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ABSTRACT
The largest plateau Tibetan Plateau supplied an excellent opportunity to investigate

the influence of the Pleistocene events on the high-elevation species. To test for

the alternative hypotheses of Pleistocene glacial refugia, we used partial sequences of

two mitochondrial genes and one nuclear gene to examine the phylogeographic

patterns of the endemic frog species Nanorana pleskei across its known range in the

eastern Tibetan Plateau, and conducted species distribution modelling (SDM) to

explore changes of its distribution range through current and paleo periods. In

all data sets, the species was divided into lineage north occupying open plateau

platform and lineage south colonizing the mountainous plateau. The divergence

of two major clades was estimated at the early Pleistocene. In mtDNA, lineage

north contained northeastern and northwestern sublineages, and lineage south

had two overlapping-distributed sublineages. Different lineages possessed distinct

demographic characteristics, i.e., subdivision in the northeastern sublineage,

historical bottleneck effects and recent expansions in the northwestern sublineage

and the southeastern sublineage. SDMs depicted that stable suitable habitats had

existed in the upper-middle streams of the Yellow River, Dadu River, Jinsha River

and Yalong River. These regions were also recognized as the ancestral areas of

different lineages. In conclusion, Nanorana pleskei lineages have probably

experienced long-term separations. Stable suitable habitats existing in upper-middle

streams of major rivers on the eastern Tibetan Plateau and distinct demographic

dynamics of different lineages indicated that the lineages possessed independent

evolutionary processes in multiple glacial refugia. The findings verified the profound

effects of Pleistocene climatic fluctuations on the plateau endemic species.
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INTRODUCTION
Pleistocene climate fluctuations are believed to cause many temperate species to change

distribution range and evolutionary history (Hewitt, 2000, 2004). Allopatric populations

in different regions might be glacially isolated and experienced postglacial expansions

(Galbreath, Hafner & Zamudio, 2009; Wang et al., 2013). The isolation level contributed

to substantial genetic heterogeneity, and high spatial connectivity might be in favor of

gene flow and as well, in these processes, demographic dynamics of lineages presented

correspondent tendency (Stewart et al., 2010; Peterson & Ammann, 2013). The models

have been extensively investigated in Europe and North America (Hewitt, 2004). In East

Asia, the issues have been gradually disclosed with increasing phylogeographic researches

(Qu et al., 2010; Liu et al., 2013, 2015), but that is far from well understanding them

especially in plateau regions.

Glaciations on Asian plateaus were considered to be asynchronous, even within

regional mountain-plateau regions (Owen, Finkel & Caffee, 2002; Owen et al., 2008;

Thompson, Thompson & Davis, 2006). As the highest and largest plateau on Earth, the

Tibetan Plateau extends several million square kilometers and carries area of an

average elevation of 4,500 m above sea level (m.a.s.l). Historical uplifts of the plateau

promoted geological and climatic transformations in interior basins and large mountains

around it (An et al., 2001). During the Pleistocene, different-periods and different-regions

glaciations were indicated by increasing evidences (Shi, 2002; Zheng, Xu & Shen, 2002;

Owen et al., 2005). Moreover, this region carries habitats that are nearly unique for

Oriental and Palearctic organisms that occur in temperate ecosystems and are inhabited

by considerable high-elevation endemic species (Zhang, 2009; Myers et al., 2000).

So the Tibetan Plateau supplied a fine biogeographical condition for investigating

the influences of Pleistocene climatic oscillations on the evolutionary history of the

high-altitude species. Some investigations have focused on species endemic

to plateau and surrounding mountains (Cun & Wang, 2010; Hofmann, 2012;

Zhou et al., 2013), but conflicting indications were proposed from patterns of different

species. The model of refugia-in-periphery has been suggested by studies on several

plant and animal species occupying the Tibetan Plateau and peripheral mountains

(Frenzel, Bräuning & Adamczyk, 2003; Zhang et al., 2005; Yang et al., 2008). Recently, many

works have indicated that multiple refugia exist in the plateau interior (Liu et al., 2015;

Hofmann, 2012; Wang et al., 2010). Therefore, more investigations especially plateau

endemic species are needed to reveal the historical scenarios.

Amphibians are considered to be indicators of climate changes because their high

sensitivity to environmental changes (Bossuyt & Milinkovitch, 2001;Heinicke, Duellman &

Hedges, 2007; Fouquet et al., 2012) and their physiological constraints. A small number of

anuran species were endemic to high-elevation Tibetan plateau and among them

Nanorana pleskei are distributed from 3,300 to 4,500 m.a.s.l, occupying most Hengduan

Mountains and eastern Tibetan Plateau (Fei et al., 2009). The distributional range of the

species almost covers origin area of many important river systems, i.e., Yellow River, Dadu

River, Minjiang River, Yalong River, Jinsha River and Lancang River, and this region
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present terrain of open plateau platform in the northwest and mountainous plateau in the

southeast (Fig. S1). Obviously, the distributional patterns of the species had been

certainly influenced by the Pleistocene climate changes, and it is a striking question

whether the species had refugia-in-periphery or multiple-refugia-in-plateau during the

glacial epoch.

To test the hypotheses, in this study, we investigated the phylogeographic structure

and ecological niche modelling of Nanorana pleskei. We sequenced two mitochondrial

genes and one nuclear gene of sampling populations across the distribution range of

the species. We aimed to: (1) examine the genetic diversity and genetic structure of the

species; (2) explore the characteristics of historical demography; (3) explore whether

the species retreated to a narrow refugium at the edge of the plateau or occupied

multiple refugia on the plateau during the glacial periods. Integrative implements of

phylogeographic analyses and species distribution modelling (SDM) allow us to explore

architecture of the evolutionary history and demography dynamics of the plateau

endemic species.

METHODS
Sampling and sequencing
A total of 188 individuals were collected from 15 localities mainly spanning across the

known range of Nanorana pleskei on the eastern Tibetan Plateau (Table S1; Fig. 1A).

Tissues were preserved in 95% Ethanol at -20 �C until DNA extractions were performed.

For the phylogenetic analyses, two individuals of the closely-related species Nanorana

ventripunctata were collected, and one individual of congeneric species Nanorana

parkeri was also included as an outgroup according to previous phylogenetic analyses

(Jiang et al., 2005; Che et al., 2010). The Animal Care and Use Committee of Chengdu

Institute of Biology, CAS provided full approval for this purely observational research

(Number: CIB2014031010). Field experiments were approved by the Management

Office of the Zoige Nature Reserve (project number: ZNR201303006).

Total genomic DNA was extracted using a standard phenol–chloroform extraction

procedure (Hillis et al., 1996). Two mithochondrial DNA (mtDNA) fragments, the

cytochrome oxidase subunit I (COI) and the NADH dehydrogenase subunit 1 (ND1),

were amplified for all samples, and fragments of one single-copy nuclear genes, the

exon 1 of rhodopsin (Rhod) gene, were amplified for 30 specimens interspersing in

major mtDNA lineages (see “Results”). Primers for amplifying COI and ND1 genes were

newly designed using the Primer-BLAST tool on NCBI web with default settings. The

complete mitochondrial genome of Nanorana pleskei (GenBank Accession no.:

HQ324232.1) was downloaded as template for primer-designing. Primer information was

shown in Table S2. Amplifications of mtDNA fragments were performed under the

following conditions: 95 �C for 3 min; 35 cycles of 95 �C for 35 s, 53 �C (for ND1)/58 �C
(for COI) for 35 s, and 72 �C for 70 s; and 72 �C for 10 min. Amplification of the Rhod

gene was performed according to the procedures and using primers in the previous studies

(Che et al., 2009). PCR products were sequenced in an ABI 3730 sequencer in both

directions.
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Mithochondrial DNA sequences were assembled in SEQMAN v7.21 (DNAStar Inc.,

Madison, WI, USA) and aligned using CLUSTAL X v1.83 (Thompson, Gibson & Plewnia,

1997) with default settings and manually checked. Two mtDNA fragments were

concatenated and haplotypes were determined using DNASP v5.10.1 (Librado & Rozas,

2009). For the Rhod gene, recombination detection was conducted using seven methods

in the program RDP v4.56 (Martin et al., 2015). No signal was found for recombination.

Haplotypic state of the Rhod gene was inferred under a Bayesian framework in PHASE

(Stephens & Donnelly, 2003) with a probability threshold of 90% and five independent

runs. The input files for PHASE were produced by the web program SEQPHASE

(http://seqphase.mpg.de/seqphase/). All sequences were submitted to GenBank

with accession numbers KX806663, KX806664–KX806851, KX806852–KX807039,

KX807040–KX807069, KX807070, KX807071–KX807072.

Phylogenetic inferences and dating estimations
Because there were few variable sites in nuclear gene dataset (only three haplotypes were

identified in all 30 sequences of the Rhod gene; see “Results”), phylogenetic analyses were

conducted only based on mtDNA dataset. MtDNA data were analyzed using maximum

likelihood (ML) and Bayesian inference (BI) methods, as implemented in the program

PHYML 3.0 (Guindon & Gascuel, 2003) and MRBAYES v3.2.5 (Ronquist et al., 2012),

respectively. Before ML and BI analyses, we divided each data set into six partitions

through defining the first, second and third codon positions of protein-coding genes, and

then used PARTITIONFINDER v1.1.1 (Lanfear et al., 2012) to select best-fitting

partitioning schemes and the best-fitting nucleotide substitution model of each partition

under the Bayesian information criterion (Schwarz, 1978). The PARTITIONFINDER

analysis selected the K80 model for (COI_pos1 + ND1_pos1), F81+I model for

(COI_pos2 + ND1_pos2) and TrN model for (COI_pos3 + ND1_pos3). ML and BI

analyses were conducted under the selected best-fitting partitioning schemes and the

best-fitting nucleotide substitution model of each partition. For ML analyses, the default

tree search approach using simultaneous nearest neighbor interchange method and BioNJ

tree as starting tree was used to estimate ML tree topologies. Non-parametric

bootstrapping with heuristic searches of 1,000 replicates was used to assess confidences

of branches in ML trees (Felsenstein, 1985; Felsenstein & Kishino, 1993; Huelsenbeck &

Hillis, 1993). For BI analyses, we unlinked parameters for each partition and allowed

branch lengths to vary proportionately across partitions. Two independent runs were

Figure 1 Sampling localities, phylogenetic tree and TCS haplotype network for Nanorana pleskei.
(A) Sampling localities. The pies represent the haplotype (H1–H23; colors for each haplotype refer to

C haplotype network) frequency in each population. (B) Phyloengetic tree. Maximum likelihood

bootstrap support values/Bayesian posterior probabilities are above the branches. Mean time (Mya) to

the most recent common ancestor (TMRCA) with 95% highest posterior density (95% HPD) for the key

nodes are given below the relative branches. (C) Haplotype network for mitochondrial DNA data.

Colors in the haplotype network represent different haplotypes. Sizes of cycles indicate the haplotype

frequencies. Network branches linking the cycles indicate one mutation step; more mutations are

represented by dark spots crossed with the branches. (D) Haplotype network for nuclear DNA data.

MtDNA lineage South was offwhite, and mtDNA lineage North was dark grey.
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initiated each with four simultaneous Markov Chain Monte Carlo (MCMC) chains for

30 million generations and sampled every 1,000 generations. Convergence of runs

and burn-in period (first 25%) was determined using the program TRACER v1.6

(Rambaut et al., 2014a). A final majority-rule BI tree and the posterior probabilities

were achieved from the remaining trees.

Based on mtDNA data, the time to the most recent common ancestor (TMRCA) of

Nanorana pleskei was estimated using a Bayesian MCMC approach under a “relaxed

molecular clock” model in BEAST v1.8.1 (Drummond et al., 2012). There was no fossil

record of Nanorana pleskei that could be used for calibrations. The mutation rate of

mitochondrial genes has been found to be broadly constant at 0.57–0.96% change

per lineage per million years across many amphibian groups, such as hynobiid

salamanders (Weisrock et al., 2001), Bufo (Macey et al., 1998), Ranid frogs (Macey et al.,

2001) and Eleutherodactylus toads (Crawford, 2003). The Bufo species were indicated to

have a broadly universal substitution rate of 0.65% change per lineage per million years on

the mitochondrial ND1–ND2 gene region (Macey et al., 1998), while the Rana boylii

species group was also suggested to have a broadly universal substitution rate of

0.65% change per lineage per million years on the mitochondrial ND1, ND2 and CO1

genes (Macey et al., 2001). Accordingly, here we used this mean rate to estimate divergence

time among Nanorana pleskei lineages. In BEAST analyses, no partition scheme was

selected because we used one mean rate for whole mtDNA data. The GTR + G + I

nucleotide substitution model, the most flexible model available in beast, was used to

allow the sample space of the parameters to be fully exploited (Huelsenbeck & Rannala,

2004). Genealogy was reconstructed with an uncorrelated lognormal tree prior with a

constant population size assumption. A lognormal mean substitution rate of 0.65%

change per lineage per million years was used with a lognormal standard deviation of

0.7 producing a 95% credible sampling interval (CI) from 0.5% to 1% change per

lineage per million years. The MCMC chains were run for 50 million generations with

sampling every 1,000 generations and 10% of the initial samples were discarded as

burn-in. The convergence of chains was verified using Tracer by checking that the

sampling achieved stationarity and the effective sample size (ESS) for parameters

sampled from the MCMC analyses was more than 200. The remaining trees were used

to obtain the subsequent maximum clade credibility summary tree with posterior

probabilities using TREEANNOTATOR (Rambaut et al., 2014b).

Population genetic structure and demography analyses
Haplotype diversity (Hd) and nucleotide diversity (p) for mtDNA lineages and

populations were estimated using DNASP. The significance was tested using 1,000

computer permutations. To visualize geographical patterns of genetic diversity, Hd and

p were spatially interpolated using the Kriging method, implemented in the

“Geostatistical Analyst” of ARCGIS v10.2 (ESRI, Redlands, CA, USA).

Because the nuclear sequences contain few variable sites and include only a subset

of specimens, the relationships between haplotypes of the nuclear gene were only

shown using haplotype network. Haplotype networks of mtDNA and the Rhod genes
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were constructed using maximum parsimony method in the software TCS v1.21

(Clement, Posada & Crandall, 2000).

To access the extent to which the phylo-groups and/or geo-groups explain variation,

hierarchical analyses of molecular variance (AMOVA) was conducted in ARLEQUIN

v3.1 (Excoffier, Laval & Schneider, 2005). Three kinds of population arrangements

were tested: two major lineages, four sublineages and three geographical groups

(see “Results”). The significance of the fixation indices Fct, Fsc and Fst derived from

AMOVA analyses was determined by 1,000 permutation replicates.

Pairwise Fst between lineages and populations was calculated in ARLEQUIN. To test

whether genetic differentiation between populations was derived from the isolation by

distance (IBD) model with a significant correlation between geographic and genetic

distance (Fst), Mantel tests with 10,000 randomizations were performed in the program

IBDWS v3.23 (Jensen, Bohonak & Kelley, 2005).

Genetic signals of departure from neutrality (potential population expansion) were

estimated using Tajima’s D (Tajima, 1989) and Fu’ Fs (Fu, 1997) statistics. The values

were calculated in Arlequin with 1,000 computer permutations. Mismatch distributions

comparing observed and expected distributions of pairwise nucleotide differences

were also simulated to test a model of a sudden population expansion. The significance

of deviation from this model was evaluated using sum of squares deviations (SSD) and

Harpending’s raggedness index (HRI) with significant P values indicating rejection of

the recent expansion hypothesis. The analyses were implemented in ARLEQUIN and

the significance of deviation of values was tested with 10,000 permutations. The

coalescent-based Bayesian skyline plot (BSP), as implemented in BEAST, was used to

exhibit demographical fluctuations. The analyses were only conducted for total

population and two major lineages because coalescent simulations of sublineages could

not reach convergence due to much less variations and samples. In BSP analyses, the

starting tree was randomly generated and Bayesian skyline was used for the tree prior.

According to the number of samples, two to four grouped coalescent intervals were

prior chosen for lineages. The lognormal relaxed clock model and the mutation rate

of 0.65%/Ma (95% CI’s: 0.5–1.0%/Ma) as suggested above were specified. MCMC

chains were run for 100 million iterations with sampling every 1,000 iterations and

discarding the first 10% as burn-in. TRACER was used to check for convergence of

chains and ESS.

Biogeographical analyses
The SDM was inferred using maximum entropy machine-learning algorithm in

MAXENT v3.3.3k (Phillips, Anderson & Schapire, 2006). Nineteen bioclimatic layers

(BIO1-19) describing temperature and precipitation were downloaded from the

WorldClim v1.4 database (http://www.worldclim.org) (Hijmans et al., 2005). The

layers of the last glacial maximum (LGM, ∼21,000 years before present) scenarios were

obtained by the community climate system model (CCSM; 2.5 arc-minutes resolution;

Collins et al., 2006) and the model for interdisciplinary research on climate (MIROC;

2.5 arc-minutes resolution;Hasumi & Emori, 2004). The layers of the current (1950–2000)
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and last interglacial (LIG; 140,000–120,000 years before present) conditions were

retrieved with a resolution of 30 arc-second (Otto-Bliesner et al., 2006), and then were

resampled into 2.5 arc-minutes resolution. To eliminate the effect of model over-fitting,

Pearson’s correlation coefficient (r; Pearson, 1895) were used to evaluate pairwise

correlations between bioclimatic variables. When the absolute value of r > 0.9 indicating

that two variables were highly correlated, the one that was more biologically meaningful

for the species was chosen for analyses. The results suggested that seven variables

(BIO1-4, 12, 14 and 15; see www.worldclim.org/bioclim) could be chosen for SDMs.

Correlation structure among these bioclimatic variables appeared to be stable and

consistent across time periods (Mantel test: P < 0.01), suggesting that the model may be

transferable to past-time bioclimatic conditions (Jiménez-Valverde et al., 2009).

A total of 55 occurrence records of Nanorana pleskei were selected from the GBIF

web site (www.gbif.es) and our field records (Table S3). Spatially auto-correlated

occurrence points could make models biases in SDM (Veloz, 2009; Hijmans, 2012;

Boria et al., 2014). So our occurrence localities were spatially rarefied at 20 km2 based

on topographic and climate heterogeneity (Fig. S1), resulting in 46 points for SDM

(Table S3). Additionally, a latitudinal background selection bias file accounting for

bias associated with latitudinal changes in the studied region and limiting selection of

background points to the regions only feasibly colonized by the species was created for

SDM (Brown, 2014). In this analysis, the distance to a buffer minimum convex polygon

(MCP) (Kremen et al., 2008) was set as two decimal degrees.

To optimize the model performance (Shcheglovitova & Anderson, 2013), different

combinations of the five model feature class types (1. linear, 2. linear and quadratic,

3. hinge, 4. linear, quadratic and hinge and 5. linear, quadratic, hinge, product and

threshold, as in (Brown, 2014) and a range of regularization parameters (0.5–5; in 0.5

increments)) were tested. The distribution models were calibrated using spatial jackknifing

(k = 3) (Brown, 2014), and the best model was chosen with the lowest omission rate

and the highest AUC (the area under the receiver operating characteristic curve)

(Fielding & Bell, 1997). AUC > 0.8 means that the model performed well (Gassó et al., 2012).

The cross-validation strategy with 90% of the presence data as training data and the

remaining 10% as test data was used to access the accuracy of models. The model used

10,000 maximum iterations and 10 replications. The 10th percentile training presence

logistic threshold commonly used for models comparison (Pearson, 2007) was specified.

The SDMs of all periods were summed and reclassified for predicting stable niche

regions (Chan, Brown & Yoder, 2011). To correct over-predictions (Brown, 2014), the final

SDMs were clipped by a buffered MCP as above. To visualize the spatial connectivity,

dispersal networks among populations were constructed based on the shared mtDNA

haplotypes using the weighted least-cost-corridors method in Chan, Brown & Yoder

(2011). A friction layer used for least-cost-corridors calculations was created by

inverting the niche stable map (Brown, 2014).

The predictions under current and historical bioclimatic conditions were created by

MAXENT, and the other operations associated with SDM were implemented in the

program SDMTOOLBOX v1.1b (Brown, 2014) applied in ARCGIS.
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Ancestral locations were inferred using the BI discrete areas in the software RASP

v3.2 (Yu et al., 2015). MCMC trees and the final time tree resulted from the dating

estimations above were used as input genealogies. Our 15 sampling locations with GPS

coordinates were coded as independent characters. MCMC chains were run for five million

iterations with sampling every 1,000 iterations and discarding the first 10% as burn-in.

Ancestral sites with their origin ages were interpolated into a continuous map in ArcGIS.

RESULTS
Phylogenetics and dating
The two-gene mtDNA dataset was with length of 1,548 bps, contained 55 variable

nucleotide positions, with 44 parsimony informative sites, respectively. ML and BI

analyses yielded almost consistent topology (Fig. 1B) except some tips with low supports.

ML bootstrap proportions (bp) and Bayesian posterior probabilities (bpp) were more

than 95% supporting the monophyly of Nanorana pleskei. In Nanorana pleskei, two major

lineages (north and south) were revealed. Lineage north (bp = 71/bpp = 0.96) was

comprised of two sublineages, e.g., sublineages northwestern (NW; bp = 94/bpp = 1.00)

and northeastern (NE; bp = 50/bpp = 0.94), which were allopatric (Fig. 1A).

Lineage south (bp = 88/bpp = 1.00) also contained two sublineages, sublineages

S1 (bp = 60/bpp = 0.52) and S2 (bp = 65/bpp = 0.95), which were overlapped in

two populations (population 1 and 2; see Fig. 1A).

Mean pairwise uncorrected p-distances within lineages north and south were 0.4%

and 0.2%, respectively, much lower than that between them (2.1%). Similarly, the

p-distance between sublineages NW and NE was 0.6%, larger than that within them

(NW: 0.1%, NE: 0.2%). But the p-distance between sublineages S1 and S2 was 0.2%,

little larger than that within them (S1: 0.1%, S2: 0.1%).

The divergence between two major lineages north and south was traced back to about

1.41 million years ago (Mya) with 95% highest posterior density (95% HPD: 2.39–0.85

Mya), and divergence time was 0.55 Mya (95% HPD: 0.78–0.21 Mya) within lineage North

and 0.25 Mya (95% HPD: 0.49–0.1 Mya) within lineage south, respectively (Fig. 1B).

Population genetic structure and demographic history
Lineage north and sublineage NE had much higher Hd and p than the sublineage NW,

lineage South and sublineages S1 and S2 (Table 1; Fig. 2). As noted, Hd of sublineages

S2 was quite low (Table 1).

TCS analysis of mtDNA data yielded two allopatric and unconnected haplotype groups

(95% confidence interval; Fig. 1C), corresponding to the lineages north and south

(Fig. 1B). In lineage north, haplotypes from all northeastern populations were mainly

clustered into three loops, and haplotypes from all the northwestern populations

showed a star-like shape and connected with the northeastern populations in six steps.

In lineage south, sublineage S1 had two dominant haplotypes but S2 showed star-like

shape. Although the nuclear Rhod gene only had three haplotypes and did not reveal

well-supported haplogroups, the northern populations had their own distinct haplotypes

as well as the southern populations (Fig. 1D).
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Analyses of molecular variance showed significant levels (P < 0.01) across all

hierarchical levels when all grouping allocations were tested (Table 2), rejecting the model

of no population genetic structure. Highest Fct (95.951%) was found when using

grouping arrangement with four sublineages, but considerable Fct was also obtained for

grouping arrangements according to two major lineages (Fct = 94.317%) and three

geographic groups (Fct = 88.647%). IBDWS analyses resulted in an uncorrelated

relationship (r = 0.2593; P = 0.373) between genetic distance (Fst/1 - Fst) and geological

distance, rejecting the IBD model.

Tajima’s D value in Neutrality tests was significantly negative (P < 0.05) only in

sublineage S2, suggesting past population expansion and significantly negative (P < 0.01)

Fu’s FS values were found in sublineages NWand S2 (Table 1). In mismatch distribution,

SSD and HRI values suggested population expansion model for the sublineages NE,

NWand S2. sublineages NWand S2 exhibited an observed unimodal mismatch frequency

distribution (Fig. 3), fitting a recent sudden population expansion model. The BSP for

sublineages NW, S1 and S2 was not constructed because of few variations accounting for

short coalescent time in each of them. BSPs (Fig. S2) depicted a model of past increase

of effective population size in total population of the species (from about 0.05 Mya),

lineage north (from about 0.05 Mya) and sublineage NE (from about 0.02 Mya), but this

model was not revealed in lineage south suffering short coalescent time with stable

population size.

Species distribution modeling and ancestral locations
The model performances were good and robust because the mean ± standard deviation of

AUC was 0.880 ± 0.007 and 0.876 ± 0.048 for the training data and test data, respectively.

The SDM under present bioclimatic conditions showed substantial habitat suitability

across the current known range of the amphibian species on the eastern Tibetan Plateau

(Fig. 4A). The distribution predicted under MIRCO of LGM was similar to the CCSM

model (Fig. 4B). Compare to the current distribution, during the LGM, the predicted

distribution exhibited obvious contraction to the northeastern region, but in the

northwestern region, suitable habitats still existed in the main valley of the upper-middle

Table 1 Genetic diversity, neutrality tests and mismatch goodness-of-fit tests in the mtDNA lineages.

mtDNA lineage n (nh) hd (s.d.) p (s.d.) Neutrality tests Goodness-of-fit tests Mismatch

distribution
Tajama’s D Fu’s Fs SSD (P value) HRI (P value)

North 101 (16) 0.815 (0.022) 0.00298 (0.00014) -0.0105 -0.3348 0.0609 (0.0848) 0.1078 (0.0485) Multimodal

NW 33 (4) 0.278 (0.098) 0.00019 (0.00007) -1.3876 -2.3837* 0.0058 (0.4250) 0.2720 (0.5727) Unimodal

NE 68 (12) 0.758 (0.039) 0.00114 (0.00011) -1.1488 -3.6383 0.0214 (0.1875) 0.0873 (0.2308) Bimodal

South 87 (7) 0.553 (0.051) 0.00082 (0.00008) -0.4970 -0.5345 0.4219 (0.0000) 0.2147 (0.9851) Multimodal

S1 30 (4) 0.572 (0.052) 0.00041 (0.00006) -0.3958 -0.6853 0.0320 (0.0477) 0.2202 (0.0388) Bimodal

S2 57 (3) 0.070 (0.046) 0.00007 (0.00005) -1.6818* -2.4707** 0.0015 (0.1247) 0.8039 (0.8077) Unimodal

Notes:
n, number of samples; nh, number of haplotypes; p, nucleotide diversity; hd (s.d.), haplotype diversity with standard deviation; SSD, sum of squared deviation between
the observed and expected distribution of pairwise differences; HRI, Harpending’s raggedness index.
* Denotes significance at a = 0.05.
** Denotes significance at a = 0.01.
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reaches of Jinsha and Yalong rivers (Fig. 4B). During the LIG, the predictions showed

a slight south-direction shift of the distribution range (Fig. 4C). The stable suitable

habitats were constructed by summing all SDMs of different periods, and were showed

using the highest 30% reclassified values. The results suggested that the stable suitable

habitats existed in the regions of eastern half current range of the species (Fig. 4D).
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Figure 2 Surface of the interpolated genetic diversity of Nanorana pleskei. (A) Hd, haplotype

diversity. (B) p, nucleotide diversity. Warmer color indicates higher genetic diversity. The interpolation

was conducted under a kriging framework.
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Because there were no haplotypes between three major geo-groups, spatial connectivity

showed by dispersal networks between populations was constructed only within each

of them (Fig. 4E). In the southern group, high connectivity was presented near the

Yalong River, and in the northeastern group, the highest connectivity existed between

the populations near the upper reach of Yellow River, but in the two northwestern

populations, the level of connectivity was relatively low.

Ancestral geographical distributions for major mtDNA lineages were inferred to be

located in the three geo-groups same as the dispersal-network analyses: region near

the middle Yalong River, northeastern region near the upper Yellow River and Dadu

River and northwestern region near the upper Yalong and Jinsha valleys (Fig. 4F).

DISCUSSION
Integrative application of phylogeographic investigation and ecological niche modelling

has become a representative approach for explaining intraspecific evolutionary patterns

associated with climate oscillations (Chan, Brown & Yoder, 2011; Waltari et al., 2007;

Edwards, Keogh & Knowles, 2012). As a case, our study on endemic frog species Nanorana

pleskei in the eastern Tibetan Plateau revealed concordance of genetic and ecological

modelling signals: first, times of diversification of its lineages occurred through the
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Figure 3 Mismatch distributions of mtDNA lineages. (A) All populations. (B) Lineage north. (C) Lineage south. (D) Sublineage NW. (E)

Sublineage NE. (F) Sublineage S1. (G) Sublineage S2. The lines indicate the observed frequency of pairwise nucleotide differences between

sequences, and the dashed lines are the expected distribution based on a model of sudden population expansion.

Table 2 Results of analysis of molecular variance (AMOVA) of mtDNA data.

Grouping

arrangement

Among groups

Fct (% of variation)

Within groups

Fsc (% of variation)

Within populations

Fst (% of variation)

North, south 88.647 83.741 98.154

NW, NE, S1, S2 95.951 39.108 97.534

NW, NE, south 94.317 61.842 97.832

Note:
Lineages (north and south) and sublineages (NW, NE, S1 and S2) were showed in Fig. 1.
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middle-late Pleistocene, basically fitting scenarios of regionally paleo-climatic fluctuations

on the Tibetan Plateau; second, deeply independent origin of major lineages and the

spatial interpolations indicated multiple refugia for the species existing across the eastern

Tibetan Plateau, also revealed by the niche stability of paleo and current periods across its

main distribution range. The integrations and fitting-models allocated substantial insights

on evolutionary history of the species and its response to climatic fluctuations.

In Nanorana pleskei, two major mtDNA lineages (north and south) were revealed,

showing no shared haplotypes and deep allopatric divergence (ca. 1.41 Mya; Fig. 1B),

a similar find as supported by the analyses on the nuclear Rhod gene, i.e., north and

south populations had their own haplotypes (Fig. 1D). Recent uplifts of the Tibetan

Plateau and Pleistocene glaciations could contribute to the isolations in modern species

(Wang et al., 2010; Liu et al., 2015; Zhou et al., 2014). Accordingly, in the range of the

lineage North, from ca. 1.2 Mya, the upstream of the Yellow River system had been
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Nanorana pleskei through all periods based on a species distribution model. (E) Dispersal networks of Nanorana pleskei depicting the connectivity
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dramatically upraised (named as the Kunlun-Yellow River tectonic movements;

Cui, Wu & Liu, 1997), increasing the landscape differentiations between this region

exhibiting open and broad prairie and the range of the lineage south carrying high

topographical heterogeneity with tableland and alpine valleys at the southeastern

margin of plateau (Fig. 1A; Fig. S1). The movement also promoted expansions of

ice-sheets, e.g., the oldest glaciation in the Tibetan Plateau was reported beginning from

ca. 1.17 Mya (Shi, Zheng & Su, 2006). Obviously, the early Pleistocene geological and

climatic fluctuations would contribute to the isolation and deep divergence of the

two lineages. This pattern has also been found in other organisms in this region

(Wu et al., 2013; Guo, Liu & Wang, 2012). The divergence of sublineages NW and NE

(ca. 0.55 Mya) was likely derived from similar historical factors. Continuous extension

of the Kunlun-Yellow River tectonic movement during the middle Pleistocene had

promoted the differentiation between hinterland of Tibetan Plateau and edge regions. The

range of northwestern lineage (NW) was west of the 600 mm annual precipitation,

and adjoined platform of Tibetan Plateau, being more arid and drier, in favor of

maintaining its genetic independence from eastern regions. Of course, the maximum

glaciation occurred during ca. 0.77–0.5 Mya (Shi, Zheng & Su, 2006) might also provide

climate-driving force on separation of it from eastern lineages.

In this view, the species had been likely derived frommultiple glacial refugia rather than

single refugium. What is more, several lines of evidence support the scenario of multiple

glacial refugia at least on the eastern plateau. Firstly, the single-refugium hypothesis

generally advocated star-like haplotype network in the whole population and presented

decreasing trends on genetic diversity from one single refugium to the newly colonized

routes and/or fringe areas (Provan & Bennett, 2008). The pattern was not revealed in

Nanorana pleskei. Not only mtDNA data but also nuclear DNA data presented two major

distinct haplotype groups (Figs. 1C and 1D), especially in mtDNA, the two lineages

independently possessed high genetic diversity (Table 1). As mentioned above, these

two lineages dated back to the early Pleistocene much earlier than the LGM were

allopatric, implying that they had probably occupied independent glacial refuges.

Secondly, the regions with stable suitable environments through history were often

inferred as the glacial refugia (Chan, Brown & Yoder, 2011). Our SDMs of current and

paleo periods (LIG and LGM) indicated that stable suitable habitats through times for

the species existed in almost half of its current distributed range mainly in the basins

of major rivers (Fig. 4D). Even in the northern and western range, major valleys, e.g.,

upper-middle reaches of Yellow River, Dadu River, Yalong River and Jinsha River, still

hosted considerable niche stability for the frog (Fig. 4D). Ancestral area distribution

also inferred that the MRCA of the populations in these areas were relative old (Fig. 4F).

Thus, it is therefore plausible to postulate that these regions had been occupied as the

refugia for different lineages. Some other plateau species have likely also taken refuge in

the regions (Liu et al., 2013; Zhou et al., 2013). Finally, the multiple-glacial-refugia

scenario fits well with the multi-regions and multi-scales glaciations hypotheses during

the Pleistocene (Owen et al., 2005; Yang et al., 2008). Moreover, substantial proofs

indicated that many districts (e.g., Jinsha River, Yalong River and northeastern region)
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in the range of Nanorana pleskei were free of ice even in mid-Pleistocene glacial periods

on Tibetan plateau (Shi, Zheng & Su, 2006).

Distinct refugia environments would generally create different characteristics of

demographic dynamics for the separated lineages (Avise, 2000). For lineage south, the

neutrality tests and mismatch distributions all did not show signals of a recent expansion

model (Table 1), and BSP showed stable population size through short coalescent time

(Fig. S2). But its sublineage S2 significantly fitted the recent expansion model (Table 1),

and distributed from central of genetic-diversity map to the edge populations (Fig. 2).

This indicated that the lineage south has been probably experienced bottleneck effects,

but its sublineage S2 has been probably experienced founder effects and a recent

expansion (Zink, 2002). A little is similar for the sublineage NW, the relative older

ancestor of it with low genetic diversity and a recent sudden expansion model indicated

possible historical bottleneck effects in it (Zink, 2002). However, for the lineages NE

possessing high genetic diversity, BSPs showed population increase even through the

LGM (Fig. S2) but Fu’s Fs and Tajima’s D did not support the model (Table 1). The

interpretation for this discordance probably indicated that the populations underwent

expansion but then were recently subdivided, subjected to substantial migration,

and/or had experienced historical contractions (Ray, Currat & Excoffier, 2003;

Castoe, Spencer & Parkinson, 2007; Bertorelle & Slatkin, 1995).

Of course, there are reasons to be cautious about the findings. In this study, only gene

trees based on mtDNAwere used to estimate the divergence times and the estimated age of

differentiation of Nanorana pleskei lineages predated the time frame used for the SDMs.

Compared with species tree methods based on multiple loci, the gene tree method tends

to overestimate the divergence times (McCormack et al., 2010). Even though it is true

for the findings that the history of major lineages was much probably earlier than the

LGM, there still were some other models of demographic patterns, for example,

populations had probably been experienced contractions and expansions several times

due to glacial cycles during Pleistocene. To now, in view of no fossil information and

“incomplete” sampling, we cannot appraise the veracity of estimations on divergence

times. So in the future work, “complete” sampling and inclusion of species tree method

based on multiple loci even genomic data may be the guarantee to verify the models.

The novel phylogeographic pattern provided important conservation implications for

the frog species. The long-term allopatric lineages with limited spatial connectivity

(Fig. 4E) should be recognized as independent evolutionarily significant units (ESUs)

for future protection (Crandall et al., 2000). The drainage basins in the range of the

species hosted important water source for the Yellow River and Yangtze River systems and

were indicated as the refugia for it. These valleys have been prominently disturbed by

human activity especially in the new century. Thus, more effective measures and

managements are desired for protecting habitats in the refuges.

CONCLUSION
This study integrating phylogeographic investigation and ecological niche modelling

suggested that Pleistocene climatic fluctuations combined with the uplifts of Tibetan
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Plateau to profoundly impacted the evolutionary and distributional patterns of the

plateau endemic amphibian species. Nanorana pleskei lineages have taken refuge in

upper-middle streams of the Yellow River, Dadu River, Jinsha River and Yalong River

because the regions have probably loaded stable, long-term suitable habitats. Multiple

refugia environments have probably promoted the lineages possessing distinct

demographic characteristics. These points provide useful conservation implications

for the species.
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