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Superalloy MAR-247 is mainly applied in the space industry and die industry. With its characteristics of mechanical property,
fatigue resistance, and high temperature corrosion resistance, therefore, it is mainly applied in machine parts of high temperature
and corrosion resistance, such as turbine blades and rotor of the aeroengine and turbine assembly in the nuclear power plant.
However, considering that its properties of high strength, low thermal conductivity, being difficult to soften, and work hardening
may reduce the life of cutting-tool and weaken the surface accuracy, the study provided minimizing experiment occurring during
milling process for superalloymaterial. As a statistical approach used to analyse experiment data, this study usedGM(1, 1) in the grey
predictionmodel to conduct simulation and then predict and analyze its characteristics based on the experimental data, focusing on
the tool life and surface accuracy.Moreover, with the superalloymachining parameters of the current effective application improved
grey prediction model, it can decrease the errors, extend the tool life, and improve the prediction precision of surface accuracy.

1. Introduction

In the milling progress, the nickel-base alloy may shorten the
tool life and it’s surface accuracy to bad due to it’s material
characteristics, which are properties of hard-to-cut materials
in the milling process currently, and the reasons for being
hard-to-cut are listed in the following:

(1) Work hardening ability: when processing the nickel-
base materials, the phenomenon of the precipitation
hardening appearing to the material may result in
difficulty in machining and finally cause cutting-tool
flaking and severe wear at the blade end, so that the
surface accuracy is degraded.

(2) Low thermal conductivity: for common steel cutting,
though cutting heat may arise, it is generally brought
away by the cuttings to some degree; on the contrary,
the superalloy, due to its low thermal conductivity, is
easy to accumulate the cutting heat of the cutting-
tool and work-piece; and its high yield point and
tensile strength, large cutting impedance, and blade

end of the tool are easy to cause high pressure, high
temperature, and plastic deformation.

(3) The affinity between tool and superalloy: in the cases
of discontinuous cutting like milling, phenomenon of
welding may occur at the tool end or in the cuttings,
while the melted objects may tumble in the work-
pieces, whichwill cause a larger impact force and even
lead to the cutting-tool flaking [1–4].

This study use of GM(1, 1) in the grey prediction model
to simulate and predict the correlations between tool wear
and surface accuracy, particularly the significant effects of
superalloy MAR-247 on the tool wear. The GM(1, 1) pre-
diction model in grey system theory is characterized by the
fact that it can conduct prediction with a small amount of
cutting data and experimental data; however, the GM(1, 1)

model is the convergent form of first-order linear differential
equation, so the repeated AGO operations may increase the
errors. In the study, it used the exponential smoothing to
make improvements, so as to realize the goal of reducing the
prediction errors of tool wear and surface accuracy.
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Figure 1: Diagram of cutting parameter.

2. Cutting Principle and Material Properties

2.1. Cutting Principle. The major impact factors in cutting
include CNC precision machine, tool material, machining
parameters, and controller. In the study, machining param-
eter is selected as the variable factor, including the depth of
cut (DOC) and feeding speed; the fixed factors cover the
rotation speed, cutting compound, and so forth. Figure 1
is the diagram of cutting parameter, in which the object
function refers to the life and surface accuracy, with the
general formula of cutting principle shown in the following.

Spindle speed (r.p.m.) is calculated based on the different
tool diameter and different work-piece cutting speed.

The tool diameter is inversely proportional to the rev-
olution speed of main shaft, while the cutting speed is
directly proportional to the revolution speed, known from the
following equation:

𝑁 =
1000𝑉𝑐

𝜋𝐷
(rpm) . (1)

𝑉𝑐 is cutting speed (m/mim) and𝐷 is tool diameter (mm).
Cutting feed rate is one of the factors influencing the

cutting time; that is, the faster the cutting feed rate produces,
the shorter the cutting time is. Besides, the material removal
rate is also improved, which is reduced on the contrary.
The calculation formula of cutting feed rate is shown in the
following:

𝐹 = 𝑁 × 𝐹
𝑡
× 𝑡. (2)

𝑁 is revolution speed; 𝐹
𝑡
is the cutting output of each tooth

(mm/tooth); 𝑡 is tooth number.

2.2. Metal Properties of Supperalloy MAR-M247. Generally,
the nickel-base alloy will generate FCCmatrix (𝛾 phase) after
the aging treatment to separate out the discoid 𝛾󸀠󸀠 (Ni3Nb)
phase and finally turn out the integrated response; however,
MAR-M247 fails to produce precipitation significantly but
mainly separate out the 𝛾󸀠[Ni

3
(Ti,Al)] phase with tiny spher-

ical precipitated phase. The mechanical properties of alloy
like strength and hardness grow as the size of 𝛾󸀠󸀠 particle
increases. The quantity of generated 𝛾󸀠 may affect MAR-247’s

performance of heat-resistance; namely, the content is higher
and the high temperature strength is better. Therefore, Al, Ti,
Nb, and Ta dissolved in the nickel-base matrix all contribute
to the generation of 𝛾󸀠 phase. If the amount of 𝛾󸀠󸀠 and 𝛾󸀠 phase
precipitation is enough, the alloy can achieve the highest
strength, which is also the reasonwhy the alloy performs even
much higher strength under high temperature. Meanwhile,
its processability becomes worse.The impacts of temperature
on material changes are shown in Figure 2.

In addition, carbon element also plays a crucial influence
on the mechanical properties of superalloy MAR-M247,
since the carbon itself cannot form the carbide with nickel
but bonding with other alloy elements. Commonly, there
are there types of precipitations (MC, M

6
C, and M

23
C
6
)

generated from nickel-base alloy and carbide. The studies
reveal that MC (high temperature tungsten carbide phase) is
separated out in the form of lump, which has little help to
the materials. However, M

6
C is often precipitated in grain

boundary in form of lumps, so the size of particle can be
controlled. It is necessary to desalinate the carbide in the
material to avoid the M

7
C
3
in the crystal grain generated by

TiC [6].

3. Construction of Prediction Model

3.1. Grey Prediction GM(1, 1) Model. The grey prediction
model is primary GM(1, 1) developed by Deng [7], mainly
applied under conditions of less model information, more
impact variables, and uncertain behavior models, and the
operation model includes the works of correlation analysis,
model construction, prediction, and control [6].

The grey predictionmodel GM (𝑛, ℎ) is a dynamicmodel,
in which 𝑛 refers to the order of differential equation and
ℎ the number of variables of the differential equation, so
GM(1, 1) is the first-order differential equation [8]. It mainly
adopts the training value to conduct mode-1 which uses a few
training values to finish the prediction; the current prediction
procedure of GM(1, 1) is described in the following [9, 10].

Step 1 (primitive sequence and experimental values). Con-
sider the following:

𝑥
(0)
= (𝑥
(0)
(1) , 𝑥

(0)
(2) , 𝑥

(0)
(3) , . . . , 𝑥

(0)
(𝑛)) ,

𝑛 ≥ 2.

(3)

Step 2 (conducting the Accumulated Generating Operation
(AGO)). Let 𝑥(1) be the transformation sequence of 𝑥(0) at 𝑇:

𝑥
(1)
= (𝑥
(1)
(1) , 𝑥

(1)
(2) , 𝑥

(1)
(3) , . . . , 𝑥

(1)
(𝑛))

𝑥
(1)
(𝑘) =

𝑘

∑
𝑚=1

𝑥
(0)
(𝑚) .

(4)

Consequently, model of the first-order differential equation
GM(1, 1) is

𝑑𝑥
(1)

𝑑𝑡
+ 𝑎𝑥
(1)
= 𝑏, (5)
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Figure 2: Influences of temperature change on the material structure [5].

wherein 𝑡 is independent variable, 𝑎 is the development
coefficient, and 𝑏 is the grey control variable.

Step 3 (conversion treatment of the former and latter terms).
Consider the following:

𝑑𝑥
(1)

𝑑𝑡
󳨀→ 𝑥
(1)
(𝑘 + 1) − 𝑥

(1)
(𝑘) . (6)

Through Inverse Accumulated Generating Operation
(IAGO), it can be learned that

𝑥
(1)
(𝑘 + 1) − 𝑥

(1)
(𝑘) = 𝑥

(0)
(𝑘 + 1) . (7)

If 𝛼 = 0.5, its definition in 𝑥(1)
1
(𝑡) would be

𝑥
(1)
(𝑘) 󳨀→ 0.5𝑥

(1)
(𝑘) + 0.5𝑥

(1)
(𝑘 − 1) = 𝑧

(1)
(𝑘) . (8)

After collation, it is known that

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥
(1)
= 𝑏 󳨀→ 𝑥

(0)
(𝑘) + 𝑎𝑧

(1)
(𝑘) = 𝑏. (9)

Step 4 (determining 𝑎, 𝑏 by least square method). Consider
the following:

𝑝 = [
𝑎

𝑏
] = (𝐵

𝑇
𝐵)
−1

𝐵
𝑇
𝑌
𝑛

(10)

in which the accumulated matrix 𝐵 and constant term 𝑌
𝑛
are,

respectively,

𝐵 =

[
[
[
[
[
[
[

[

−𝑧
(1)
(2) 1

−𝑧(1) (3) 1

... 1

−𝑧(1) (𝑛) 1

]
]
]
]
]
]
]

]

,

𝑌
𝑛
=

[
[
[
[
[
[

[

𝑥 (2)

𝑥 (3)

...

𝑥 (𝑛)

]
]
]
]
]
]

]

.

(11)
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Step 5 (constructing the grey prediction model). This equa-
tion in GM(1, 1) is of

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥
(1)
= 𝑏 (12)

wherein the primitive condition of 𝑥(1) is 𝑥(0)(1) = 𝑥(1)(1).
According to the calculationmethod of ordinary differen-

tial equations (ODE), it can obtain the discretization response
equation:

𝑥
(1)
(𝑘 + 1) = (𝑥

(0)
(1) −

𝑏

𝑎
) 𝑒
−𝑎(𝑘−1)

+
𝑏

𝑎
, 𝑘 ≥ 𝑅,

𝑥
(1)
(𝑘 + 1) = (𝑥

(0)
(1)) 𝑒
−𝑎𝑘

+
𝑏

𝑎
(1 − 𝑒

−𝑎𝑘
) , 𝑘 ≥ 0.

(13)

Step 6. Process with Inverse Accumulated Generation Oper-
ation (IAGO). Consider the following:

𝑥
(0)
(𝑘 + 1) = (1 − 𝑒

𝑎
) (𝑥
(0)
(1) −

𝑏

𝑎
) 𝑒
−𝑎𝑘
. (14)

3.2. Improved GM(1, 1) Model. Generally, the equations in
GM(1, 1) are the first-order differential equations, which all
belong to convergence type, while the experimental value in
this study is of progressive increase pattern which is of diver-
gence type; thus it is modified into divergence form in the
first-order differential equations and results in accumulated
errors in IAGO. As a result, it is necessary to be converted
and changed in the whitening formula. The following steps
can be obtained after being modified [11, 12].

Step 1 (primitive sequence and experimental values). Con-
sider the following:

𝑥
(0)
= (𝑥
(0)
(1) , 𝑥

(0)
(2) , 𝑥

(0)
(3) , . . . , 𝑥

(0)
(𝑛)) ,

𝑛 ≥ 2.

(15)

Step 2 (executing the Accumulated Generating Operation
(AGO)). Let 𝑥(1) be the transformation sequence of 𝑥(0) at
𝑇:

𝑥
(1)
= (𝑥
(1)
(1) , 𝑥

(1)
(2) , 𝑥

(1)
(3) , . . . , 𝑥

(1)
(𝑛))

𝑥
(1)
(𝑘) =

𝑘

∑
𝑚=1

𝑥
(0)
(𝑚) .

(16)

Consequently, model of the first-order differential equation
GM(1, 1) after modification is

𝑑𝑥
(1)

𝑑𝑡
− 𝑎𝑥
(1)
= 𝑏 (17)

wherein 𝑡 is independent variable, 𝑎 the development coeffi-
cient, and 𝑏 the grey control variable.

Step 3 (conversion treatment of the former and latter terms).
Consider the following:

𝑑𝑥(1)

𝑑𝑡
󳨀→ 𝑥
(1)
(𝑘 + 1) − 𝑥

(1)
(𝑘) . (18)

Through Inverse Accumulated Generating Operation
(IAGO), it can be learned that

𝑥
(1)
(𝑘 + 1) − 𝑥

(1)
(𝑘) = 𝑥

(0)
(𝑘 + 1) . (19)

If 𝛼 = 0.5, its definition in 𝑥(1)
1
(𝑡) would be

𝑥
(1)
(𝑘) 󳨀→ 0.5𝑥

(1)
(𝑘) + 0.5𝑥

(1)
(𝑘 − 1) = 𝑧

(1)
(𝑘) . (20)

After collation, it is known that

𝑑𝑥
(1)

𝑑𝑡
− 𝑎𝑥
(1)
= 𝑏 󳨀→ 𝑥

(0)
(𝑘) − 𝑎𝑧

(1)
(𝑘) = 𝑏. (21)

Step 4 (determining 𝑎, 𝑏 by least square method). Consider
the following:

𝑝 = [
𝑎

𝑏
] = (𝐵

𝑇
𝐵)
−1

𝐵
𝑇
𝑌
𝑛
, (22)

in which the accumulated matrix 𝐵 and constant term 𝑌
𝑛
are,

respectively,

𝐵 =

[
[
[
[
[
[
[

[

−𝑧
(1)
(2) 1

−𝑧(1) (3) 1

... 1

−𝑧(1) (𝑛) 1

]
]
]
]
]
]
]

]

,

𝑌
𝑛
=

[
[
[
[
[
[

[

𝑥 (2)

𝑥 (3)

...

𝑥 (𝑛)

]
]
]
]
]
]

]

.

(23)

Step 5 (constructing the grey prediction model). The equa-
tion in GM(1, 1) is of

𝑑𝑥
(1)

𝑑𝑡
− 𝑎𝑥
(1)
= 𝑏 (24)

wherein the primitive condition of 𝑥(1) is 𝑥(0)(1) = 𝑥(1)(1).
According to the solutions to ordinary differential equa-

tions (ODE), it can have obtain the discretization response
equation:

𝑥
(1)
(𝑘 + 1) = (𝑥

(0)
(1) +

𝑏

𝑎
) 𝑒
𝑎(𝑘−1)

−
𝑏

𝑎
, 𝑘 ≥ 𝑁. (25)

Step 6. Process with Inverse Accumulated Generation Oper-
ation (IAGO). Consider the following:

𝑥
(0)
(𝑘 + 1) = (1 − 𝑒

−𝑎
) (𝑥
(0)
(1) +

𝑏

𝑎
) 𝑒
𝑎(𝑘−1)

. (26)

Step 7 (corrected value 𝑢 after improvement). It’s mainly
improves the error between the first point 𝑥(0)(1) of the prim-
itive data and the first point𝑥(0)(1) of the prediction value [11]:

𝑢 =
𝑏

𝑎
− (𝑥
(0)
(1) +

𝑏

𝑎
) 𝑒
−𝑎
. (27)
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Figure 3: Experimental procedure chart.

The error amount 𝑢(𝑘) of the remaining points is determined
as

𝑢 (𝑘) = 𝑒
𝑎(𝑘−1)

(𝑥
(0)
(1) + 𝑢) − 𝑥

(0)
(𝑘) . (28)

Step 8 (training value after modification). Take 𝑢(𝑘) as the
primitive data to get 𝑢(𝑘 + 1) by exponential smoothing, and
its corrected value is 𝑥(0)(𝑘), shown as

𝑥
(0)
(𝑘) = 𝑥

(0)
(𝑘) − 𝑢 (𝑘) . (29)

4. Experimental Design and Facilities

4.1. Experimental Facilities and Procedures. The study uses
the machine centers to conduct the cutting experiment, with
the highest revolution speed 𝑁 = 6000 rpm, GOO feed
rate 𝐹 = 36m/min, and the tool materials including tool
K10 and coated TiN, TiCN tool K10. During the experiment,
the author observes the relationship between tool wear and
surface accuracy and utilizes the grey prediction model for
analysis and prediction, which has realized the goal of prac-
tical application. The experimental procedure is displayed in
Figure 3.

4.2. Experimental Analysis. Currently, the accuracy analysis
is the criteria for evaluating the prediction methods, mainly
based on the Mean Absolute Percentage Error (MAPE) and
Root Mean Square Percentage Error (RMSE). The study is
mainly used to evaluate and predict the tool life and surface
accuracy, which then is coordinated with grey prediction
GM(1, 1) model and improved model to conduct prediction
and discussion. The equations of MAPE and RMSE are as
follows:

(1) Mean Absolute Percentage Error (MAPE):

𝐸MAPE =
1

𝑛

𝑛

∑
𝑘=1

𝑒
𝑘
; (30)

Figure 4: Tool wear of tool K10 (𝑁 = 2000 ∼ 𝑁 = 5000 rpm).

Revolution speed (rpm)
5000450040003500300025002000

0

0.1

0.2

0.3

0.4

0.5

0.6

To
ol

 fl
an

k 
w

ea
r (

m
m

)

Experiments
GM prediction
GM + ESM prediction

Material: MAR-247
Depth: 0.3mm
Feed rate: 0.02mm/tooth
Dry cutting

Figure 5: Relationships between revolution speed of main shaft and
tool wear prediction.

(2) Root Mean Square Percentage Error (RMSE):

𝐸RMSP = √
1

𝑛

𝑛

∑
𝑘=1

𝑒2
𝑘
. (31)

5. Results and Discussion

5.1. Impacts of Different Feed Rate on the Tool Wear. During
the process of cutting nickel-base alloy, the material harden-
ing and low heat conductivity may result in fast tool wear
and degraded surface accuracy. Figure 4 shows the tool wear
of tool K10, which reveals that a faster revolution speed
leads to a severer tool wear. The study utilizes the grey
prediction model and improved model to conduct analysis,
showing that the higher revolution speed causes a severer tool
wear. As shown in Figure 5, the improved model GM(1, 1) +
MSE performs better than the conventional GM(1, 1). From
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Table 1: Comparison sheet of the common and the improved grey
prediction model.

Tool K10
𝑁 (rpm) Test GM(1,1) Error GM(1,1) + MSE Error
2000 0.235 0.2577 −0.0227 0.235 0
2500 0.292 0.2883 0.0037 0.2775 −0.0145
3000 0.317 0.3225 −0.0055 0.3159 −0.0011
3500 0.364 0.3608 0.0032 0.3608 −0.0032
4000 0.374 0.4036 −0.0296 0.3933 0.0193
4500 0.518 0.4514 0.0666 0.4768 −0.0412
5000 0.536 0.505 0.031 0.5393 0.0033
MAPE 0.0012 0.0005
RMSE 0.0313 0.0181

Figure 6: Tool wear of coated TiN tool (𝑁 = 2000 ∼ 𝑁 =

5000 rpm).

Table 1, the comparison sheet of common grey prediction
model and improved grey predictionmodel, it can be learned
that the error of MAPE is 0.0005, smaller than 0.0012, and
error of RMSE is 0.0181, smaller than 0.0313. Therefore, if the
primitive experimental values are increasing progressively,
the improved grey prediction model GM(1, 1) + MSE can
reduce the errors.

When the coated TiN tool K10 is adopted, the observation
of the tool wear shows that a higher revolution speed causes
a severer tool wear, which is mainly because the numbers
of tool frictions on site within the unit time make the
temperature rise, making the material MAR-M247 harden
and finally the tool is worn rapidly, as shown in Figures
6 and 7. In terms of the prediction model, the improved
model GM(1, 1) + MSE has a better performance than the
common model GM(1, 1). As listed in Table 2, the error of
MAPE is reduced to 0.00043 after being improved, smaller
than 0.00056, and that of RMSE to 0.0207, smaller than
0.0646. As a result, if the primitive experimental value is
increasing progressively, the improved grey predictionmodel
GM(1, 1) + MSE can reduce the error.

For coated TiCN tool K10, as shown in Table 3, the
improved grey prediction model GM(1, 1) +MSE can reduce
the errors of MAPE and RMSE if the primitive experimental
values are increasing progressively.

When the feed rate of each tooth is increased from 𝐹
𝑡
=

0.02mm/tooth to 𝐹
𝑡
= 0.06mm/tooth, the tool wear is

alleviated. As shown in Figure 8, higher revolution speed and
feed rate play a more significant impact on the tool wear
than the lower ones. The application of improved model

Table 2: Comparison sheet of the common and improved grey
prediction model.

Tool K10+TiN
𝑁 (rpm) Test GM(1,1) Error GM(1,1) + MSE Error
2000 0.171 0.2364 −0.0654 0.171 0
2500 0.264 0.2582 0.0058 0.2248 −0.0392
3000 0.272 0.282 −0.01 0.264 −0.008
3500 0.313 0.308 0.005 0.307 −0.006
4000 0.415 0.3364 0.0786 0.3797 −0.0353
4500 0.455 0.3674 0.0876 0.4449 −0.0101
5000 0.506 0.4013 0.1047 0.509 0.003
MAPE 0.00561 0.00043
RMSE 0.06464 0.02068
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Figure 7: Relationships between revolution speed of main shaft and
tool wear prediction.

GM(1, 1) + MSE produces a better performance than model
GM(1, 1). From Figures 9 and 10, as well as the comparison
sheet between the common and the improved grey prediction
model, the errors can be reduced by adopting the improved
model GM(1, 1) + MSE if the primitive experimental values
are increasing progressively.

5.2. Impacts of Different Feed Rate on the Surface Accuracy.
The severe tool wear may result in a worse surface roughness,
especially formachining of nickel-basematerials, and the tool
wear is severer; while it is hard to observe the degree of tool
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Table 3: Comparison sheet of the common and improved grey
prediction model.

Tool K10+TiCN
𝑁 (rpm) Test GM(1,1) Error GM(1,1) + MSE Error
2000 0.112 0.3929 −0.2809 0.112 0
2500 0.136 0.0947 0.0413 0.2306 0.0946
3000 0.174 0.1299 0.0441 0.1631 −0.0109
3500 0.251 0.1782 0.0728 0.2277 −0.0233
4000 0.331 0.3352 −0.0042 0.4044 0.0734
4500 0.378 0.4597 −0.0817 0.4162 0.0382
5000 0.454 0.6305 −0.1765 0.609 0.155
MAPE 0.06534 0.02214
RMSE 0.134 0.07605

Material: MAR-247
Depth: 0.3mm
Dry cutting
Tool: K10 or TiCN
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Figure 8: Relationships between revolution speed of main shaft and
tool wear prediction.

wear and surface roughness online during cutting, generally,
it only can get the relative data after finishing the cutting.The
study uses the grey prediction principle to conduct analysis
and prediction, finding that the tool wear is much more
obvious when the revolution speed is higher, so that the
surface roughness is accordingly degraded. FromFigures 11 to
14, the primary factors affecting the surface roughness include
the radius of tool nose and feed rate of each tooth, which
can be learned from the theoretical equation of cutting face
roughness:

𝑅max ≡
𝐹
2

𝑡

8𝑟
𝑛

× 1000 (𝜇m) . (32)

As a result, the surface roughness is significantly affected
by the tool wear rather than the radius of tool nose and

Table 4: Comparison sheet of the common and improved grey
prediction model.

Tool/K10
𝑁 (rpm) Test GM(1,1) Error GM +MSE Error
2000 0.13 0.127 0.0029 0.13 0
2500 0.13 0.132 −0.0018 0.1326 0.0026
3000 0.14 0.137 0.0034 0.1382 −0.002
3500 0.14 0.142 −0.002 0.1416 0.0016
4000 0.17 0.147 0.0232 0.1569 −0.013
4500 0.19 0.152 0.0378 0.1759 −0.014
5000 0.21 0.158 0.0522 0.1974 −0.013
MAPE 0.0079 0.002
RMSE 0.026 0.008
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Figure 9: Relationships between revolution speed of main shaft and
tool wear prediction.

feed rate of each tooth, particularly in high revolution speed
regions. Among the predictionmethods, the improvedmodel
GM(1, 1) +MSE is superior to the commonmodel GM(1, 1).
As listed in Table 4, the comparison sheet of the common
and the improved grey prediction model, it can be learned
that the error of MAPE is 0.002 after it is improved, smaller
than 0.0079, while that of RMSE is 0.0008, smaller than
0.026. Therefore, when the primitive experimental values
are increasing progressively, the improved model GM(1, 1) +
MSE can reduce the errors.

When exploring the impacts of different toolmaterial and
feed rate on the surface roughness. It finds that the higher
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Figure 10: Relationships between revolution speed ofmain shaft and
tool wear prediction.

revolution speed brings about severer tool wear and then
worsens the surface roughness, regardless of the tool K10 or
coated TiN and TiCN tools. In Figure 13, it shows that the
improvement of feed rate of each tooth produces a relative
fine surface accuracy, which is because the lower feed rate
may result in a severer tool wear, so that the surface roughness
is accordingly worse, as shown in Figure 8. Moreover, the
coated tools have a better performance in terms of tool life
and surface roughness than the uncoated tools.

Among the prediction methods, the improved model
GM(1, 1) + MSE performs better than the common model
GM(1, 1). From Figure 14, it can be learned that the error
of MAPE is 0.0003 after it is improved, smaller than 0.003,
while that of RMSE is 0.0006, smaller than 0.015. Therefore,
when the primitive experimental values are increasing pro-
gressively, the improved model GM(1, 1) + MSE can reduce
the errors.

6. Conclusion

The study mainly explores and predicts the tool wear and
surface accuracy through applying grey prediction model in
predicting the cutting characteristics of nickel-base material
MAR-M247.The following conclusions are obtained based on
the errors generated in different grey prediction models and
after improving the model.
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Figure 11: Relationships between revolution speed ofmain shaft and
surface roughness.
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Figure 12: Relationships between revolution speed ofmain shaft and
surface roughness.
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Figure 13: Relationships between revolutions.

(1) With the same toolmaterials, the higher the revolving
speed is, the severer the tool wear is, which is mainly
because the frictions generated in the unit time are
relatively more, while the uncoated tools show much
severer tool wear than the coated tools.

(2) With the same tool materials, the slower feed rate
of each tooth results in a severer tool wear, for the
accumulated temperature is relatively high under a
low feed rate causing the precipitation hardening and
material polymerization, while the uncoated tools
showmuch severer tool wear than the coated TiN and
TiCN tools.

(3) In the grey prediction model for tool wear, the
improved model can significantly reduce the errors,
so GM(1, 1) + MSE is superior to GM(1, 1).

(4) The primary factors degrading the surface roughness
include the tool wear and feed rate. With the same
feed rate, the surface roughness is mainly affected by
the tool wear, while the surface roughness of uncoated
tools ismuchworse than that of coated TiN andTiCN
tools.

(5) In the grey prediction model for work-piece surface
roughness, the errors can be notably reduced after
the model is improved; therefore, GM(1, 1) + MSE is
superior to GM(1, 1). Consequently, the divergence
model can be used for analysis if the primitive
experimental values are with progressive increase.
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Figure 14: Relationships between revolution speed ofmain shaft and
surface roughness.
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