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ABSTRACT
The challenging complexity of biological structures has led to the development
of several methods for quantitative analyses of form. Bones are shaped by the
interaction of historical (phylogenetic), structural, and functional constrains.
Consequently, bone shape has been investigated intensively in an evolutionary
context. Geometric morphometric approaches allow the description of the shape
of an object in all of its biological complexity. However, when biological objects
present only few anatomical landmarks, sliding semi-landmarks may provide good
descriptors of shape. The sliding procedure, mandatory for sliding semi-landmarks,
requires several steps that may be time-consuming. We here compare the time
required by two different software packages (‘Edgewarp’ and ‘Morpho’) for the
same sliding task, and investigate potential differences in the results and biological
interpretation. ‘Morpho’ is much faster than ‘Edgewarp,’ notably as a result of the
greater computational power of the ‘Morpho’ software routines and the complexity
of the ‘Edgewarp’ workflow. Morphospaces obtained using both software packages
are similar and provide a consistent description of the biological variability. The
principal differences between the two software packages are observed in areas
characterized by abrupt changes in the bone topography. In summary, both software
packages perform equally well in terms of the description of biological structures, yet
differ in the simplicity of the workflow and time needed to perform the analyses.

Subjects Zoology, Anatomy and Physiology, Computational Science
Keywords Geometric morphometrics, Sliding semi-landmark, Software comparison

INTRODUCTION
Because the interaction of form and function impacts performance, biological shape
is under direct selection. The shape of a bone is influenced by several parameters.
The evolutionary history of an organism plays an important role and often a strong
phylogenetic signal is detected in bone shape (Morgan, 2009; Fabre et al., 2013a;

How to cite this article Botton-Divet et al. (2015), Tools for quantitative form description; an evaluation of different software packages
for semi-landmark analysis. PeerJ 3:e1417; DOI 10.7717/peerj.1417

mailto:lbottondivet@mnhn.fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.1417
http://dx.doi.org/10.7717/peerj.1417
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com
http://dx.doi.org/10.7717/peerj.1417


Fabre et al., 2014a; Álvarez, Ercoli & Prevosti, 2013). Moreover, structural factors can shape

bones as physical laws constrain potential shapes and their morphogenesis (e.g., Cubo,

2004; Cubo et al., 2008). For example, functional constraints imposed through differences

in locomotor behavior (e.g., Fabre et al., 2013b; Álvarez, Ercoli & Prevosti, 2013) and

prey capture strategy or prey size (Andersson, 2004; Meloro et al., 2008; Cornette et al.,

2013) can affect bone size and shape. Additionally, mechanical loads during development

(e.g., Beaupre, Orr & Carter, 1990; Bass et al., 2002) and during the lifetime of an individual

(Lanyon et al., 1982; Currey, 2003) can shape bones because of bone remodeling.

Morphometric approaches have been used extensively for quantifying shape variation in

biological objects including bones (Adams, Rohlf & Slice, 2004). The first paradigm, often

referred to as ‘traditional morphometrics’ was based on a statistical treatment of distances

or ratios (Marcus, 1990). Yet, this approach is limited as the information captured by linear

measurements does not describe the whole geometry. As a consequence, the visualization

of the geometry subsequent to statistical analysis is not possible and objects with different

shapes can theoretically give rise to similar measurements. Additionally, many structures

are difficult to measure in practice, leading to the use of measures such as maximal length

which are functionally but not anatomically homologous.

These limitations have driven the development of geometric morphometrics in the

1990’s (Bookstein, 1991; Dryden & Mardia, 1993; Adams, Rohlf & Slice, 2004; Zelditch,

Swiderski & Sheets, 2012). Geometric morphometrics use outline descriptors (Fourier

analysis) or point coordinates (called landmarks) rather than distances to describe the

geometry of biological objects. In this approach, size is explicitly defined (centroid size,

sum of the squared distances of each landmark to the centroid; Bookstein, 1991) and the

relative position of landmarks is conserved (Adams, Rohlf & Slice, 2004; Zelditch, Swiderski

& Sheets, 2012).

Since a big part of biological variability cannot be assessed by using anatomical

landmarks (biologically homologous landmarks) only, sliding semi-landmarks were

developed to quantify complex shapes devoid of landmarks. Sliding semi-landmarks can

be placed on curves (Bookstein, 1997; Gunz, Mitteroecker & Bookstein, 2005) and surfaces

(Gunz, Mitteroecker & Bookstein, 2005). Due to the impossibility to define anatomically

homologous points on curves and surfaces this approach generates landmarks that are

spatially homologous after sliding (Parr et al., 2012). Sliding semi-landmarks are allowed

to move on curves and surfaces in order to optimize a pre-defined criterion (Gunz &

Mitteroecker, 2013). However, the choice of this criterion has been subject to debate. The

most commonly used criterion is the bending energy (Skinner & Gunz, 2010; Pizzo et al.,

2011; Cornette et al., 2013; Fabre et al., 2014b). The alternative involves the minimization

of the Procrustes distance (Perez, Bernal & Gonzalez, 2006; Gunz & Mitteroecker, 2013).

Sliding semi-landmarks are particularly well suited for the study of bones, providing

descriptors of crests or outlines (curve sliding semi-landmarks; Morgan, 2009; De Groote,

Lockwood & Aiello, 2010; Monteiro & Nogueira, 2010; Álvarez, Ercoli & Prevosti, 2013)

and surfaces such as articular surfaces and the diaphysis of long bones (surface sliding

semi-landmarks; Fabre et al., 2013a; Fabre et al., 2013b; Fabre et al., 2014b; Schlager, 2013a;

Cornette et al., 2013; Morita et al., 2014; Cornette, Tresset & Herrel, 2014).
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Several software packages are currently available that allow one to perform the sliding

procedure in three dimensions. One of the first packages that was developed and that

is still used in many studies (e.g., Kulemeyer et al., 2009; Fabre et al., 2013a; Fabre et al.,

2013b; Cornette et al., 2013; Cornette, Tresset & Herrel, 2014) is ‘Edgewarp’ (Bookstein

& Green, 1994). The ‘EVAN toolbox’ (http://evan-society.org) also performs sliding of

semi-landmarks amongst other operations. Some authors have developed their own

routines such as the Mathematica (Wolfram Inc., Modesto, California, USA) code used

by Gunz & Mitteroecker (2013). Recently two R packages have been published: geomorph

(Adams & Otárola-Castillo, 2013), featuring landmark placement, treatment and analysis,

and ‘Morpho’ (Schlager, 2013b) featuring landmark importation from several other

software packages and performing geometric morphometric treatment and analysis.

Because specimen digitization, the first step of any three dimensional surface analysis,

is a time-consuming step that cannot be easily shortened, it could be of great interest

to reduce the duration of the second step: the sliding procedure. The aim of the present

study is to compare the workflow and the results obtained with two different software

packages for the same three dimensional sliding task. We selected ‘Edgewarp’ (Bookstein &

Green, 1994), an established reference for these types of analyses and ‘Morpho’ (Schlager,

2013b) a recently published set of R routines. We focused on a practical and biological test

comparing a long bone in different mustelids. We followed the sliding procedure detailed

in Gunz, Mitteroecker & Bookstein (2005) using both software packages. Differences

between the results were examined and discussed in the light of the biological structures

involved. The time required was measured for several steps and the global workflow

(e.g., file handling, external software requirements) was compared.

MATERIALS AND METHODS
Material
We used the humeri from 10 specimens belonging to five mustelid species (2 specimens

per species; Table 1): Meles meles (Linnaeus, 1758), Mustela putorius (Linnaeus, 1758),

Gulo gulo (Linnaeus, 1758), Martes martes (Linnaeus, 1758), and Enhydra lutris (Linnaeus,

1758). These species were chosen because they are widely distributed across the mustelid

phylogeny and illustrate a relatively large diversity in both size, shape and ecology (Nowak,

2005; Schutz & Guralnick, 2007; Wilson et al., 2009; Hunter & Barrett, 2011). By choosing

these specimens we attempted to encounter the largest number of potential pitfalls and dif-

ficulties during the sliding procedure. All specimens used are housed in the collections of

‘Mammiferes et Oiseaux’ from the Muséum National d’Histoire Naturelle in Paris, France.

3D modeling
Bones were digitized in three dimensions using a white light fringe Breuckmann 3D surface

scanner (white light fringe StereoSCAN3D model with a camera resolution of five megapix-

els). Raw scans were treated using Geomagic (Geomagic Studio; Raindrop Geomagic,

Research Triangle Park, North Carolina, USA) to fill-in remaining holes and to remove

highly creased edges and spikes. Next, models were decimated to contain 100,000 triangles
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Table 1 Specimens used in this study.

Species Institution specimen

Martes martes CG 1994-806

CG 2005-232

Gulo gulo CG 1983-946

CG 1995-1208

Mustela putorius CG 1991-605

CG 2004-639

Meles meles CG 2005-707

CG 1987-28

Enhydra lutris CG 1935-124

A12503

Notes.
Institutional abbreviations are as follows: CG, Muséum National d’Histoire Naturelle Catalogue Général, Paris, France;
A, Muséum National d’Histoire Naturelle Anatomie Comparée, Paris, France.

resulting in homogeneous 3D surface models. The number of triangles was arbitrarily

fixed to generate models that are not too cumbersome, but without altering the geometry

of the object. The models were converted to ‘.sur’ using the ‘obj2sur’ tool provided at

‘ftp://brainmap.stat.washington.edu/edgewarp/utils/’ in order to import them into

‘Edgewarp.’

3D anatomical landmark and curve digitization
Landmarks and curves were digitized on the surfaces of the scans using the Landmark

software package (Wiley et al., 2005). Twenty-seven 3D homologous anatomical landmarks

were chosen and are visible on all specimens (Fig. 1 and Table 2). Eighteen 3D curves were

defined at the margins of articular surfaces and along crests. All curves are bordered by

anatomical landmarks as recommended by Gunz, Mitteroecker & Bookstein (2005). The

curves were digitized with a high density of points (40–160 points per curve depending on

the curve length) and then sub-sampled to the number listed in Table 3. This dataset was

then used to perform an identical sliding procedure using both ‘Edgewarp’ and ‘Morpho.’

A semi-automatic point placement was used to place surface semi-landmarks on the

scans. A template was modeled using the Blender software (Blender Online Community,

2014) following the procedure described in Souter et al. (2010). We created a mesh of

598 points representing a simplified form of the humerus. Landmarks and curves were

digitized on the template surface as it was done on the actual scans of the specimens.

Then in both ‘Edgewarp’ and ‘Morpho,’ landmarks and curves were used to compute a

thin plate spline (TPS) deformation of the template. Next, surface sliding landmarks were

projected from the deformed template onto the bone surface (Gunz & Mitteroecker, 2013).

In summary, the template used in this study contains a total of 817 points including 27 3D

homologous anatomical landmarks, 192 sliding semi-landmarks on curves and 598 sliding

semi-landmarks on surfaces.

The sliding procedure was performed following the algorithm detailed in Gunz,

Mitteroecker & Bookstein (2005). Four TPS relaxations were performed, the first TPS
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Figure 1 3D view of a Martes martes MNHN 2005-232 humerus showing the location of the 27
anatomical landmarks and 18 curves used to quantify the humeral shape. (A) caudal; (B) cranial;
(C) lateral views. Red: anatomical landmarks. Blue: curve sliding semi-landmarks. Yellow: surface sliding
semi-landmarks. See Table 2 for landmark definitions.

relaxation was performed against the template, the three others against Procrustes

consensus calculated using the data from the previous iteration.

Time estimation
The time for surface pre-processing and initial projection was measured by the value

displayed in ‘Edgewarp’ log. The time required by ‘Edgewarp’ for the three iterations of

sliding against Procrustes consensus was measured using a timer. The time required to
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Table 2 Definition of the anatomical landmarks.

LM Definition

1 Most disto-medial point of the trochlea

2 Most medio-proximal point of the caudal side of the trochlea

3 Point of maximum of curvature of the olecranon fossa

4 Most latero-proximal point of the caudal side of the trochlea

5 Most distal point of contact between the trochlea and the capitulum

6 Most latero-proximal point of the cranial side of the capitulum

7 Point of maximum of curvature of the radial fossa

8 Maximum concavity of the cranial margin of the trochlea

9 Point of maximum of curvature of the coronoid fossa

10 Most medio-proximal point of the cranial side of the trochlea

11 Most distal point of the cranial side of the supracondylar foramen

12 Most proximal side of the cranial side of the supracondylar foramen

13 Most distal tip of the medial epicondyle

14 Most proximal tip of the medial epicondyle

15 Most distal point of the caudal side of the supracondylar foramen

16 Most proximal point of the caudal side of the supracondylar foramen

17 Most disto-cranial point of the lateral epicondylar crest

18 Most proximal point of the lateral epicondylar crest

19 Most distal point of the deltopectoral crest

20 Upper tip of the lesser tuberosity

21 Most disto-medial point of the lesser tuberosity

22 Most medio-caudal point of contact between the lesser tuberosity and humeral head

23 Disto-caudal tip of the humeral head

24 Latero-caudal point of contact between the greater tuberosity and the humeral head

25 Most antero-proximal point of the greater tuberosity crest

26 Tip of the tuberosita teres minor

27 Contact point between tricipital line and greater trochanter crest

Notes.
LM, landmark index.

run the ‘Morpho’ package in R was assessed by running the timestamp R function at the

beginning and end of tasks and calculating the difference. These durations do not include

time required for writing the script (scripts for data formatting for ‘Edgewarp’, and R

scripting for ‘Morpho’). All analyses were run on a laptop computer (Asus k55vj) with a

Intel® i7-3630QM CPU, 4 Gb of memory, running on Linux Ubuntu V14.04.

Geometric morphometrics and visualization
Data analysis and visualization were performed using the R software (R Core Team,

2014). In order to superimpose geometries and isolate size and shape, a generalized

Procrustes analysis (GPA) was performed (Gower, 1975; Rohlf & Slice, 1990; Dryden &

Mardia, 1998) for the ‘Edgewarp’ and the ‘Morpho’ dataset separately using the ‘Rmorph’

package (Baylac, 2013). We reduced dimensionality of the datasets by keeping the nine first

non-null axes of a Principal Component Analysis (PCA) performed on the coordinates
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Table 3 Curve designation and number of sliding semi-landmarks per curve; for anatomical land-
mark designation please refer to Table 2 and Fig. 1.

Init LM Term LM NbSl

1 2 5

2 4 10

4 5 15

5 6 15

6 8 10

8 10 3

10 1 15

11 12 5

12 11 5

15 16 5

16 15 5

17 18 23

20 21 5

22 23 10

23 24 9

25 27 26

26 27 21

27 19 5

Notes.
Abbreviations are as follows: init LM, initial anatomical landmark index; term LM, terminal anatomical landmark index;
NbSl, number of curve sliding semi-landmarks.

in the tangent space. In order to asses differences between the dataset produced by each

software, a PROTEST analysis was performed using the ‘vegan’ package (Oksanen et

al., 2015) run with 100,000 iterations (Peres-Neto & Jackson, 2001). The ‘vegan’ package

was then used to draw the Procrustean superimposition plot. The three dimensional

visualization of bone surfaces, landmarks, and vectors between homologous points

were performed using the ‘rgl’ (Adler & Murdoch, 2012) and ‘Morpho’ (Schlager, 2013b)

packages in R.

RESULTS
Global shape variability
The PROTEST analysis highly supports the congruence of the two datasets (m12 = 0.00325;

P < 10−5). The Procrustean superimposition plot (Fig. 2) shows the differences between

the two datasets. It becomes immediately clear that the between-methods variability is

smaller than the inter-specimens variability, even within species. The Procrustes residuals

of specimens analyzed with both methods vary from one specimen to the other (Table 4).

The specimens showing the maximal Procrustes residuals are Gulo gulo 1983-946, Mustela

putorius 1991-605, and Enhydra lutris 1935-124 (respectively c, e, and i; Fig. 2). The first

axis separates Enhydra lutris (i and j; Fig. 2) and Martes martes (a and b; Fig. 2). On the

two first axes Mustela putorius and Gulo gulo show intra-specific distances greater than

the inter-specific ones with Mustela putorius 2004-639 (f; Fig. 2) being closer to Gulo gulo
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Figure 2 Procrustes superimposition of the Morpho (circles) and Edgewarp (arrow heads) results.
Arrows present Procrustes residuals. (a) Martes martes 2005-232; (b) Martes martes 1994-806; (c) Gulo
gulo 1983-946; (d) Gulo gulo 1995-1208; (e) Mustela putorius 1991-605; (f) Mustela putorius 2004-639;
(g) Meles meles 2005-707; (h) Meles meles 1987-28; (i) Enhydra lutris 1935-124; (j) Enhydra lutris A12503.

1995-1208 (d; Fig. 2) than to Mustela putorius 1991-605 (e; Fig. 2) and Gulo gulo 1983-946

(c; Fig. 2) being closer to Mustela putorius 1991-605 (e; Fig. 2) than to Gulo gulo 1995-1208

(d; Fig. 2).

Differences between mean shapes
The middle part of the greater trochanteric crest (2 in Fig. 3) presents the strongest

differences. The neighboring points on the surface of the greater trochanteric crest are

also affected. The second most variable area is the curve sliding around the cranial side

of the medial supracondylar foramen (1 in Fig. 3) at the latero-distal part. Additionally, a

point on the diaphysis located on the disto-medial side of the greater trochanter crest varies

considerably.

The most variable specimens
As highlighted in Fig. 2 and Table 4, differences linked to the software are more important

in some specimens than in others. Gulo gulo 1983-946, Mustela putorius 1991-605, and
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Table 4 Procrustes residuals per specimen from the superimposition of the 9 first principal compo-
nents of the Edgewarp and Morpho slid datasets.

Specimen Procrustes residuals

Enhydra lutris 1935-124 0.020489693

Enhydra lutris A12503 0.017785627

Gulo gulo 1983-946 0.037204213

Gulo gulo 1995-1208 0.010347460

Martes martes 1994-806 0.009211963

Martes martes 2005-232 0.015334387

Meles meles 1987-28 0.008102059

Meles meles 2005-707 0.011307574

Mustela putorius 1991-605 0.021816036

Mustela putorius 2004-639 0.005777793

Figure 3 Warped mesh calculated on the Procrustes mean shape showing the most varying ar-
eas. (A) caudal; (B) lateral; (C) cranial; (D) medial views. Sphere colors (from green to red) and size are
proportional to the Euclidean distance between points in the Procrustes mean shape for each software
output after sliding. Points showing the maximal distance between the results obtained by the two
software packages are large red points (as opposed to minimal distances being represented by small green
points). 1: cranial side of the medial supracondylar foramen; 2: greater trochanteric crest.
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Figure 4 Close up view of the most variable areas of some specimens after sliding. Yellow: ‘Edgewarp’;
blue: ‘Morpho’; black vectors link the homologous points in the output of each software package; the
red vectors highlight the most variable points. (A) Gulo gulo 1983-946 medio-cranial view of the greater
trochanteric crest; (B) Mustela putorius 1991-605 medio-caudal view of the lesser trochanter (distal) crest
along the diaphysis. (C) Enhydra lutris 1935-124 medial view of the distal part of the greater trochanteric
crest.

Enhydra lutris 1935-124 display the largest differences between methods (Table 4). Beyond

the differences noted in the mean shapes, we investigated the ones specific to each of

these specimens. Gulo gulo 1983-946 (Figs. 4A) presents a displacement of points located

on the deltoid crest, more specifically around the insertion of an ossified tendon (teres

major/latissimus dorsi). The most variable point switches from one side of this structure

to the other depending on the software used, suggesting that one of the methods did not

succeed in sliding the point across this structure. Mustela putorius 1991-605 (Fig. 4B)

presents a point shifting from one side to the other side of the crest on the diaphysis distal

to the lesser trochanter. The ‘Edgewarp’ points (yellow) are located on the caudal side of

the crest whereas the ‘Morpho’ points (blue) are located on the cranial side. Enhydra lutris

1935-124 (Fig. 4C) presents a variation associated with a small depression located medially

to the deltoid crest. ‘Edgewarp’ points (yellow) slide on the distal margin of the foramen

whereas the ‘Morpho’ points (blue) are close to the cranial margin of the depression.

Surrounding points are also affected. The most variable points around the supracondylar

foramen, at the latero-distal part of its cranial side are driven by the Meles meles 1987-28.

For this specimen ‘Edgewarp’ points are concentrated on the most proximal part of this

curve whereas ‘Morpho’ points are located more distally.

Time
The times measured for surface pre-processing, the initial point projection, and the relax-

ations against the Procrustes mean shape, iterated three times, are given in Table 5. ‘Mor-

pho’ requires a much shorter time compared to ‘Edgewarp’. The time required for the slid-

ing against Procrustes mean shape by ‘Edgewarp’ is moreover an active time, meaning that
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Table 5 Comparison of the duration of several tasks of the sliding procedure on the whole dataset
with both ‘Edgewarp’ and ‘Morpho.’

Edgewarp Morpho %

Surface pre-processing (s) 1,320 4 0.3

Initial point projection (s) 600 20 3.3

Sliding against mean shape 3 iterations (min) 105 2 1.9

Notes.
%, percentage of time required by ‘Morpho’ compared to ‘Edgewarp.’

the user needs to run each step of the iterations manually. This part also requires the com-

putation of the GPA which is not implemented internally in ‘Edgewarp’. Based on the re-

sults of the GPA, new input files must be generated prior to performing the next iteration.

DISCUSSION
General variability
The distribution of specimens in morphological space is similar, irrespective of the

software used. The biological information is similarly described with both packages

and thus both can be used to describe complex biological shapes without an inherent

bias. Nevertheless, as some local divergence between methods can be observed, results

could differ for intra-specific studies often describing more subtle shape variations. The

morphospace obtained after sliding is structured by the most extreme ecological niches

in our sample suggesting that functional constraints drive much of the shape variability.

The first dimension of the Procrustean superimposition plot separates Enhydra lutris

and Meles meles (respectively i, j and g, h Fig. 2) from the other species. The maximal

distance on this axis is obtained between Enhydra lutris (i and j, Fig. 2) which is the most

aquatic of the Mustelidae sampled here (Estes, 1980; Bodkin, 2001) and Martes martes (a

and b, Fig. 2) which is the most arboreal (Nowak, 2005) species in our sample. The second

dimension of the Procrustean superimposition plot separates Meles meles (g and h, Fig. 2),

the only semi-fossorial species in our sample (Nowak, 2005) from Enhydra lutris (i and j).

Phylogeny, size and/or body mass (allometry) have been shown to be important factors

shaping the humerus in Carnivora (Heinrich & Biknevicius, 1998; Fabre et al., 2013a;

Mart́ın-Serra, Figueirido & Palmqvist, 2014). Our data suggest that life-style is indeed an

important driver of forelimb shape in mustelids. Nevertheless, this is a small sample only

and these results should be interpreted with caution.

Differences
As they are computed from the same dataset, morphospaces obtained by the two software

where expected to be the same. The two morphospaces (relative distances between

specimens) are indeed generally similar, which is validated by the significant PROTEST.

Nevertheless some specimens show slightly different positions in the morphospace

depending on the software (Gulo gulo 1983-946, Mustela putorius 1991-605, and Enhydra

lutris 1935-124, respectively c, e, and i; Fig. 2). Specimens showing the greatest variation

in their relative position between the two software are bones with areas where a structure
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interrupts the main curvature of the surface resulting in strong local deformations (Fig. 4).

The fact that these local deformations are of a size similar to the distance between surface

sliding landmarks appears to play a role. Indeed, highly curved structures can “puncture”

the meshing constituted by the surface sliding semi-landmarks. Even if concerning

only few points, these structures can lead to displacement of the specimen into the

morphospace and could consequently have an impact in the biological interpretation

of the morphospace (i.e., modifying phenetic affinities; Fig. 2). A greater number of surface

sliding semi-landmarks in these specific areas could allow points to slide at the surface of a

structure. Additionally, if the aforementioned structures present no biological meaning for

the study, an a priori elimination could avoid giving too much weight to these structures in

the analysis. Small foramina and ossified tendon insertions could be removed prior to the

sliding procedure using dedicated tools in meshing software.

The differences observed between the two datasets thus likely result from differences

during the sliding process at particular points of some specimens rather than reflect a

global difference between methods. Such differences could be a consequence of differences

between the two software packages in the computation of the relaxation as well as in the

computation of the projection of the points on the surface of the specimen. Consequently

mixing in a single analysis results obtained by the two software should be avoided.

Time
‘Edgewarp’ appears more time-consuming than ‘Morpho’ for the same sliding task.

‘Edgewarp’ requires 30–300 times the time required by ‘Morpho’ for the same tasks. Two

reasons can be put forward to explain these differences: computational efficiency and

workflow complexity. ‘Edgewarp’ is a non-parallelized software whereas many ‘Morpho’

functions can be run on several cores, thus improving processing time. The effect of

computation power remains low on a small dataset like the one presented here, but

can lead to a considerable time difference in the case of the analysis of larger datasets.

In addition to the number of steps constituting the workflow, the number of actions

performed by the user should also be taken into consideration. The use of ‘Edgewarp’

requires one to open each surface, curve, and landmark file manually. The subsequent

iterative relaxation requires several manual operations per iteration as does the data saving

after sliding. The use of a programming language such as python (Van Rossum & De Boer,

1991), bash (Free Software Foundation, 2013), or even R (R Core Team, 2014) is useful to

automate some parts of the workflow such as the ‘.sav’ generation. Once written, scripts

can be run several times or adapted, reducing the time required to perform these repetitive

tasks. Furthermore ‘Edgewarp’ does not perform the Procrustes superimposition needed

for the computation of the mean shape, entailing the use of another software package

(here R with the ‘Rmorph’ library). Therefore the time needed cannot be spent doing other

things. Conversely using ‘Morpho,’ the principal active component is the writing of the

script. Computation can then be run as a background task or on a remote computer. This

is an advantage as much for an initial analysis of the data as for modifications (for example

adding specimens or correcting a landmark placement).
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Problems encountered
Deviations from the initial curves were observed in ‘Morpho.’ This deviation from the

initial curve is a logical consequence of the relaxation procedure along tangents. Surface

sliding semi-landmarks tend to move inside or outside the volume of the specimen

depending on the local curvature as they are sliding on the tangent (Gunz, Mitteroecker

& Bookstein, 2005). Curve sliding landmarks move outside of the curve on the opposite

side of the center of curvature. This is why points are projected back onto the surface after

relaxation. But in some cases such as for the greater trochanteric crest (2 in Fig. 3) of Gulo

gulo and Martes martes this leads to deviations of the curve from its initial position. This

effect is counter balanced in ‘Edgewarp’ by re-projecting points onto the ‘rail.’ This ‘rail’

(named ‘.cur’ in ‘Edgewarp’) is constituted of a collection of points digitized on the bone

surface, linked by segments. Consequently the definition of the ‘rail’ needs a large number

of points to achieve a good description. However, when two curves are close, points can

‘jump’ from one curve to the other if the relaxed position is close to the second curve. Two

strategies can counterbalance this effect in ‘Morpho’; first using a higher density of curve

sliding landmarks (Gunz, Mitteroecker & Bookstein, 2005) and second, by reducing the

relaxation step size. This last solution presents the advantage of being applicable on the

initial dataset and does not require new data collection.

We also noticed points being projected on the wrong side of the supracondylar lateral

crest and points projecting through bone from the olecranon fossa to the coronoid

fossa while using ‘Edgewarp.’ The projection of surface sliding semi-landmarks from

the template to the specimen surface is a crucial step preceding the actual sliding process.

The main principle used in both software packages is a TPS deformation of the template

constrained by anatomical and curve sliding landmarks followed by a projection onto the

specimen surface. For some areas such as the lateral supracondylar crest, surface points can

be projected onto the wrong side of the crest, if projected to the closest surface after TPS

deformation. The ‘Morpho’ function ‘placePatch’ implements additional steps to avoid

such effects. Inflation/deflation along the normals (vector giving the orientation of the

mesh vertex) is performed; then the normals of projected points are compared to those of

the template to avoid inside-out effects. In ‘Edgewarp,’ the graphical interface allows users

to manually displace and correct wrongly projected points. The ‘Morpho’ strategy presents

the advantage to be automated and integrated as a part of the ‘placePatch’ function. In

contrast, ‘Edgewarp’ requires the manual displacement of the points, implying the correct

identification of wrongly projected points prior to moving them to the correct side. This

requires the investigation of all points on every specimen which is time consuming. The

use of surface sliding semi-landmarks at the very vicinity of the curves appears to be a

factor leading to projection on the wrong side of crests. Therefore, this problem could be

circumvented by taking this fact into account during the design of the template.

Aside of the own properties of these software, the help file determines a part of the global

ergonomy of any software package. Edgewarp’s user manual (User’s manual, EWSH3.19;

available at ftp://brainmap.stat.washington.edu/edgewarp/) was last updated on March

2002. Additionally, it remains apparently unfinished as indicated by the author’s comments
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appearing along the text. On the other hand, Morpho’s help file is frequently updated and

examples are provided for each function.

CONCLUSIONS
This study shows that the results obtained by two software packages for 3D shape

quantification, ‘Edgewarp’ (Bookstein & Green, 1994) and ‘Morpho’ (Schlager, 2013b),

are similar and that biological variability is similarly described by both software packages.

We highlight the fact that small structures jutting out of the surface as well as depressions

may have an impact on the results and underline the importance of identifying these

structures prior to the sliding operation. An increase in the density of the surface sliding

landmarks in these areas or the removal of structures that do not contain biologically

relevant information for the study are possible solutions for avoiding strong impact

of these structures on the morphospace. The present study focuses on a small number

of species, showing a large range of size and shape variation. This experimental design

highlights the kind of structures that drive divergence between the two software packages.

However, this design does not allow us to anticipate possible biases for different datasets

such as those used in intra-specific studies where the variability between specimens is often

quite subtle. Beyond the similarity in results, ‘Morpho’ is faster than ‘Edgewarp’ for the

same sliding task, notably as a result of the computational power of ‘Morpho’ and the

complexity of the workflow in ‘Edgewarp.’ ‘Edgewarp,’ on the other hand provides a visual

approach to the sliding procedure. Thanks to the exploitation of modern computational

power, ‘Morpho’ library, provides a powerful tool for the treatment of larger datasets.
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