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The reaction-diffusion equations have been widely used in physics, chemistry, and other areas.
Forest fire can also be described by such equations. We here propose a fighting forest fire model.
By using the normal form approach theory and center manifold theory, we analyze the stability of
the trivial solution and Hopf bifurcation of this model. Finally, we give the numerical simulations
to illustrate the effectiveness of our results.

1. Introduction

The forest fire is an important issue in the world. It has brought us huge losses. It not only
burns our forests but also destroys the local ecological environment. Many factors lead to
forest fires. Several authors have studied them in depth [1–6]. Some important organizations,
especially the USDA Forest Service, have also researched them in their themes [7].

Reaction-diffusion equations have been applied in forest fire model for several
years. Some authors analyzed the dynamical behavior of the fire front propagations using
hyperbolic reaction-diffusion equations [8]. Lots of articles related to percolation theory [9]
and self-organized criticality [10] are trying to provide a different dynamical model for the
spread of the fire. In this paper, the model describes the condition that people are putting out
the fire when the fire is spreading. We analyze dynamic properties of the reaction-diffusion
equations. Kolmogorov et al. proposed the famous KPP model [11] in the 1930s. From then
on, it had been applied in various fields including forest fire:

ut = d1uxx + u + f(u), x ∈ R, t ≥ 0, (1.1)

where u = u(x, t) can be seen as the area of the burned forest. uxx is a diffusion term of u
in space, and d1 is the diffusion coefficient. f(u) is a nonlinear function. The equation can
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describe the speed of fire spreading. Zeldovich et al. gave the famous theory of combustion
and explosions [12]. We can get inspiration from it:

The people will go to put out the fire as soon as they realize the forest fire. We can use
a reaction-diffusion equation to describe it.

vt = d2vxx − cv + g(v). (1.2)

In this equation, v = v(x, t) is the area where the fire has been put out. vxx is a diffusion term
of v in space, and d2 is the diffusion coefficient. c is the resurgence probability of v. g(v) is a
nonlinear function which represents the ability of people to put out the fire.

Now, let us consider the two reaction-diffusion equations together. As we know, u and
v influence each other. Thus, f and g must be functions of u, v. We define g(u, v) by referring
to the combustion model [13]:

g(u, v) =
uv

b(u + 1)
, b > 0. (1.3)

Since g(u, v) has opposite effect on the fire area (or u), we can also define f(u, v) by
taking into account KPP model [8]:

f(u, v) = −au2 − uv

b(u + 1)
. (1.4)

Then we get a new model:

ut − d1uxx = u − au2 − uv

b(u + 1)
,

vt − d2vxx = −cv +
uv

b(u + 1)
,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ (0, lπ).

(1.5)

Define

H = L2[0, π] × L2[0, π] =
{(

f
g

)
: f, g ∈ L2[0, π]

}
, (1.6)

and an inner product is given by

〈(
f1
g1

)
,

(
f2
g2

)〉
=
〈
f1, f2

〉
L2 +

〈
g1, g2

〉
L2 =

2
π

∫π

0
f1f2 dx +

2
π

∫π

0
g1g2 dx, (1.7)



Abstract and Applied Analysis 3

where (f1, g1)
T ∈H, (f2, g2)

T ∈H. From the standpoint of biology, we are only interested in the
dynamics of model (1.5) in the region:

R2
+ = {(u, v) | u > 0, v > 0}. (1.8)

2. Stability Analysis

Firstly, we consider the location stability [14, 15] and the number of the equilibria of model
(1.5) in R2

+. We can also study autowave solutions [16] of the model. The interior equilibrium
point is a root of the following equation:

u − au2 − uv

b(u + 1)
= 0,

−cv +
uv

b(u + 1)
= 0.

(2.1)

It is obvious that (2.1) has an only real solution Y0 = (u0, v0), where

u0 =
bc

1 − bc
, v0 = ab

(
1
a
− u0

)
(1 + u0), (2.2)

and b < 1/c(a + 1).
Now, we analyze the asymptotic stability of (u0, v0) by Lyapunov function.

Lemma 2.1. For the model (1.5),
(1) if a ≥ 1, (u0, v0) is global asymptotic stability.
(2) if a < 1 and (1 − a)/c ≤ b ≤ 1/(ac + c), (u0, v0) also has global asymptotic stability.

Proof. Defining

ω(u, v) =
∫ lπ

0

∫u

u0

r/b(r + 1) − c

r/(r + 1)
dr dx +

1
b

∫ lπ

0

∫v

v0

s − v0

s
ds dx, (2.3)

we can get

∂ω

∂t
=

1
b

∫ lπ

0
(h(u) − h(u0))

(
p(u) − p(u0)

)
dx + Y (t), (2.4)

where

h(u) =
u

u + 1
, p(u) = (1 − au)(u + 1),

Y (t) = −d1c

∫ lπ

0

h′(u)
h2(u)

u2
xdx +

d2v0

b

∫ lπ

0

v2
x

v2
dx.

(2.5)
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In what follows, we split it into two cases to prove. If a ≥ 1, for all u > 0, p′(u) < 0, since
h′(u) = 1/(u + 1)2 > 0, we can get

(h(u) − h(u0))
(
p(u) − p(u0)

) ≤ 0. (2.6)

If a < 1 and (1 − a)/c ≤ b ≤ 1/(ac + c) (equal to v0 ≤ b), we can still get (2.6). That is to say

wt(u, v) < 0. (2.7)

We prove the conclusion.

Because of the conclusion of Lemma 2.1, we always assume a < 1 and 0 < b < (1 −
a)/(2ac − c). Introducing perturbations u∗ = u − u0, v

∗ = v − v0, and replace (u∗, v∗) with
(u, v), for which model (1.5) yields

ut − d1uxx = u + u0 − a(u + u0)2 − (u + u0)(v + v0)
b(u + u0 + 1)

,

vt − d2vxx = −c(v + v0) +
(u + u0)(v + v0)
b(u + u0 + 1)

,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ (0, lπ).

(2.8)

Now we can get the linearized system of parametric model (2.8) at (0, 0),

(
ut

vt

)
=
(
Δ̃ + L(b)

)(u
v

)
, (2.9)

where

Δ̃ =

⎛
⎜⎜⎝

0 d1
∂2

∂x2

d2
∂2

∂x2
0

⎞
⎟⎟⎠, L(b) =

⎛
⎜⎜⎜⎜⎝

u0(1 − a − au0)
1 + u0

−c

1 − au0

1 + u0
0

⎞
⎟⎟⎟⎟⎠. (2.10)

The eigenvalues of Δ̃ are as follows:

{
−d2

n2

l2
,−d1

n2

l2

}+∞

n=0

, (2.11)

and the corresponding eigenvectors as follows:

{
β1n, β

2
nk

}+∞
n=0

, (2.12)
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where

β1n =

⎛
⎜⎝

0

cos
(n
l
x
)
⎞
⎟⎠, β2n =

⎛
⎜⎝

cos
(n
l
x
)

0

⎞
⎟⎠. (2.13)

Define for all y ∈ H

y =
n∑

k=1

YT
k

⎛
⎝β1

k

β2
k

⎞
⎠, Yk =

⎛
⎝〈y, β1

k
〉

〈y, β2
k
〉

⎞
⎠. (2.14)

It is easy to get, λ ∈ (Δ̃ + L(b)), if and only if the equation

n∑
k=1

YT
k

⎛
⎜⎜⎝Eλ − L(b) −

⎛
⎜⎜⎝

−d1
k2

l2
0

0 −d2
k2

l2

⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎛
⎝β1

k

β2
k

⎞
⎠ = 0 (2.15)

is held.
We obtain

∣∣∣∣∣∣∣∣
Eλ − L(b) −

⎛
⎜⎜⎝

−d1
n2

l2
0

0 −d2
n2

l2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
= 0. (2.16)

Rewrite it as

λ2 − Tn(b)λ +Dn(b) = 0, (2.17)

where

Tn(b) = bc

(
1 − a − 2a

bc

1 − bc

)
− (d1 + d2)n2

l2
,

Dn(b) = c(1 − bc − abc) − d2bc

(
1 − a − 2abc

1 − bc

)
n2

l2
+
d1d2n

4

l4
.

(2.18)

From (2.18), when (1−a)/(ac+ c) < b < (1−a)/c is held, we can get Tn(b) < 0, Dn(b) > 0. So
the system’s eigenvalues have negative real part, and (u0, v0) has local asymptotic stability.
Then, we can conclude that the system has Hopf bifurcation [14] in b ∈ (0, (1 − a)/(ac + c)).

Define

B =
{
b0 | Tn(b0) = 0, Dn(b0) > 0, Tj(b0)/= 0, Dj(b0)/= 0, ∀j /=n

}
. (2.19)
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b0 ∈ B ∪ (0, (1 − a)/(ac + c)), α(b) ± iω(b) are characteristic roots of Δ̃ + L(b), where

α(b) =
1
2

(
A(b) − d1 + d2

l2
n2
)
, ω(b) =

√
Dn(b) − α2(b),

A(b) = bc

(
1 − a − 2a

bc

1 − bc

)
.

(2.20)

Now we compute transversality condition:

α′(b0) =
1
2
a(1 − b0c)

2

(
1
a
− 1 − 4b0c

1 − b0c
−
(

b0c

1 − b0c

)2
)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0, 0 < b0 <
1
c

(
1 −
√

2a
1 + a

)
,

< 0,
1
c

(
1 −
√

2a
1 + a

)
< b0 <

1 − a

ac + c
.

(2.21)

Now we consider A(0) = A(bB0 ) = 0 and A(b) is positive in (0, bB0 ). So we can get the
maximum value of A(b) (defined as A(b∗)):

Define

ln = n

√
d1 + d2

A(b∗)
, n ∈ N, A(b∗) = a

⎛
⎝
√

1
a
+ 1 −

√
2

⎞
⎠

2

, (2.22)

for all l ∈ (ln, ln+1], 0 ≤ j ≤ n, bBj,− and bBj,+ are two roots of the equation

A(b) =
d1 + d2

l2
j2. (2.23)

It is easy to get

0 < bB1,− < · · · < bBn,− <
1
c

⎛
⎝1 −

√
2a

1 + a

⎞
⎠ < bBn,+ < · · · < bB1,+ < bB0 . (2.24)

Then we give the condition of Dn(bBj,±)/= 0 especially Dn(bBj,±) > 0.
As we know

Dn(b) ≥ ac − d2A(b∗)
n2

l2
+ d1d2

n4

l4
. (2.25)
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Then Dn(b) > 0 is held if and only if

d1d2 > 0,

(d2A(b∗))2 − 4d1d2ac > 0.
(2.26)

Theorem 2.2. Assume that d1, d2, c > 0, 0 < a < 1, and the equation is held:

d2A
2(b∗) − 4d1ac > 0, (2.27)

where

ln = n

√
d1 + d2

A(b∗)
, n ∈ N, A(b∗) = a

⎛
⎝
√

1
a
+ 1 −

√
2

⎞
⎠

2

, (2.28)

then for all l ∈ (ln, ln+1], existing b = bBj,± or b = bB0 ; there are Hopf bifurcations at the real solution of
model (1.5).

Furthermore

0 < bB1,− < · · · < bBn,− <
1
c

⎛
⎝1 −

√
2a

1 + a

⎞
⎠ < bBn,+ < · · · < bB1,+ < bB0 . (2.29)

3. Hopf Bifurcation

In the above section, we have already obtained the conditions which ensure that model (2.8)
undergoes the Hopf bifurcation at the critical values b0 or bj,± (j = 1, · · · ). In the following
part, we will study the direction and stability of the Hopf bifurcation based on the normal
form approach theory and center manifold theory introduced by Hassard at al. [14].

Firstly, by the transformation u∗ = u−u0, v
∗ = v−v0, and replacing (u∗, v∗)with (u, v),

the parametric system (1.5) is equivalent to the following functional differential equation
(FDE) system:

∂U

∂t
=
(
Δ̃ + L(b0)

)
+ F(b0, U), (3.1)

where

U = (u, v)T , F(b0, U) =

(
f − fuu − fvv

g − guu − gvv

)
. (3.2)
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The adjoint operator of Ln(b) is defined as

L∗(b0) =

⎛
⎜⎜⎝

d1
∂2

∂x2
+ fu(b0) fv(b0)

gu(b0) d2
∂2

∂x2
+ gv(b0)

⎞
⎟⎟⎠. (3.3)

It is easy to get

〈u, L(b0)v〉 = 〈L∗(b0)u, v〉. (3.4)

From the discussions in Section 2, define q∗ = (a∗
n, b

∗
n)

T cos(n/l)x. We have

L∗(b0)q∗ = −iωq∗,
〈
q∗, q

〉
= 1,

〈
q∗, q

〉
= 0. (3.5)

Decompose X as X = Xc ⊕ Xs, where Xc = {zq + zq | z ∈ C} and Xs = {u ∈ x | 〈q∗, u〉 = 0}.
For all (u, v) ∈ X, existing z ∈ C and ω = (ω1, ω2) ∈ Xs, we can obtain

(
u
v

)
= zq + zq +

(
ω1

ω2

)
. (3.6)

Rewrite (3.1) as

ż = iω0z +
〈
q∗, F∗

0
〉
,

ω̇ = L(b0)ω +H(z, z,ω),
(3.7)

where

F∗
0 = zq + zq +ω, H(z, z,ω) = F∗

0 −
〈
q∗, F∗

0
〉
q −
〈
q∗, F∗

0

〉
q. (3.8)

Using the same notations as in [11],

F∗
0(U) =

1
2
Q(U,U) +

1
6
C(U,U,U) +O

∣∣∣U4
∣∣∣, (3.9)

where U = (u, v) and Q,C are symmetrical multilinear functions. We can compute

Q
(
q, q
)
=

⎛
⎝A1

n

A2
n

⎞
⎠cos2

n

l
x, Q

(
q, q
)
=

⎛
⎝B1

n

B2
n

⎞
⎠cos2

n

l
x, C

(
q, q, q

)
=

⎛
⎝C1

n

C2
n

⎞
⎠cos3

n

l
x,

(3.10)
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where

A1
n = fuua

2
n + 2fuvanbn + fvvb

2
n,

A2
n = guua

2
n + 2guvanbn + gvvb

2
n,

B1
n = fuu|an|2 + fuv

(
anbn + anbn

)
+ fvv|bn|2,

B2
n = guu|an|2 + guv

(
anbn + anbn

)
+ gvv|bn|2,

C1
n = fuuu|an|2an + fuuv

(
2|an|2bn + a2

nbn
)
+ fuvv

(
2b2nan + b2nan

)
+ fvvv|bn|2bn,

C2
n = guuu|an|2an + guuv

(
2|an|2bn + a2

nbn
)
+ guvv

(
2b2nan + b2nan

)
+ gvvv|bn|2bn.

(3.11)

Define

H(z, z,ω) =
1
2
H20z

2 +H11zz +
1
2
H02z

2 + o(|z||ω|), (3.12)

where

H20 = Q
(
q, q
) − 〈q∗, Q(q, q)〉q − 〈q∗, Q(q, q)〉q,

H11 = Q
(
q, q
) − 〈q∗, Q(q, q)〉q − 〈q∗, Q(q, q)〉q.

(3.13)

On the center manifold, we have

ω =
1
2
ω20z

2 +ω11zz +
1
2
ω02z

2 + o
(
|z|3
)
. (3.14)

We can obtain

w20 = [2iω0I − Ln(b0)]
−1H20, ω11 = [Ln(b0)]

−1H11. (3.15)

Comparing (3.9) and (3.13), we can get

H20 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q
(
q, q
) −
⎛
⎝A1

n

A2
n

⎞
⎠cos2

n

l
x −
⎛
⎝A1

n

A2
n

⎞
⎠(1

2
cos2

n

2
x +

1
2

)
, n ∈ N

∗,

⎛
⎝A1

0

A2
0

⎞
⎠ − 〈q∗, Q(q, q)〉

(
a0

b0

)
− 〈q∗, Q(q, q)〉

⎛
⎝a0

b0

⎞
⎠, n = 0.

(3.16)
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Similarly

ω11 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1
2
[L(bo)]

−1
⎛
⎝C1

n

C2
n

⎞
⎠(cos2n

2
+ 1
)
, n ∈ N

∗,

−[L(b0)]−1
⎡
⎣
⎛
⎝c10

c20

⎞
⎠ − 〈q∗, Q(q, q)〉

⎛
⎝a1

0

b20

⎞
⎠ −

〈
q∗, Q

(
q, q
)〉
⎛
⎝a0

b0

⎞
⎠
⎤
⎦, n = 0.

(3.17)

Then on the center manifold rewrite (dU) as

dz

dt
= iω0z +

〈
q∗, F∗

0
〉
= iω0z +

∑
2≤i+j≤3

gij

i!j!
zizj + o

(
|z|4
)
, (3.18)

where

g20 =
〈
q∗, Q

(
q, q
)〉

=
4cω0a

2 − a(1 − a)2ω0 − 2ca2(3a − 1)i
(1 − a2)ω0

,

g11 =
〈
q∗, Q

(
q, q
)〉

=
a
(
a − q

)
ω0 − 2ca2i

(1 + a)ω0
,

g02 =
〈
q∗, Q

(
q, q
)〉

=
a(1 − a)2 + 2cω0a

2 − 4ca2i

(1 − a2)ω0
,

g21 = 2
〈
q∗, Q

(
w11, q

)〉
+
〈
q∗, Q

(
w20, q

)〉
+
〈
q∗, C

(
q, q, q

)〉

=
−12a3(1 − a)ω0 − 8ca3ω0 + 4ca3(3−5a)i

(1 − a)(1 + a)2ω0
.

(3.19)

Using conclusions in [14] we can get

C1(b) =
g20g11(3α(b) + iω(b))

2(α2(b) +ω2(b))
+

∣∣g11∣∣2
α(b) + iω(b)

+

∣∣g02∣∣2
2(α(b) + 3iω(b))

+
g21
2

, (3.20)

then

C1(b0) =
i

2ω0

(
g20g11 − 2

∣∣g11∣∣2 − 1
3
∣∣g02∣∣2

)
+
g21
2

,

μ2 = − Re{c1(0)}
Re{b′(τn)} , β2 = 2Re{c1(0)},

T2 =
2π
ω0

(
1 + τ2s

2
)
+ o
(
s4
)
,

(3.21)
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Figure 1: When b = 0.1, the positive equilibrium point Y0 is asymptotically stable.

where

τ2 = − 1
ω0

[
Im(c1(b0)) − Re(c1(b0))

α′(b0)
ω′(b0)

]
. (3.22)

Now we give a conclusion.

Conclusion. (1) The sign of μ2 determines the direction of Hopf bifurcation. When μ2 > 0, the
Hopf bifurcation is supercritical; when μ2 < 0, the Hopf bifurcation is subcritical.

(2) β2 determines the stability of bifurcated periodic solutions. When β2 < 0, the
periodic solutions are stable; when β2 > 0, the periodic solutions are unstable.

(3) T2 determines the period of bifurcated periodic solutions. When T2 > 0, the period
increases; when T2 < 0, the period decreases.

4. Example

In this section, we use a numerical simulation to illustrate the analytical results we obtained
in previous sections.

Let x ∈ (0, lπ), d1 = 1, d2 = 3, c = 4, a = 0.0588. The system (1.5) is

ut − uxx = u − 0.0588u2 − uv

b(u + 1)
,

vt − 3vxx = −4v +
uv

b(u + 1)
,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ (0, lπ).

(4.1)

Now we determine the direction of a Hopf bifurcation with b ∈ B and the other properties of
bifurcating periodic solutions based on the theory of Hassard et al. [14], as discussed before.
By means of software MATLAB 7.0, we can get some figures to illustrate the effectiveness of
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Figure 2: When b = 0.1253, periodic solutions occur from Y0.
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Figure 3: When b = 1.3, the positive equilibrium point Y0 is unstable.

our results. bB0 = 0.2222, b∗ = 0.1667,A(b∗) = 0.4706, ln = 2.9155n, and (2.27) is held. When n =
2, l = 3.1162, (ln, ln+1] = (2.9155, 5.8302], l ∈ (ln, ln+1]. We can get B = (0.1253, 0.1944, 0.2222).
The only positive equilibrium point of (4.1) is Y0 = (4b/(1−4b), b(0.0588−u0)(1+u0)/0.0588).
When b = 0.1253, we can compute

Re c1(0.1253) = 0.2856 > 0, μ2 = −0.3423 < 0, T2 = 1.2346 > 0. (4.2)

The positive equilibrium point of (4.1) is unstable and the Hopf bifurcation is supercritical.
The positive equilibrium point Y0 of system (4.1) is locally asymptotically stable when b = 0.1
as is illustrated by computer simulations in Figure 1. And periodic solutions occur from Y0

when b = 0.1253 as is illustrated by computer simulations in Figure 2. When b = 1.3, we
can easily show that the positive equilibrium point Y0 is unstable as is illustrated in Figure 3.
From the above results, we can conclude that the stability properties of the system could
switch with parameter b.
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