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This paper investigates the problem of stability and stabilization of Markovian jump linear systems
with partial information on transition probability. A new stability criterion is obtained for these
systems. Comparing with the existing results, the advantage of this paper is that the proposed
criterion has fewer variables, however, does not increase any conservatism, which has been proved
theoretically. Furthermore, a sufficient condition for the state feedback controller design is derived
in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the
effectiveness of the proposed method.

1. Introduction

Over the past few decades, Markov jump systems (MJSs) have drawn much attention of
researchers throughout the world. This is due to their important roles in many practical sys-
tems. That is, MJSs are quite appropriate to model the plants whose structures are subject to
random abrupt changes, which may result from random component failures, abrupt environ-
ment changes, disturbance, changes in the interconnections of subsystems, and so forth [1].

Since the transition probabilities in the jumping process determine the behavior of
the MJSs, the main investigation on MJSs is to assume that the information on transition
probabilities is completely known (see, e.g., [2–5]). However, in most cases, the transition
probabilities of MJSs are not exactly known. Whether in theory or in practice, it is necessary
to further consider more general jump systems with partial information on transition
probabilities. Recently, [6–9] considered the general MJSs with partly unknown transition
probabilities. But in these papers, when the terms containing unknown transition probabil-
ities were separated from others, the fixed connection weighting matrices were introduced,
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which may lead to the conservatism. As noticed, it, currently [10], have achieved an excellent
work of reducing the conservatism. The basic idea is to introduce free-connection weighting
matrices to substitute the fixed connection weighting matrices. However, this means that the
method of [10] has to increase the number of decision variables. As shown in [11], more
decision variables imply the augmentation of the numerical burden. Therefore, developing
some new methods without introducing any additional variable meanwhile without
increasing conservatism will be a valuable work, which motivates the present study.

In this paper, we are concerned with the problem of the stability and stabilization of
MJSs with partly unknown transition probabilities. By fully unitizing the relationship among
the transition rates of various subsystems, we obtain a new stability criterion. The proposed
criterion avoids introducing any connection weighting matrix; however, do not increase
any conservatism comparing to that of [10], which has been proved theoretically. More
importantly, because the proposed stability criterion need not introduce any slack matrix, the
relationships among Lyapunov matrices are highlighted. Therefore, it helps us to understand
the effect of the unknown transition probabilities on the stability. Then, based on the proposed
stability criterion, the condition for the controller design is derived in terms of LMIs. Finally,
numerical examples are given to illustrate the effectiveness of the proposed method.

Notation

In this paper, R
n and R

n×m denote the n-dimensional Euclidean space and the set of all
n × m real matrices, respectively. Z

+ represents the set of positive integers. The notation
P > 0 (P ≥ 0) means that P is a real symmetric and positive definite (semipositive-
definite) matrix. For notation (Ω,F,P), Ω represents the sample space, F is the σ-algebra
of subsets of the sample space, and P is the probability measure on F. E{·} stands for the
mathematical expectation. Matrices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.

2. Problem Formulation

Consider the following stochastic system with Markovian jump parameters:

ẋ(t) = A(rt)x(t) + B(rt)u(t), (2.1)

where x(t) ∈ R
n is the state vector, x0 denotes initial condition, and {rt}, t ≥ 0 is a right-

continuous Markov process on the probability space taking values in a finite state space S =
{1, 2, . . . ,N} with generator Λ = {πij}, i, j ∈ S, given by

Pr
{
rt+Δ = j | rt = i

}
=

⎧
⎨

⎩

πijΔ + o(Δ), i /= j,

1 + πijΔ + o(Δ), i = j,
(2.2)

where Δ > 0, limΔ→ 0 o(Δ)/Δ = 0, and πij ≥ 0, for i /= j, is the transition rate from mode i at
time t to mode j at time t+Δ, and πii = −∑N

j=1,i /= j πij . A(rt) are known matrix functions of the
Markov process.

Since the transition probability depends on the transition rates for the continuous-time
MJSs, the transition rates of the jumping process are considered to be partly accessible in this
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paper. For instance, the transition rate matrix Λ for system (2.1) with N operation modes
may be expressed as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

π11 ? π13 · · · ?

? ? ? · · · π2N

...
...

...
. . .

...

? πN2 πN3 · · · πNN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.3)

where “?” represents the unknown transition rate.
For notational clarity, for all i ∈ S, we denote S = S

i
k
∪ S

i
uk

with S
i
k

� {j : πij is known
for j ∈ S} and S

i
uk

� {j : πij is unknown for j ∈ S}.
Moreover, if S

i
k /= ∅, it is further described as

S
i
k =

{
ki

1, k
i
2, . . . , k

i
m

}
, (2.4)

where m is a nonnegative integer with 1 ≤ m ≤ N and ki
j ∈ Z

+, 1 ≤ ki
j ≤ N, j = 1, 2, . . . , m

represent the jth known element of the set S
i
k

in the ith row of the transition rate matrix Λ.
For the underlying systems, the following definitions will be adopted in the rest of this

paper. More details refer to [2].

Definition 2.1. The system (2.1) with u(t) = 0 is said to be stochastically stable if the following
inequality holds

E

{∫∞

0
‖x(t)‖2dt | x0, r0

}
< ∞, (2.5)

for every initial condition x0 ∈ R
n and r0 ∈ S.

To this end, we introduce the following result on the stability analysis of systems (2.1).

Lemma 2.2 (see [2]). The system (2.1)with u(t) = 0 is stochastically stable if and only if there exists
a set of symmetric and positive-definite matrices Pi, i ∈ S, satisfying

AT
i Pi + PiAi +

N∑

j=1

πijPj < 0. (2.6)

Remark 2.3. Since the unknown transition rates may have infinitely admissible values, it is
impossible to be directly used the inequalities of Lemma 2.2 to test the stability of the system.

3. Stochastic Stability Analysis

In this section, a stochastic stability criterion for MJSs is given without any additional weight-
ing matrix.
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Theorem 3.1. The system (2.1) with a partly unknown transition rate matrix (2.3) and u(t) = 0
is stochastically stable if there exist matrices Pi > 0, such that the following LMIs are feasible for
i = 1, 2, . . . ,N.

If i /∈ S
i
k,

PiAi +AT
i Pi + Pi

k − πi
kPi < 0, (3.1)

Pi − Pj ≥ 0, ∀j ∈ S
i
uk, j /= i. (3.2)

If i ∈ S
i
k
,

PiAi +AT
i Pi + Pi

k − πi
kPj < 0, ∀j ∈ S

i
uk, (3.3)

where Pi
k
=

∑
j∈S

i
k
πijPj and πi

k
=

∑
j∈S

i
k
πij .

Proof. Based on Lemma 2.2, we know that the system (2.1) with u(t) = 0 is stochastically
stable if (2.6) holds. Now we prove that (3.1)–(3.3) guarantee that (2.6) holds by the following
two cases.

Case I (i /∈ S
i
k
). In this case, (2.6) can be rewritten as

Φi � PiAi +AT
i Pi + Pi

k
+ πiiPi +

∑

j∈S
i
uk
,j /= i

πijPj < 0. (3.4)

Note that in this case
∑

j∈S
i
uk
,j /= i πij = −πii − πi

k and πij ≥ 0, j ∈ S
i
uk, j /= i; then from (3.2), we

have

Φi ≤ PiAi +AT
i Pi + Pi

k + πiiPi +
∑

j∈S
i
uk
,j /= i

πijPi

= PiAi +AT
i Pi + Pi

k + πiiPi +
(
−πii − πi

k

)
Pi

= PiAi +AT
i Pi + Pi

k − πi
kPi.

(3.5)

Therefore, if i /∈ S
i
k
, inequalities (3.1) and (3.2) imply that (2.6) holds.

Case II (i ∈ S
i
k). Note that in this case −πi

k =
∑

j∈S
i
uk
πij and πij ≥ 0, j ∈ S

i
uk. So, if −πi

k = 0, then
we must have S

i
uk

= ∅. Therefore, (2.6) becomes

PiAi +AT
i Pi + Pi

k < 0, (3.6)

which is equivalent to (3.3) noticing −πi
k
= 0.
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Else, if −πi
k /= 0, then we must have −πi

k > 0. Then, (2.6) can be rewritten as

∑

j∈S
i
uk

πij

{(
PiAi +AT

i Pi + Pi
k

)

−πi
k

+ Pj

}

< 0. (3.7)

Obviously, (3.3) implies that (3.7) holds. Then, if i /∈ S
i
k
, (3.3) implies that (2.6) holds.

Therefore, if LMIs (3.1)–(3.3) hold, we conclude that system (2.1) is stochastically
stable according to Lemma 2.2. The proof is completed.

Theorem 3.1 proposed in this paper does not introduce any free variable. It involves
Nn(n + 1)/2 variables, while Theorem 3.3 in [10] involves Nn(n + 1) variables. Namely,
the number of variables in this paper is only half of [10]. Generally, reducing the number
of decision variables easily results in increasing conservatism of stability criteria. However,
Theorem 3.1 in this paper does not increase conservatism while with less variables. To show
this, we rewrite it as follows.

Theorem 3.2 (see [10]). The system (2.1) with partly unknown transition rate matrix (2.3) and
u(t) = 0 is stochastically stable if there exist matrices Pi > 0,Wi = WT

i , such that the following LMIs
are feasible for i = 1, 2, . . . ,N,

PiAi +AT
i Pi +

∑

j∈S
i
k

πij

(
Pj −Wi

)
< 0, (3.8)

Pj −Wi ≤ 0, j ∈ S
i
uk, j /= i, (3.9)

Pj −Wi ≥ 0, j ∈ S
i
uk, j = i. (3.10)

Now we have the following conclusion.

Theorem 3.3. Suppose for system (2.1) with partly unknown transition rate matrix (2.3) there exist
Pi > 0 and Wi = WT

i , i = 1, 2, . . . ,N, such that (3.8)–(3.10) hold; then the matrices Pi > 0,
i = 1, 2, . . . ,N, satisfy (3.1)–(3.3).

Proof. If i /∈ S
i
k
, (3.9)–(3.10) imply that (3.2) and the following inequality hold:

Pi � Wi. (3.11)

From (3.11) and (3.8), we can obtain (3.1).
If i ∈ S

i
k, (3.9) and (3.10) guarantee that

Pj −Wi ≤ 0, j ∈ S
i
uk. (3.12)
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In addition, under this circumstance, we have

∑

j∈S
i
k

πij ≤ 0. (3.13)

Then, From (3.12), (3.13), and (3.8), we obtain that (3.3) holds. The proof is completed.

Remark 3.4. The stability condition in [10] and that in Theorem 3.1 are derived via different
techniques. Now Theorem 3.3 proves that the former can be simplified to the latter without
increasing any conservatism. More importantly, because Theorem 3.1 of this paper does
not involve any slack matrix, the relationships among Lyapunov matrices are highlighted.
Therefore, it is clearer how the unknown transition probabilities affect on the stability.

4. State-Feedback Stabilization

In this section, the stabilization problem of system (2.1) with control input u(t) is considered.
The mode-dependent controller with the following form is designed:

u(t) = K(rt)x(t), (4.1)

where K(rt) for all rt ∈ S are the controller gains to be determined. In the following, for given
rt = i ∈ S, K(rt) = Ki.

Using (4.1), the system (2.1) is represented as

ẋ(t) = [A(rt) + B(rt)K(rt)]x(t). (4.2)

The following theorem is proposed to design the mode-dependent stabilizing controller with
the form (4.1) for system (2.1).

Theorem 4.1. The closed-loop system (4.2) with a partly unknown transition rate matrix (2.3) is
stochastically stable if, there exist matrices Qi > 0 and Yi, i = 1, 2, . . . ,N such that the following
LMIs are feasible for i = 1, 2, . . . ,N.

If i /∈ S
i
k
,

[
Ξi − πi

k
Qi Π1i

∗ −Ψ1i

]

< 0, (4.3)

[−Qi Qi

∗ −Qj

]

≤ 0, ∀j ∈ S
i
uk&j /= i. (4.4)
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If i ∈ S
i
k,

⎡

⎢
⎢
⎣

Ξi + πiiQi Π2i

√(−πi
k

)
Qi

∗ −Ψ2i 0

∗ ∗ −Qj

⎤

⎥
⎥
⎦ < 0, ∀j ∈ S

i
uk, (4.5)

where

Ξi = AiQi +QiA
T
i + BiYi + YT

i B
T
i ,

Π1i =
[√

πiki
1
Qi

√
πiki

2
Qi · · · √

πiki
m
Qi

]
,

Ψ1i = diag
{
Qki

1
, Qki

2
, . . . , Qki

m

}
,

Π2i =
[√

πiki
1
Qi · · · √

πiki
l−1
Qi

√
πiki

l+1
Qi · · · √

πiki
m
Qi

]
,

Ψ2i = diag
{
Qki

1
, . . . , Qki

l−1
, Qki

l+1
, . . . , Qki

m

}
,

(4.6)

with ki
1, k

i
2, . . . , k

i
m described in (2.4) and ki

l
= i.

Moreover, if (4.3)–(4.5) are true, the stabilization controller gains from (4.1) are given by

Ki = YiQ
−1
i . (4.7)

Proof. It is clear that the system (4.2) is stable if the following conditions are satisfied.
If i /∈ S

i
k,

Pi(Ai + BiKi) + (Ai + BiKi)TPi + Pi
k − πi

kPi < 0, (4.8)

Pj − Pi ≤ 0, ∀j ∈ S
i
uk, j /= i. (4.9)

If i ∈ S
i
k,

Pi(Ai + BiKi) + (Ai + BiKi)TPi + Pi
k
− πi

k
Pj < 0, ∀j ∈ S

i
uk
. (4.10)

Pre- and postmultiply the left sides of (4.8)–(4.10) by P−1
i , respectively, and introduce the

following new variables:

Qi = P−1
i , Yi = KiP

−1
i . (4.11)

Then, inequalities (4.8)–(4.10) are equivalent to the following matrix inequalities, respec-
tively.
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If i /∈ S
i
k,

Ξi − πi
kQi + Π1iΨ−1

1i Π
T
1i < 0, (4.12)

QiPjQi −Qi ≤ 0, ∀j ∈ S
i
uk, j /= i. (4.13)

If i ∈ S
i
k
,

Ξi + πiiQi + Πi2Ψ−1
2i Π

T
i2 +

(−πi
k

)
QiPjQi < 0, ∀j ∈ S

i
uk
. (4.14)

By applying Schur complement, inequalities (4.12)–(4.14) are equivalent to LMIs (4.3)–(4.5),
respectively.

Therefore, if LMIs (4.3)–(4.5) hold, the closed-loop system (4.2) is stochastically stable
according to Theorem 3.1. Then, system (2.1) can be stabilized with the state feedback con-
troller (4.1), and the desired controller gains are given by (4.7). The proof is completed.

Remark 4.2. The number of variables involved in Theorem 4.1 in this paper is also Nn(n+1)/2
less than that in the corresponding result of [10]. Furthermore, it can be seen that no
conservativeness is introduced when deriving Theorem 4.1 from Theorem 3.1. Therefore, the
stabilization method presented in Theorem 4.1 is not more conservative than that of [10], too.

5. Numerical Example

In this section, an example is provided to illustrate the effectiveness of our results.
Consider the following MJSs, which borrowed from [10] with small modifications,

A1 =

[
32 −7.30

1.48 0.81

]

, A2 =

[
0.89 −3.11

1.48 0.21

]

,

A3 =

[−0.11 −0.85

2.31 −0.10

]

, A4 =

[−0.17 −1.48

1.59 −0.27

]

,

B1 =

[
0.57

1.23

]

, B2 =

[
0.78

−0.49

]

,

B3 =

[
1.34

0.39

]

, B4 =

[−0.38

1.07

]

.

(5.1)

The partly transition rate matrix Λ is considered as

Λ =

⎡

⎢⎢⎢⎢⎢
⎣

−1.3 − a 0.2 ? ?

? ? 0.3 0.3

0.6 ? −1.5 ?

0.4 ? ? ?

⎤

⎥⎥⎥⎥⎥
⎦
, (5.2)
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Figure 1: State response of the open-loop system with 1000 random samplings.

where the parameter a in matrix Λ can take different values for extensive comparison pur-
pose.

We consider the stabilization of this system corresponding to different a by using
different approaches. Considering the precision of comparison, we let a increase starting
from 0 with a very small constant increment 0.01. Using the LMI toolbox in MATLAB, both
the LMIs in Theorem 5 of [10] and the ones in Theorem 4.1 of this paper are feasible for all
a = 0, 0.01, . . . , 1.64, and are infeasible when a increases to 1.65. It can be seen that for this
example the stabilization method in our paper is not conservative than that in [10].

Now by some simulation results, we further show the effectiveness of the stabilization
method of this paper. For example, when a = 1.64, in our method, the controller gains are
obtained as

K1 =
[−15143 5252

]
, K2 =

[−873700 392930
]
,

K3 =
[−1086.6 −290.8

]
, K4 =

[
440620 −300480

]
.

(5.3)

Figure 1 is the state response cures in 1000 random sampling with initial condition
x0 = [1 − 1]T when u(t) = 0. In each random sampling, the transition rate matrix is randomly
generated but satisfies the partly transition rate matrix Λ in (5.2). Figure 1 shows that the
open-loop system is unstable.

Applying the controllers in (5.3), the trajectory simulation of state response for the
closed-loop system with 1000 random sampling is shown in Figure 2 under the given initial
condition x0 = [1 − 1]T . In this case, the transition rate matrix is also randomly generated
but satisfies the partly transition rate matrix Λ in (5.2). Figure 2 shows that the stabilizing
controller effectively keeps the running reliability of the system.

6. Conclusions

This paper has considered the problem of stability and stabilization of a class continuous-time
MJSs with unknown transition rates. A new stability criterion has been proposed. The merit
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Figure 2: State response of the closed-loop system with 1000 random samplings.

of the proposed criterion is that it has less decision variables without increasing conservatism
comparing those in the literature to date. Then, the mode-dependent state feedback controller
designing method has been proposed, which possess the same merit as the stability criterion.
Numerical examples have been given to illustrate the effectiveness of the results in this paper.
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