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Jacket-Haar transformhas been recently generalized fromHaar transformand Jacket transform, but, unfortunately, it is not available
in a casewhere the length𝑁 is not a power of 2. In this paper, we have proposed an arbitrary-length Jacket-Haar transformwhich can
be conveniently constructed from the 2-point generalized Haar transforms with the fast algorithm, and thus it can be constructed
with any sizes. Moreover, it can be further extended with elegant structures, which result in the fast algorithms for decomposing.
We show that this approach can be practically applied for the electrocardiogram (ECG) signal processing. Simulation results show
that it is more efficient than the conventional fast Fourier transform (FFT) in signal processing.

1. Introduction

Hadamard transform,Haar transform, discrete Fourier trans-
form, and their derivatives are discrete orthogonal transforms
with extensive applications in signal and image processing
[1–4]. Jacket transform, motivated by the center weighted
Hadamard transform [5], is a special transform with its
inverse transformmatrix being determined by the element or
block-wise inverse of an original matrix [6]. Jacket transform
has been extensively applied in many fields, such as signal
and data processing [1], digital wireless communications
[7], cryptography [8], and encoding designs [9]. Meanwhile,
several interesting matrices, such as Hadamard matrices and
DFT matrices, belong to the Jacket transform matrix family.
Besides all, lots of widely used matrices, such as unitary
matrices and Hermitian matrices, have tightly relations with
Jacket matrices.

Recently, literatures relevant to discrete orthogonalmatri-
ces and their transforms mainly have involved explorations
of other categories of orthogonal transform matrices and
exploitations of their applications. In the later aspect, block
Jacket transforms have been tentatively applied to quantum
signal processing [10], Big-Data processing [11], emerging
new-generation mobile communication, and so on. In addi-
tion, new orthogonal transforms, such as complexHadamard

transform [12–14], fractional Hadamard or Jacket trans-
forms [15], parametric transforms [16–18], hybrid transforms
[7], and the generalized orthogonal transforms [14], have
been gradually proposed while enriching the orthogonal
transform family. Particularly, with advancement of digital
systems andwidespread availability in the recent few decades,
there exist some urgent demands for seeking a scheme to
achieve compromise between the generalization efficiencies
of Hadamard or Haar transforms and their the extended
transforms to adaptively meet the practical implementation
requirements. Subsequent research can be seen as an attempt.

Haar matrix, which is useful for localized signal anal-
ysis [19], edge detection [20], OFDM, and filter design
and electrocardiogram (ECG) analysis, has been generalized
for Jacket-Haar matrix [21], whose entries are 0 and ±2

𝑘

compared with entries of the original Haar matrix being
1, −1, and 0. Although the 2𝑘-point Jacket-Haar matrices
are successfully proposed in [21], there is still a problem on
how to construct the arbitrary-length Jacket-Haar transform
as the arbitrary-length Walsh-Jacket transform has already
donewith high efficiency [22]. Unfortunately, until this paper,
the method to solve this problem is preliminary and not
comprehensive except that some original results are shown
[23]. Consequently, in this paper, we focus on the systematic
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construction of the generalized Jacket-Haar transforms of any
lengths. Compared to the existing literatures, the contribu-
tions are listed as follows. Firstly, the multilevel structure
of the arbitrary-length Jacket-Haar transform matrix can
be derived with the recursive algorithm. Secondly, a novel
approach for designing the fast generation of the Jacket-Haar
transform matrices of the arbitrary length is derived in a
successive fashion. Finally, the arbitrary length Jacket-Haar
transforms can be generated and decomposed for extensions
with the fast algorithms with several specified applications.

The remaining of this paper is organized as follows. In
Section 2, the elegant structure of Jacket-Haar transform is
investigated, followed by the generalized form of Jacket-Haar
transform of size 2. In Section 3, the (2𝑀 + 1)-point Jacket-
Haar transform is extensively derived from the (𝑀+1)-point
Jacket-Haar transform. Together with the proposed algo-
rithm for generating the (2𝑀)-point Jacket-Haar transform,
an arbitrary Jacket-Haar transform can be derived in a similar
fashion. After that, the fast algorithm and its applications in
signal processing will be shown in Section 4. In Section 5, the
fast Jacket-Haar transforms are designed on the basis of the
Kronecker product of the traditional Jacket and Jacket-Haar
transforms. Finally, conclusion is drawn in Section 6.

2. Jacket-Haar Transform

Walsh transform can be extended for the arbitrary-point
Walsh-Jacket transform of an arbitrary length [22]. Similarly,
it is theoretically feasible to extend theHaar transform for the
design of theHaar transform of any size. In order to verify the
correctness of this judgement, we show an elegant structure
of the Jacket-Haar transform.

Definition 1. Jacket-Haar transform is a discrete transform
and it must satisfy three constraints as follows.

(1) IfΨ𝑁 and Γ𝑁 denote the forward and inverse𝑁-point
Jacket-Haar transform matrices, respectively, then all
entries of both matrices are equal to 0 or ±2𝑝, where
𝑝 is an arbitrary integer.

(2) The number of zero crossing point of any row of Ψ𝑁
is the same as the conventional Haar matrix. Namely,
zero crossing point number of any row of Ψ𝑁 is one
except the first row, where zero crossing point does
not exist.

(3) Fast algorithm of the conventional Haar transform is
preserved.

According to the definition of Jacket-Haar transform, all
the conventional Haar transform matrices can be seen as
a special case of Jacket-Haar transform matrices since the
above three constraints are all satisfied. Elements of the Haar
transform matrices can only be chosen from 1, −1, or 0, and
order of any Haar matrix must be a power of 2. However,
Jacket-Haar transform relaxes these limits with elements
equal to 0 or ±2𝑝. For this reason, Jacket-Haar transform
can still be efficiently implemented by bit-shifting without
multiplication just like the conventional Haar transform.
In addition, the Jacket-Haar transform is an extension of

the Jacket transform since the constraint that Γ𝑁(𝑚, 𝑛) =

Ψ𝑁(𝑛,𝑚)/𝐶 where 𝐶 is a constant is not required any longer.
Before generating a Jacket-Haar transform of any size, the

Jacket-Haar matrices of size 2 are extensively derived, based
on which the Jacket-Haar matrix of any size can be efficiently
achieved.

Theorem 2. Any 2-point Jacket-Haar transform matrices
should conform to the following forms:

Ψ
(1)

2
= [

𝑎 0

𝑐 −𝑑
] , (1)

Ψ
(2)

2
= [

0 𝑏

𝑐 −𝑑
] , (2)

Ψ
(3)

2
= [

𝑎 𝑏

𝑐 −𝑑
] , (3)

where 𝑎, 𝑏, 𝑐, and 𝑑 are equal to 0 or a power of 2with 𝑎𝑑 = 𝑏𝑐.

Proof. It is straightforward that the third constraint is always
satisfied for the 2-point Jacket-Haar transform. Besides, the
2-point Jacket-Haar matrix Ψ2 can be generally denoted as
follows:

Ψ2 = [

𝑎1 𝑏1

𝑐1 −𝑑1

] , (4)

and its inverse is

Γ2 =
1

𝑎1𝑑1 + 𝑏1𝑐1

[

𝑑1 𝑏1

𝑐1 −𝑎1

] . (5)

According to the first constraint, there exists

𝑎1𝑑1 + 𝑏1𝑐1 = ±2
𝑝
. (6)

Meanwhile owing to the second constraint, we can obtain

𝑎1 ≥ 0,

𝑏1 ≥ 0,

𝑐1𝑑1 > 0.

(7)

So there exist three cases as follows. Firstly, if 𝑏1 = 0, then it
is easy to get that 𝑎1 > 0 holds. So the 2-point Jacket-Haar
matrix possesses the form of (1). Secondly, if 𝑎1 = 0, then
similar to case 1, the 2-point Jacket-Haar matrix has the form
of (2). Thirdly, if 𝑎1𝑏1 > 0, according to (6), we can obtain
(𝑎1𝑑1)(𝑏1𝑐1) > 0. In the first case, if 𝑎1𝑑1 = 2

𝑚 and 𝑏1𝑐1 = 2
𝑛

with 𝑎1𝑑1 = 𝑘(𝑏1𝑐1), then 𝑎1𝑑1 + 𝑏1𝑐1 = (1 + 𝑘)2
𝑛. Since (6)

holds, 𝑘must be equal to 1. Namely, 𝑎1𝑑1 = 𝑏1𝑐1. In the second
case, we can get the same result. So, the 2-point Jacket-Haar
transform conforms to (3). This completes the proof of this
theorem.

3. Universal Jacket-Haar Transform Matrices

General forms of the 2-point Jacket-Haar transformmatrices
have been derived in the previous section. In this section, two
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algorithms are proposed to construct Jacket-Haar transform
matrices of any large sizes.

Theorem 3. If the size 𝑁 = 2𝑀 + 1 of the matrix is an
odd number, then one can use generation algorithm presented
below to derive the 𝑁-point Jacket-Haar transform matrix
from both an (𝑀 + 1)-point Jacket-Haar transform matrix
and an 𝑀-point identity matrix. Let Ψ𝑀+1 be an (𝑀 + 1)-
point Jacket-Haar transform matrix with inverse Γ𝑀+1. The
𝑛𝑡ℎ, 𝑛 ∈ {1, 2, . . . ,𝑀 + 1} column of Ψ𝑀+1 and the 𝑛𝑡ℎ row of
Γ𝑀+1 are described by k𝑛 and u𝑛, respectively. Namely, one has

Ψ𝑀+1 = (k1, k2, . . . , k𝑀+1) ,

Γ𝑀+1 = (u
𝑇

1
, u𝑇
2
, . . . , u𝑇

𝑀+1
)
𝑇

.

(8)

Suppose Ψ2,1,Ψ2,2, . . . ,Ψ2,𝑀 are the 2-point Jacket-Haar
transform matrices with the respective inverse matrices
Γ2,1, Γ2,2, . . . , Γ2,𝑛. Let k1,𝑘 and k2,𝑘 denote the first and second
row of Ψ2,𝑘, respectively. Meanwhile, u1,𝑘 and u2,𝑘 are the first
and second column of Γ2,𝑘, respectively. Then one has

Ψ2,𝑘 = [

k1,𝑘
k2,𝑘

] ,

Γ2,𝑘 = [u1,𝑘 u2,𝑘] ,

(9)

where k1,𝑘u1,𝑘 = k2,𝑘u2,𝑘 = 1 and k1,𝑘u2,𝑘 = k2,𝑘u1,𝑘 = 0,
∀𝑘 ∈ {1, 2, . . . ,𝑀}. Let e𝑛 denote the 𝑛𝑡ℎ column of the
𝑀-point identity matrix; that is,

e𝑛 [𝑛] = 1,

e𝑛 [𝑚] = 0,

𝑖𝑓 𝑚 ̸= 𝑛,

(10)

where 𝑛,𝑚 ∈ {1, 2, . . . ,𝑀}. Then the (2𝑀 + 1)-point
Jacket-Haar transform matrix can be derived as

Ψ2𝑀+1 = [

k1 ⊗ k1,1 ⋅ ⋅ ⋅ k𝑀 ⊗ k1,𝑀 k𝑀+1
e1 ⊗ k2,1 ⋅ ⋅ ⋅ e𝑀 ⊗ k2,𝑀 0

] , (11)

with the inverse (2𝑀+ 1)-point Jacket-Haar transform matrix

Γ2𝑀+1 = [

u𝑇
1
⊗ u𝑇
1,1

⋅ ⋅ ⋅ u𝑇
𝑀
⊗ u𝑇
1,𝑀

u𝑇
𝑀+1

e1 ⊗ u𝑇
2,1

⋅ ⋅ ⋅ e𝑀 ⊗ u𝑇
2,𝑀

0
]

𝑇

. (12)

Proof. The product ofΨ2𝑀+1 and Γ2𝑀+1 can be calculated as

Ψ2𝑀+1Γ2𝑀+1 = [

A11 A12
A21 A22

] . (13)

According to (20), we haveA11,A12,A21, andA22 that can be,
respectively, calculated as

A11 =
𝑀

∑

𝑘=1

[(k𝑘 ⊗ k1,𝑘) (u𝑘 ⊗ u1,𝑘)] + k𝑀+1u𝑀+1

= I𝑀+1,

(14)

A12 =
𝑀

∑

𝑘=1

[(k𝑘 ⊗ k1,𝑘) (e
𝑇

𝑘
⊗ u2,𝑘)] = 0, (15)

A21 =
𝑀

∑

𝑘=1

[(e𝑘 ⊗ k2,𝑘) (u𝑘 ⊗ u1,𝑘)] = 0, (16)

A22 =
𝑀

∑

𝑘=1

[(e𝑘 ⊗ k2,𝑘) (e
𝑇

𝑘
⊗ u2,𝑘)] = I𝑀. (17)

Hence, we have Ψ2𝑀+1Γ2𝑀+1 = I2𝑀+1. Furthermore, it is
easy to find that the first constraint and the second constraint
are both satisfied. In fact, the third constraint can be easily
derived. This completes the proof of this theorem.

According toTheorem 3, the (2𝑀+ 1)-point Jacket-Haar
transform matrix with matrix size being a power function of
2 or not can be conveniently generated.

Based on the above-mentioned construction, any odd
integer order Jacket-Haar transform matrix can be elegantly
derived, while at the same time, another constructionmethod
will be similarly proposed to construct Jacket-Haar transform
matrix with the size being even numbers.

Theorem 4. If the size of the matrix 𝑁 = 2𝑀 is even, then
one can use the generating algorithm presented below to derive
the 𝑁-point Jacket-Haar transform matrix from both the 𝑀-
point Jacket-Haarmatrix and the𝑀-point identitymatrix.The
(2𝑀)-point Jacket-Haar matrix can be calculated as

Ψ2𝑀 = [

k̂1 ⊗ k11 ⋅ ⋅ ⋅ k̂𝑀 ⊗ k1𝑀
e1 ⊗ k21 ⋅ ⋅ ⋅ e𝑀 ⊗ k2𝑀

] , (18)

and its inverse can be computed as

Γ2𝑀 = [

û1 ⊗ u11 ⋅ ⋅ ⋅ û𝑀 ⊗ u1𝑀
e1 ⊗ u21 ⋅ ⋅ ⋅ e𝑀 ⊗ u2𝑀

] , (19)

where Ψ𝑀 is the 𝑀-point Jacket-Haar matrix and Γ𝑀 is its
inverse matrix. The 𝑛𝑡ℎ, 𝑛 ∈ {1, 2, . . . ,𝑀}, column of Ψ𝑀 and
the 𝑛𝑡ℎ row of Γ𝑀 are denoted by k̂𝑛 and û𝑛, respectively. Then
one has Ψ𝑀 = (k̂1, . . . , k̂𝑀) and Γ𝑀 = (û1, . . . , û𝑀) such that
Ψ𝑀Γ𝑀 = 𝐼𝑀. Similarly, let k1,𝑘 and k2,𝑘 denote the first and
second row of Ψ2,𝑘, respectively. Let u1,𝑘 and u2,𝑘 denote the
first and second column of Γ2,𝑘, respectively. Then, one has

Ψ2,𝑘 = [

k1,𝑘
k2,𝑘

] ,

Γ2,𝑘 = [u1,𝑘 u2,𝑘] ,

(20)
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where k1,𝑘u1,𝑘 = k2,𝑘u2,𝑘 = 1 and k1,𝑘u2,𝑘 = k2,𝑘u1,𝑘 = 0, 𝑘 ∈
{1, 2, . . . ,𝑀}.Moreover, the notation e𝑛 denotes the 𝑛𝑡ℎ column
of the𝑀-point identity matrix with the following constraints:

e𝑛 [𝑛] = 1,

e𝑛 [𝑚] = 0,

𝑖𝑓 𝑚 ̸= 𝑛,

(21)

where 𝑛,𝑚 ∈ {1, 2, . . . ,𝑀}.

Proof. Since the proof is similar to that of Theorem 3, it is
omitted here.

For the further illustration and clarity, we give an example
in what follows. Suppose that a 5-point Jacket-Haar matrix is

Ψ5 =

[
[
[
[
[
[
[
[

[

4 8 1 2 2

8 16 2 4 −4

8 16 −2 −4 0

2 −4 0 0 0

0 0 2 −4 0

]
]
]
]
]
]
]
]

]

. (22)

Meanwhile, let Ψ2,1 = [
1 1
1 −1

], Ψ2,2 = [
1 2
2 −4

], Ψ2,3 = [
1 2
−2 4

],
Ψ2,4 = [

1 0
2 −4

], and Ψ2,5 = [
0 1
4 −1

], respectively. Then, we
obtain a 10-point Jacket-Haar matrix

Ψ10 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 2 1 2 1 0 0 1

1 1 1 2 1 2 1 0 0 −1

1 1 1 2 −1 −2 −1 0 0 0

1 1 −1 −2 0 0 0 0 0 0

0 0 0 0 1 2 −1 0 0 0

1 −1 0 0 0 0 0 0 0 0

0 0 2 −4 0 0 0 0 0 0

0 0 0 0 −2 4 0 0 0 0

0 0 0 0 0 0 2 −4 0 0

0 0 0 0 0 0 0 0 4 −1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(23)

with the inverse matrix given by

Γ10 = diag {2−4, 2−4, 2−4, 2−5, 2−4, 2−5, 2−3, 2−4, 2−3, 2−1}

⋅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 2 4 0 8 0 0 0 0

1 1 2 4 0 −8 0 0 0 0

1 1 2 −4 0 0 4 0 0 0

1 1 2 −4 0 0 −4 0 0 0

1 1 −2 0 4 0 0 −4 0 0

1 1 −2 0 4 0 0 4 0 0

1 1 −2 0 −4 0 0 0 0 0

1 1 −2 0 −4 0 0 0 −4 0

1 −1 0 0 0 0 0 0 0 2

1 −1 0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(24)

Table 1: The𝑁-point Jacket-Haar transform matrices based on the
𝑀-point Jacket-Haar transform matrices listed in the first column
and the 𝑁-point Jacket-Haar transform matrices in the second
column using the methods in the third column.

𝑁 𝑀 Methods
3 2 Theorem I
4 2 Theorem II
5 3 Theorem I
6 3 Theorem II
7 4 Theorem I
8 4 Theorem II
9 5 Theorem I
10 5 Theorem II
11 6 Theorem I
12 6 Theorem II
13 7 Theorem I
14 7 Theorem II
15 8 Theorem I
16 8 Theorem II
17 9 Theorem I
18 9 Theorem II
19 10 Theorem I
20 10 Theorem II

In a word, based onTheorems 3 and 4, we can derive the
Jacket-Haar transformmatrix of any sizes in the recursive and
alternate way. When 𝑁 = 2𝑀 + 1 is odd, we can choose
Theorem 3 to derive the 𝑁-point Jacket-Haar transform
matrix from the (𝑀+1)-point Jacket-Haar transform.While
𝑁 = 2𝑀 is even, we can chooseTheorem 4 to get the𝑁-point
Jacket-Haar transformmatrix from the𝑀-point Jacket-Haar
transform. For example, when𝑁 = 9, the value of𝑀 is 4 and
then Theorem 3 is chosen. It means the 9-point Jacket-Haar
matrix can be derived from the 5-point Jacket-Haar matrix.
Next, the 5-point Jacket-Haar matrix can be gotten from the
3-point Jacket-Haar matrix with Theorem 3. In the end, the
3-point Jacket-Haar matrix can be constructed from the 2-
point Jacket-Haar matrix by using Theorem 3. Therefore, the
9-point Jacket-Haar matrix can be ultimately obtained from
the 2-point Jacket-Haar matrices. In Table 1 we generate the
𝑁-point Jacket-Haar matrices with size 𝑁 ∈ {3, 4, . . . , 20}.
In fact, Jacket-Haar transform matrix of any sizes ultimately
originates from the 2-point Jacket-Haar transform matrices.

Based on the 2-point Jacket-Haar transform matrices,
the Jacket-Haar transform matrices of any sizes can be
conveniently and elegantly constructed alternately and recur-
sively by applying Theorems 3 and 4. Consequently, certain
available sparse Jacket-Haar transform matrices can be theo-
retically derived.

Corollary 5. There exists an arbitrary-length sparse Jacket-
Haar transform matrix with a maximum of two nonzero ele-
ments in each of the rows. In addition, there exists an arbitrary-
length Jacket-Haar transform matrix, and the transpose of its
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inverse matrix is also a Jacket-Haar transform matrix with the
following constraints:

Γ𝑁 [𝑛,𝑚] > 0, 𝑖𝑓 Ψ𝑁 [𝑚, 𝑛] > 0,

Γ𝑁 [𝑛,𝑚] < 0, 𝑖𝑓 Ψ𝑁 [𝑚, 𝑛] < 0,

Γ𝑁 [𝑛,𝑚] = 0, 𝑖𝑓 Ψ𝑁 [𝑚, 𝑛] = 0.

(25)

Proof. The inductive method will be used for proving this
corollary. At first, it is obvious that all the 2-point Jacket-
Haar transform matrices meet the prescribed request. At the
next step, there exist two cases based on which theorem
has adopted generating a relatively higher order adjacent
Jacket-Haar transform matrix. For the first case, suppose
that Ψ𝑀+1 is a sparse (𝑀 + 1)-point Jacket-Haar transform
matrix. For the two-point Jacket-Haar transform matrices
Ψ2,1,Ψ2,2, . . . ,Ψ2,𝑀 in the form described in (1) or (2), the
(2𝑀 + 1)-point Jacket-Haar transform matrix derived from
(11) is a sparse matrix since each of the rows possesses a
maximum of two nonzero elements. For the other case, if
there exists a sparse 𝑀-point Jacket-Haar transform matrix
Ψ𝑀 with the given matrices Ψ2,1,Ψ2,2, . . . ,Ψ2,𝑀, the 2𝑀-
point Jacket-Haar transform matrix from (18) is also a sparse
matrix.This completes the proof of one part of corollary.This
kind of sparse Jacket-Haar transform matrices is interesting
and available in practical applications that are provided
with the priority of acceptable performances promised. For
another part of the proof of this corollary, the inductive
method will be similarly used. At the first step, it is easy to
check that the transpose of two-point inverse matrix in the
form of (5) is also a Jacket-Haar transform matrix, and that
(25) is satisfied. At the next step, based on the selected theo-
rems for the construction of a relatively adjacent Jacket-Haar
matrix, there exist two cases. For the first casewith an (𝑀+1)-
point Jacket-Haar transform matrix Ψ𝑀+1, the transpose of
whose inverse matrix is also a Jacket-Haar transform matrix
that satisfies the constraint in (25). For the 2-point Jacket-
Haar transform matrices Ψ2,1,Ψ2,2, . . . ,Ψ2,𝑀, it is obvious
thatΨ2𝑀+1 derived from (12) is a (2𝑀+1)-point Jacket-Haar
transform matrix and the transpose of whose inverse matrix
is also a Jacket-Haar transform matrix. Similarly, if Ψ𝑀 is
an 𝑀-point Jacket-Haar transform matrix, the transpose of
whose inverse matrix is also a Jacket-Haar transform matrix.
For the 2-point Jacket-Haar transforms Ψ2,1,Ψ2,2, . . . ,Ψ2,𝑀
in the form described in (3), it is straightforward that Ψ2𝑀
derived from (18) is a 2𝑀-point Jacket-Haar transformmatrix
and the transpose of whose inverse matrix is also a Jacket-
Haar transform matrix. Therefore, the whole corollary holds
and the proof is complete.

It is interesting to note the Jacket-Haar transform referred
to in the afore-derived corollary is similar to that of the
Jacket transform. As we all know, if J𝑁 is an 𝑁-point

Jacket transform matrix, then J−1
𝑁

is also an 𝑁-point Jacket
transform matrix with the following constraints:

J−1
𝑁
[𝑛,𝑚] > 0, if J𝑁 [𝑚, 𝑛] > 0;

J−1
𝑁
[𝑛,𝑚] < 0, if J𝑁 [𝑚, 𝑛] < 0;

J−1
𝑁
[𝑛,𝑚] = 0, if J𝑁 [𝑚, 𝑛] = 0.

(26)

4. Fast Jacket-Haar Transform

4.1. Fast Implementation Algorithms. Just like the conven-
tional Haar transform, the Jacket-Haar transform of large
sizes can be performed with fast algorithms. In order to give
a more clear demonstration with simple comparison, fast
algorithms of both conventional Haar transform and Jacket-
Haar transform are presented simultaneously.

In Figure 1, we show the implementation structures of
the conventional Haar transforms with sizes 2, 4, and 2

𝑛,
respectively. In Figure 2, the implementation structures of the
2-point, the 3-point and the 4-point Jacket-Haar transform
are presented, from which the 3-point and the 4-point
Jacket-Haar transforms can be decomposed into 2 and 3
butterflies, respectively. For𝑁 > 4, we can decompose the𝑁-
point Jacket-Haar transform into combination of the 2-point
Jacket-Haar transforms by using the methods described as in
Figure 3. From Figures 1 to 3, it is obvious that the structures
of the fast algorithms of the original Haar transform and
the proposed Jacket-Haar transform are similar. For example,
the whole implementation structure of a 9-point Jacket-Haar
transform matrix shown as

Ψ9 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 −1

1 1 1 1 −1 −1 −1 −1 0

1 1 −1 −1 0 0 0 0 0

0 0 0 0 1 1 −1 −1 0

1 −1 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0

0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 1 −1 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(27)

has been illustrated in Figure 4. It is shown that there exist
4 layers, with 4, 2, 1, and 1 butterflies being included in the
adjacent layers from the left to the right. It needs 16 arithmetic
addition operations without any multiplication.

Compared to the conventional Haar transform, if both
categories transform matrices possess the same matrix size
which is a power of 2, they have the same implementation
layers, numbers of butterflies, and arithmetic addition
operations without any multiplication operations needed,
but with different numbers of bit-shift operations. When the
matrix size does not equal a power of 2, there do not exist the
corresponding Haar transform matrices. For the proposed
Jacket-Haar transform matrices, there are ⌊log𝑁

2
⌋ + 1

implementation layers and 2(𝑁 − 1) arithmetic addition
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transform
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X[2]2
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x[2k+1] X[2k+1]

X[2k]

x[2k+1 − 1]

X[2k + 1]

X[2k + 2]

(c)

Figure 1:The implementations of the fast algorithms: (a) the 2-point Haar transform, (b) the 4-point Haar transform, and (c) the (2𝑘+1)-point
Haar transform.

Table 2: Complexity analysis.

Transforms Implementation
layers Butterflies Complexity

Haar 𝑛,𝑁 = 2
𝑛

(𝑁 − 1) 2(𝑁 − 1)

Jacket-Haar 𝑛, if𝑁 = 2
𝑛

⌊log𝑁
2
⌋ + 1, if𝑁 ̸= 2

𝑛 (𝑁 − 1) 2(𝑁 − 1)

operations with (𝑁 − 1) butterflies included, but without any
multiplication operations. The details are shown in Table 2.

4.2. Generalized Jacket-Haar Transform

Definition 6. For a given square matrix J𝑚 = [𝐽𝑖𝑗]𝑚, if its
inverse matrix can be simply obtained from its element-wise
inverse, that is, J−1

𝑚
= (1/𝐶)[1/𝐽𝑗𝑖]𝑚, for 1 ≤ 𝑖, 𝑗 ≤ 𝑚, where

𝐶 is a nonzero constant, one calls matrix J𝑚 a Jacket matrix;
that is,

J𝑚 =

[
[
[
[
[
[
[

[

𝑗1,1 𝑗1,2 ⋅ ⋅ ⋅ 𝑗1,𝑚

𝑗2,1 𝑗2,2 ⋅ ⋅ ⋅ 𝑗2,𝑚

.

.

.
.
.
. d

.

.

.

𝑗𝑚,1 𝑗𝑚,1 ⋅ ⋅ ⋅ 𝑗𝑚,𝑚

]
]
]
]
]
]
]

]

, (28)

and its inverse matrix is

J−1
𝑚
=
1

𝐶

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

𝑗1,1

1

𝑗1,2

⋅ ⋅ ⋅
1

𝑗1,𝑚

1

𝑗2,1

1

𝑗2,2

⋅ ⋅ ⋅
1

𝑗2,𝑚

.

.

.
.
.
. d

.

.

.

1

𝑗𝑚,1

1

𝑗𝑚,1

⋅ ⋅ ⋅
1

𝑗𝑚,𝑚

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

, (29)

where 𝑇 denotes the operation of matrix transpose.

Definition 7. Suppose J𝑀 is a Jacket matrix of order 𝑀 and
Ψ𝑁 is a Jacket-Haar matrix of order𝑁. If [JH]𝑀𝑁 = J𝑀⊗Ψ𝑁,
one calls [JH]𝑀𝑁 a generalized Jacket-Haar matrix.

According to the above-mentioned definition, it is obvi-
ous that both Jacket matrix and Jacket-Haar matrix belong to
generalized Jacket-Haar matrix family.

Theorem 8. Since both Jacket transform and Jacket-Haar
transform can be designed with the fast algorithms, the gener-
alized Jacket-Haar transformwhich is the Kronecker product of
Jacket transform and Jacket-Haar transform can be composed
or decomposed with the fast algorithms.
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Figure 2: The implementations of the fast algorithm: (a) the 2-point Jacket-Haar transform, (b) the 3-point Jacket-Haar transform, and (c)
the 4-point Jacket-Haar transform.
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Figure 3: (a)The 2𝑀-point Jacket-Haar transformby using the𝑀-point Jacket-Haar transform. (b)The (2𝑀+1)-point Jacket-Haar transform
by the (𝑀 + 1)-point Jacket-Haar transform.

Proof. Suppose J𝑀 can be decomposed until J𝑝 and J𝑞; then

J𝑀=𝑝𝑚𝑞𝑛 = {I𝑞𝑛 ⊗ (
𝑚−1

∏

𝑖=0

I𝑝𝑚−𝑖 ⊗ J𝑝 ⊗ I𝑝𝑖−1)}

⋅ {(

𝑛−1

∏

𝑖=0

I𝑞𝑛−𝑖 ⊗ J𝑞 ⊗ I𝑞𝑖−1) ⊗ I𝑝𝑚} ,

(30)

where I𝑁 is the𝑁×𝑁 identitymatrix.The detailed procedure
can be seen in [6]. Then, by using the property of Kronecker
product, [JH]𝑀𝑁 can be decomposed as

[JH]𝑀𝑁 = (J𝑝𝑚𝑞𝑛I𝑝𝑚𝑞𝑛) ⊗ (I𝑁Ψ𝑁)

= {{{I𝑞𝑛 ⊗ (J𝑝𝑚)} {(J𝑞𝑛) ⊗ I𝑝𝑚}} ⊗ I𝑁} {I𝑀 ⊗Ψ𝑁}
(31)
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with

J𝑝𝑚 =
𝑚−1

∏

𝑖=0

I𝑝𝑚−𝑖 ⊗ J𝑝 ⊗ I𝑝𝑖−1 ,

J𝑞𝑛 =
𝑛−1

∏

𝑖=0

I𝑞𝑛−𝑖 ⊗ J𝑞 ⊗ I𝑞𝑖−1 .

(32)

Due to the fact that Ψ𝑁 can be decomposed into 2-point
Jacket-Haar transforms, [JH]𝑀𝑁 can be decomposed or
constructedwith the fast algorithms.This completes the proof
of this theorem.

For example, if J2 = Ψ2 = [
1 1
1 −1

], we can construct the
3-point Jacket-Haar transform and 4-point Jacket transform
as follows:

Ψ3 =
[
[

[

1 1 1

1 1 −1

1 −1 0

]
]

]

,

J4 = J2 ⊗ J2 =
[
[
[
[
[

[

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

]
]
]
]
]

]

.

(33)

Then we can construct a 12-point generalized Jacket-Haar
transform

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 1 1 1 1 1 1 1 1 1

1 1 −1 1 1 −1 1 1 −1 1 1 −1

1 −1 0 1 −1 0 1 −1 0 1 −1 0

1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

1 1 −1 −1 −1 1 1 1 −1 −1 −1 1

1 −1 0 −1 1 0 1 −1 0 −1 1 0

1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

1 1 −1 1 1 −1 −1 −1 1 −1 −1 1

1 −1 0 1 −1 0 −1 1 0 −1 1 0

1 1 1 −1 −1 −1 −1 −1 −1 1 1 1

1 1 −1 −1 −1 1 −1 −1 1 1 1 −1

1 −1 0 −1 1 0 −1 1 0 1 −1 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (34)

The fast algorithm is shown in Figure 5.

5. Applications in Signal Processing

The proposed arbitrary-point Jacket-Haar transform can also
be theoretically applied in areas where the conventional
Haar transforms have been gained, such as signal analysis,
image processing, OFDM, and filter design. In this section,
two representative Jacket-Haar transforms are applied to
electrocardiogram (ECG) analysis compared to the discrete
Fourier transform (DFT).
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x[4]

x[3]

x[2]

x[1]

−1

−1

−1−1−1

−1

−1

−1

x[9]

x[8]

x[7]
X[6]

X[5]
X[4]

X[3]

X[2]

X[1]

X[9]

X[8]

X[7]

Figure 4: The fast algorithm of the 9-point Jacket-Haar transform.

There are approaches for comprehensive analysis with
even and odd point transforms, respectively.The length of the
ECG signal in Figure 6 is 202, which is even and not a power
of 2. It is not convenient to analyze this case by directly using
the original Haar transform, but it can be efficiently analyzed
by the proposed arbitrary-point Jacket-Haar transform. In
Figure 7, we show the normalizedmean square error (NMSE)
of the reconstructed signal when using part of the coefficients
of the 202-point generalized Haar transform

NMSE =
󵄩󵄩󵄩󵄩x𝑠 − x󵄩󵄩󵄩󵄩

2

‖x‖2

y = W𝑁x,

x𝑠 = U𝑁y𝑠,

(35)

where x is the original signal; W𝑁 and U𝑁 are the forward
and inverse Jacket-Haar transform matrices. The vector y𝑠
preserves 𝑆 coefficients of y and others are set to zero. In
Figure 7, we also show the NMSE of the reconstructed signal
when using the 202-point fast Fourier transform (FFT). The
results in Figure 7 show that, with the Jacket-Haar transform,
we can achieve less approximation error when using only 𝑆
terms (𝑆 < 202) to expand the ECG signal.

As shown in Figures 8 and 9, another simulation exper-
iment is arranged. The length of the ECG in Figure 8 is 321,
which is odd and not a power of 2. We show the NMSE of
the reconstructed signal in Figure 9 when using part of the
coefficients of the 321-point Jacket-Haar transform compared
with the 321-point FFT. It is obvious that the Jacket-Haar
transform is more efficient for analyzing the ECG signal than
that of FFT. In the future, the proposed Jacket-Haar transform
will be applied to the more practical applications with the
extensive comparisons.

6. Conclusion

We have investigated the fast construction of the Jacket-
Haar transform of the arbitrary length, which overcomes of



Mathematical Problems in Engineering 9

x[6]

x[7]

x[8]

x[9]

x[10]

x[11]

x[12]

x[1]

x[5]

x[2]

x[4]

x[3]

X[2]

X[1]

X[9]

X[11]

X[10]

X[12]

X[8]

X[7]

X[6]

X[5]

X[4]

X[3]

−1

−1

−1

−1

−1

−1

−1 −1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

Figure 5: The fast algorithm of the 12-point generalized Jacket-Haar transform.
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Figure 6: A 202-length electrocardiogram (ECG) and the recon-
structed signal.

problem of the traditional constraint that the number of the
points is the power of 2. With the proposed fast generation
algorithms, the arbitrary length Jacket-Haar transform can
be derived in a successive fashion. Moreover, we show
the possible implementations of the fast algorithms and
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0.3
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Jacket-Haar transform

FFT

Jacket-Haar transform

Figure 7: The normalized mean square error (NMSE) when using
part of the coefficients to reconstruct the ECG signal in the figure.
Red line: using the 202-point Jacket-Haar transform; green line:
using the FFT.

applications in signal processing. On the basis of the struc-
tures of the traditional Jacket transform and the Jacket-Haar
transform with any size, the fast algorithms of Jacket-Haar
transform are derived for the arbitrary length. Compared to
the traditional FFT and its extensions, the proposed Jacket-
Haar transform is more efficient in signal reconstruction.
However, more properties of the Jacket-Haar transform and
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Figure 8: A 321-length electrocardiogram (ECG) and the reconstructed signal.
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Figure 9: The NMSE when using part of the coefficients to
reconstruct the ECG signal in the figure. Red line: using the 321-
point Jacket-Haar transform; green line: using the FFT.

its practical applications may be further investigated in the
future work.
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