] 1 1 1 0 0

Reference curve [−3, −1.7] 0 2 1 0 −2

are given inTable 6. Another examplewhere two symmetrical
surfaces generated using the samemethod are joined together
with G2-continuity in designing a car hood is provided. The
reference and profile curves are shown in Figure 15 while the
inputs are shown in Table 7. The surface plot is provided in
Figure 16.

7. Conclusion and Future Work

This paper reformulates log-aesthetic curves under the influ-
ence of a magnetic field and denotes it as log-aesthetic mag-
netic curves. The physical analysis provides an insight into
various parameters previously regarded as shape parameters.
We derived an end curvature controllable LAC with the
formulation of LMC. We have also presented the possibility
of interpolating given G2 Hermite data with a single segment
of LMC. The characteristics LMC indicate high potential for
CAD applications. Two examples of surface generation using
LMC segments illustrated in the final section along with its
zebra maps are indicating LMC surfaces are of high quality.

Future work includes in-depth analysis of the drawable
region of G2 LMC and the study of the generalization of mag-
netics curveswith various possibilities of 𝑞(𝑡) representations.
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