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This paper provides a new delay-dependent stabilization criterion for systems with two additive time-varying delays. The novel
functional is constructed, a tighter upper bound of the derivative of the Lyapunov functional is obtained. These results have
advantages over some existing ones because the combination of the delay decomposition technique and the reciprocally convex
approach. Two examples are provided to demonstrate the less conservatism and effectiveness of the results in this paper.

1. Introduction

As is well known, delay systems are frequently encountered
in various practical systems, such as engineering systems,
biology, economics, and neural networks [1–8]. So, the past
decades have witnessed extensive research on time delays
in the literature including stability analysis, stabilization
H∞ controllers design, robust filtering analysis, and model
reduction or simplification [9–15].

Recently, a new model of system with two additive
time-varying delay components was proposed in [16]. This
model has a strong application background in remote control
and networked control. Take a state-feedback networked
control, for example. Since the physical plant, controller,
sensor, and actuator are located at different places, signals
are transmitted from one device to another. Thus time delays
will appear. Among those delays there are two network-
induced ones, one from sensor to controller and the other
from controller to actuator. With the two delays considered,
the closed-loop system will appear with two additive time
delays in the state. Because of the network transmission
conditions, the two delays are generally time-varying with
different properties.Therefore it is of significance to consider
stability for systems with two additive time-varying delay
components. The stability analysis was addressed in [16],
and a delay-dependent stability criterion was obtained; it

was further improved in [17], where a marginally delayed
state was exploited to construct Lyapunov functional and
more free weightingmatrices were introduced to estimate the
upper bound of the derivative of the Lyapunov functional.
However, that leaves much room for improvement on the
stability criteria in [16, 17]. In [18], a new Lyapunov functional
is constructed to derive new condition for the two additive
time-varying delay systems. This paper makes full use of and
any useful terms in the calculation of the time derivative. It
is seen that 𝑑

1
(𝑡), 𝑑(𝑡) − 𝑑

1
(𝑡), and ℎ − 𝑑(𝑡) are not simply

enlarged as ℎ
1
, ℎ − ℎ

1
, and ℎ, respectively. Instead, the

relationship of𝑑
1
(𝑡)+(ℎ

1
−𝑑
1
(𝑡)) = ℎ

1
, (ℎ−𝑑(𝑡))+(𝑑(𝑡)−𝑑

1
(𝑡))

−(ℎ
1
−𝑑
1
(𝑡)) = ℎ−ℎ

1
, and 𝑑(𝑡) + (ℎ−𝑑(𝑡)) = ℎ is considered.

The stability conditions are in form of many linear matrix
inequalities in this paper. However, many LMIs caused by
a integral representation may bring conservative. Reference
[19] presents a less conservative result for stability analysis of
continuous-time systems with additive delay by constructing
a new Lyapunov-Krasovskii functional and utilizing free
matrix variables in approximating certain integral quadratic
terms in obtaining the stability condition in terms of linear
matrix inequalities. However, it is easy to see that the stability
criteria for the given delay bound 𝜏

2
are good while for the

given delay bound 𝜏
1
are undesirable, compared to some

other recent paper. The stabilization for systems with two
additive time-varying delays is studied by [20].Different from
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[17], the terms 𝑑
1
(𝑡)𝑁(𝑍

1
+ 𝑍
2
)
−1
𝑁
𝑇, (ℎ
1
− 𝑑
1
(𝑡))𝑇𝑍

−1

1
𝑇
𝑇,

𝑑
2
(𝑡)𝑀𝑍

−1

2
𝑀
𝑇, and (ℎ−𝑑(𝑡))𝑆𝑍

−1

2
𝑆
𝑇 are not enlarged roughly

but kept as they are and handled using the convex polyhedron
method.This paper is less conservative than [16, 17].However,
similar to [18], many LMIs may also cause conservativeness.
Combining with a reciprocally convex combination tech-
nique, the new stability condition is obtained [21]. Different
from [16, 17, 19], the information about 𝑑(𝑡), 𝑑

1
(𝑡), and 𝑑

2
(𝑡)

is fully considered in the constructed Lyapunov functional.
So far, [21] has presented the best results for delay-dependent
stability analysis for delay systems with two additive time-
varying delays. In fact, the results provided by [21] are also
conservative to some extent, whichmotivates the study of this
paper.

In this paper, the problem of stabilization analysis for
continuous-time systems with two additive time-varying
delay components is investigated. Firstly, with the idea of
delay decomposition, by considering the independence and
the variation of two additive time-varying delay compo-
nents, a new class of Lyapunov functionals is constructed.
Combining with a tighter estimation of the derivative of the
Lyapunov functional and a reciprocally convex combination
technique [22], new delay-dependent stability criteria with
less conservatism are derived in terms of linear matrix
inequalities (LMIs). Secondly, based on the obtained stability
conditions, with the new introduced positive scalar, the
controller is designed for the control systems. Finally, two
numerical examples are also given to show the effectiveness
and the improvement of the proposed method.

Notation 1. Throughout this paper, a real symmetric matrix
𝑃 > 0 (≥0) denotes 𝑃 as being a positive definite (positive
semidefinite) matrix. 𝐼 is used to denote an identity matrix
with proper dimension. Matrices, if not explicitly stated,
are assumed to have compatible dimensions. The symmetric
terms in a symmetric matrix are denoted by .

2. Problem Statement

Consider the following time-delay system with two additive
time-varying delays:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑑
1
(𝑡) − 𝑑

2
(𝑡)) + 𝐷𝑢 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝑢(𝑡) ∈ 𝑅

𝑚 is the control
input which is arranged as 𝑢(𝑡) = 𝐾𝑥(𝑡). 𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵 ∈ 𝑅
𝑛×𝑛,

𝐷 ∈ 𝑅
𝑛×𝑚, and 𝐾 ∈ 𝑅

𝑚×𝑛 are constant matrices, and 𝜙(𝑡) is
the initial condition function.The time delays 𝑑

1
(𝑡) and 𝑑

2
(𝑡)

are time-varying differentiable functions that satisfy

0 ≤ 𝑑
1
(𝑡) ≤ 𝑑

1
, 0 ≤ 𝑑

2
(𝑡) ≤ 𝑑

2
, (2)

0 ≤
̇

𝑑
1
(𝑡) ≤ 𝜇

1
< ∞, 0 ≤

̇
𝑑
2
(𝑡) ≤ 𝜇

2
< ∞, (3)

where 𝑑
1
, 𝑑
2
and 𝜇

1
, 𝜇
2
are constants. Naturally, we denote

𝑑 (𝑡) = 𝑑
1
(𝑡) + 𝑑

2
(𝑡) , 𝑑 = 𝑑

1
+ 𝑑
2
, 𝜇 = 𝜇

1
+ 𝜇
2
.

(4)

In fact, system (1) belongs to a special class of systemswith
single delay:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝑢 (𝑡) , (5)
where 𝑑(𝑡) satisfies 0 ≤ 𝑑(𝑡) ≤ 𝑑 and ̇𝜏(𝑡) ≤ 𝜇. And when
𝐷 = 0, the system (5) becomes

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑑 (𝑡)) . (6)
Our purpose of this paper is to study the stabilization for

system (1), and the stability of (6) is firstly studied.
To end this section, we introduce the following lemmas,

which will play an important role in the proof of the main
results.

Lemma 1 (see [2]). For any constant matrix 𝑀 ∈ 𝑅
𝑛×𝑛

, 𝑀 =

𝑀
𝑇

> 0, and scalar 𝛾 > 0, the vector function 𝜔 : [−𝑟, 0] →

𝑅
𝑛 such that the integrations concerned are well defined; then

𝛾∫

0

−𝛾

𝜔
𝑇
(𝛽)𝑀𝜔 (𝛽) 𝑑𝛽 ≥ (∫

0

−𝛾

𝜔 (𝛽) 𝑑𝛽)

𝑇

× 𝑀(∫

0

−𝛾

𝜔 (𝛽) 𝑑𝛽) .

(7)

Lemma 2 (see [22]). Let 𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
: 𝑅
𝑚

→ 𝑅 have
positive values in an open subsetD of R𝑚.Then, the reciprocally
convex combination of 𝑓

𝑖
over D satisfies

min
{𝛼𝑖|𝛼𝑖>0, ∑𝑖 𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max
𝑔𝑖,𝑗(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗

(𝑡) (8)

subject to

{𝑔
𝑖,𝑗

: 𝑅
𝑚

→ 𝑅, 𝑔
𝑗,𝑖

(𝑡) ≡ 𝑔
𝑖,𝑗

(𝑡) , (

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗

(𝑡) 𝑓
𝑖
(𝑡)

) ≥ 0} .

(9)
Our purpose of this paper is to study the stabilization for

system (1), and the stability of (6) is firstly studied.

3. Main Results

3.1. Stability Analysis

Theorem 3. System (6) with delays 𝑑
1
(𝑡) and 𝑑

2
(𝑡) satisfying

(2) and (3) is asymptotically stable if there exist matrices 𝑃 =

𝑃
𝑇
> 0, 𝑍

𝑖
= 𝑍
𝑇

𝑖
> 0 (𝑖 = 1, 2, 3), 𝑊

𝑖
= 𝑊
𝑇

𝑖
> 0 (𝑖 = 1, 2, 3),

𝑄
11
, 𝑄
12
, 𝑄
22
, 𝑅
11
, 𝑅
12
, 𝑅
22
, 𝑆
𝑖𝑗
(𝑗 ≥ 𝑖, 𝑖 = 1, 2, 3, 4, 𝑗 ≤ 4),

and 𝑇
12
, 𝑇
13
, 𝑇
23
such that

Σ = (

Φ Ψ

 −𝑀
) < 0, (10)

𝑆 = (

𝑆
11

𝑆
12

𝑆
13

𝑆
14

𝑆
𝑇

12
𝑆
22

𝑆
23

𝑆
24

𝑆
𝑇

13
𝑆
𝑇

23
𝑆
33

𝑆
34

𝑆
𝑇

14
𝑆
𝑇

24
𝑆
𝑇

34
𝑆
44

) > 0, (11)

Γ = (

𝑊
2

𝑇
12

𝑇
13

𝑇
𝑇

12
𝑊
2

𝑇
23

𝑇
𝑇

13
𝑇
𝑇

23
𝑊
2

) ≥ 0, (12)
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whereΦ ∈ 𝑅
12×12 and Ψ ∈ 𝑅

12×1 are block matrices, such as
Φ
11

= 𝑆
11

+ 𝑆
11

− 2𝑊
1
− 2𝑊
3
− 2𝑊
5

+ 𝑍
1
+ 𝑍
2
+ 𝑍
3
+ 𝑃𝐴 + 𝐴

𝑇
𝑃,

Φ
12

= 𝑆
12

+ 2𝑊
1
, Φ

16
= 𝑆
14

+ 2𝑊
3
,

Φ
18

= 𝑃𝐵, Φ
1,10

= 𝑆
13

+ 2𝑊
5
,

Ψ
11

= 𝐴
𝑇
𝑀, Φ

22
= 𝑆
22

− 4𝑊
1
,

Φ
24

= 2𝑊
1
, Φ

26
= 𝑆
24
,

Φ
2,10

= 𝑆
23
, Φ

33
= − (1 − 𝜇

1
) 𝑍
1
,

Φ
44

= −2𝑊
1
− 𝑊
2
, Φ

47
= 𝑇
12

− 𝑇
13
,

Φ
48

= 𝑊
2
− 𝑇
12
, Φ

49
= 𝑇
13
,

Φ
55

= −𝑆
22

−

2𝑑𝑊
3

𝑑
1

−

2𝑑𝑊
3

𝑑
2

, Φ
56

=

2𝑑𝑊
3

𝑑
1

− 𝑆
𝑇

12
,

Φ
59

=

2𝑑𝑊
3

𝑑
2

− 𝑆
24
, Φ

5,12
= −𝑆
23
,

Φ
66

= 𝑆
44

− 𝑆
11

− 2𝑊
3
−

2𝑑𝑊
3

𝑑
1

, Φ
69

= −𝑆
14
,

Φ
6,10

= 𝑆
𝑇

34
, Φ

6,12
= −𝑆
13
,

Φ
77

= 𝑇
23

− 2 ∗ 𝑊
2
+ 𝑇
𝑇

23
+ (𝑢
1
− 1)𝑍

3
,

Φ
78

= 𝑊
2
− 𝑇
𝑇

12
+ 𝑇
𝑇

13
− 𝑇
𝑇

23
, Φ

79
= 𝑊
2
− 𝑇
23
,

Φ
88

= 𝑇
12

− 2𝑊
2
+ 𝑇
𝑇

12
+ (𝑢 − 1)𝑍

2
, Φ

89
= 𝑇
23

− 𝑇
13
,

Ψ
8,1

= 𝐵
𝑇
𝑀, Φ

99
= −𝑆
44

− 𝑊
2
− 2𝑊
4
−

2𝑑𝑊
3

𝑑
2

,

Φ
9,12

= 2𝑊
4
− 𝑆
𝑇

34
, Φ

10,10
= 𝑆
33

− 4𝑊
5
,

Φ
10,11

= 2𝑊
5
, Φ

11,11
= −2𝑊

4
− 2𝑊
5
,

Φ
11,12

= 2𝑊
4
, Φ

12,12
= −𝑆
33

− 4𝑊
4
,

𝑀 = 𝑑
2

1
𝑊
1
+ 𝑑
2

2
𝑊
2
+ 𝑑
2
𝑊
3
+ 𝑑
2

1
𝑊
4
+ 𝑑
2

2
𝑊
5
,

(13)

and the rest of the items of (10) are all zero.

Proof. Construct a Lyapunov functional candidate as

𝑉 (𝑥 (𝑡)) =

6

∑

𝑖=1

𝑉
𝑖
(𝑥 (𝑡)) , (14)

where

𝑉
1
(𝑥 (𝑡)) = 𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥 (𝑡)) = ∫

𝑡

𝑡−𝑑1(𝑡)

𝑥
𝑇
(𝑠) 𝑍
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇
(𝑠) 𝑍
2
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑2−𝑑1(𝑡)

𝑥
𝑇
(𝑠) 𝑍
3
𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑥 (𝑡)) = ∫

𝑡

𝑡−𝑑/2

(

(

(

(

𝑥(𝑠)

𝑥(𝑠 −

𝑑
1

2

)

𝑥(𝑠 −

𝑑
2

2

)

𝑥(𝑠 −

𝑑

2

)

)

)

)

)

𝑇

× 𝑆

(

(

(

(

𝑥(𝑠)

𝑥(𝑠 −

𝑑
1

2

)

𝑥(𝑠 −

𝑑
2

2

)

𝑥(𝑠 −

𝑑

2

)

)

)

)

)

𝑑𝑠,

𝑉
4
(𝑥 (𝑡)) = ∫

0

−𝑑1

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
1
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝑑1

−𝑑

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
2
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝑑

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑑𝑊

3
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝑑2

−𝑑

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
4
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝑑2

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
5
�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

(15)
𝑃,𝑍
1
, 𝑍
2
, 𝑍
3
,𝑊
1
,𝑊
2
,𝑊
3
,𝑊
4
,𝑊
5
, and 𝑆

𝑖𝑗
(𝑗 ≥ 𝑖, 𝑖 = 1, 2, 3,

4, 𝑗 ≤ 4) are matrices with appropriate dimensions to be de-
termined.

The time derivative of 𝑉(𝑥(𝑡)) along the trajectory of
system (6) is given by

�̇�
1
(𝑥 (𝑡)) = 2𝑥

𝑇
(𝑡) 𝑃�̇� (𝑡)

= 𝑥
𝑇
(𝑡) (𝑃𝐴 + 𝐴

𝑇
𝑃) 𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡) 𝑃𝐵𝑥 (𝑡 − 𝑑 (𝑡)) ,

(16)

�̇�
2
(𝑥 (𝑡)) = 𝑥

𝑇
(𝑡) (𝑍

1
+ 𝑍
2
+ 𝑍
3
) 𝑥 (𝑡)

− (1 − 𝜇
1
) 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡))

× 𝑍
1
𝑥 (𝑡 − 𝑑

1
(𝑡))

− (1 − 𝜇) 𝑥
𝑇
(𝑡 − 𝑑 (𝑡))

× 𝑍
2
𝑥 (𝑡 − 𝑑 (𝑡))

− (1 − 𝜇
1
) 𝑥
𝑇
(𝑡 − 𝑑

2
− 𝑑
1
(𝑡))

× 𝑍
3
𝑥 (𝑡 − 𝑑

2
− 𝑑
1
(𝑡)) ,

(17)
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�̇�
3
(𝑥 (𝑡)) =

(

(

(

(

𝑥(𝑡)

𝑥(𝑡 −

𝑑
1

2

)

𝑥(𝑡 −

𝑑
2

2

)

𝑥(𝑡 −

𝑑

2

)

)

)

)

)

𝑇

𝑆

(

(

(

(

𝑥(𝑡)

𝑥 (𝑡 −

𝑑
1

2

)

𝑥(𝑡 −

𝑑
2

2

)

𝑥(𝑡 −

𝑑

2

)

)

)

)

)

−

(

(

(

(

𝑥(𝑡 −

𝑑

2

)

𝑥(𝑡 −

𝑑 + 𝑑
1

2

)

𝑥(𝑡 −

𝑑 + 𝑑
2

2

)

𝑥 (𝑡 − 𝑑)

)

)

)

)

𝑇

× 𝑆

(

(

(

(

𝑥(𝑡 −

𝑑

2

)

𝑥(𝑡 −

𝑑 + 𝑑
1

2

)

𝑥(𝑡 −

𝑑 + 𝑑
2

2

)

𝑥 (𝑡 − 𝑑)

)

)

)

)

,

(18)

�̇�
4
(𝑥 (𝑡)) = − ∫

𝑡

𝑡−𝑑1

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
1
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝑑1

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑𝑊

3
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝑑2

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
4
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝑑2

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
5
�̇� (𝑠) 𝑑𝑠

+ �̇�
𝑇
(𝑡)𝑀�̇� (𝑡) .

(19)

With the delay-partitioning approach and by Lemma 1,
one can obtain that

− ∫

𝑡

𝑡−𝑑1

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
1
�̇� (𝑠) 𝑑𝑠

= −2∫

𝑡

𝑡−𝑑1/2

�̇�
𝑇
(𝑠)

𝑑
1

2

𝑊
1
�̇� (𝑠) 𝑑𝑠

− 2∫

𝑡−𝑑1/2

𝑡−𝑑1

�̇�
𝑇
(𝑠)

𝑑
1

2

𝑊
1
�̇� (𝑠) 𝑑𝑠

≤ −2(∫

𝑡

𝑡−𝑑1/2

�̇� (𝑠) 𝑑𝑠)

𝑇

𝑊
1
(∫

𝑡

𝑡−𝑑1/2

�̇� (𝑠) 𝑑𝑠)

− 2(∫

𝑡−𝑑1/2

𝑡−𝑑1

�̇� (𝑠) 𝑑𝑠)

𝑇

𝑊
1
(∫

𝑡−𝑑1/2

𝑡−𝑑1

�̇� (𝑠) 𝑑𝑠)

= −2[𝑥(𝑡 −

𝑑
1

2

) − 𝑥 (𝑡 − 𝑑
1
)]

𝑇

×𝑊
1
[𝑥(𝑡 −

𝑑
1

2

) − 𝑥 (𝑡 − 𝑑
1
)]

− 2[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑
1

2

)]

𝑇

𝑊
1
[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑
1

2

)] ,

(20)

− ∫

𝑡−𝑑1

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
2
�̇� (𝑠) 𝑑𝑠

= −∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝑑(𝑡)

𝑡−𝑑2−𝑑1(𝑡)

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝑑2−𝑑1(𝑡)

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
2
�̇� (𝑠) 𝑑𝑠.

(21)

Now one can note that

𝑑 (𝑡) − 𝑑
1

𝑑
2

+

𝑑
2
− 𝑑
2
(𝑡)

𝑑
2

+

𝑑
2
− 𝑑
2
(𝑡)

𝑑
2

= 1. (22)

From Lemma 2 and (12) in Theorem 3, (21) can be given
as follow

− ∫

𝑡−𝑑1

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
2
�̇� (𝑠) 𝑑𝑠

≤ −(

𝑥(𝑡 − 𝑑
1
) − 𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
2
− 𝑑
1
(𝑡))

𝑥 (𝑡 − 𝑑
2
− 𝑑
1
(𝑡)) − 𝑥 (𝑡 − 𝑑)

)

𝑇

× Γ × (

𝑥 (𝑡 − 𝑑
1
) − 𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
2
− 𝑑
1
(𝑡))

𝑥 (𝑡 − 𝑑
2
− 𝑑
1
(𝑡)) − 𝑥 (𝑡 − 𝑑)

) .

(23)

Following a similar line as in the computation of −∫

𝑡

𝑡−𝑑1

�̇�
𝑇
(𝑠)

𝑑
1
𝑊
1
�̇�(𝑠)𝑑𝑠 in (20), we can obtain

− ∫

𝑡

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑𝑊

3
�̇� (𝑠) 𝑑𝑠 = −2∫

𝑡

𝑡−𝑑/2

�̇�
𝑇
(𝑠)

𝑑

2

𝑊
3
�̇� (𝑠) 𝑑𝑠

− 2∫

𝑡−𝑑/2

𝑡−(𝑑+𝑑1)/2

�̇�
𝑇
(𝑠) 𝑑𝑊

3
�̇� (𝑠) 𝑑𝑠

− 2∫

𝑡−(𝑑+𝑑1)/2

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑𝑊

3
�̇� (𝑠) 𝑑𝑠

≤ −2[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑

2

)]

𝑇

𝑊
3
[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑

2

)]

− 2

𝑑

𝑑
1

[𝑥(𝑡 −

𝑑

2

) − 𝑥(𝑡 −

𝑑 + 𝑑
1

2

)]

𝑇
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× 𝑊
3
× [𝑥(𝑡 −

𝑑

2

) − 𝑥(𝑡 −

𝑑 + 𝑑
1

2

)]

− 2

𝑑

𝑑
2

[𝑥(𝑡 −

𝑑 + 𝑑
1

2

) − 𝑥 (𝑡 − 𝑑)]

𝑇

× 𝑊
3
× [𝑥(𝑡 −

𝑑 + 𝑑
1

2

) − 𝑥 (𝑡 − 𝑑)] ,

(24)

− ∫

𝑡−𝑑2

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
4
�̇� (𝑠) 𝑑𝑠

= −∫

𝑡−𝑑2

𝑡−(𝑑+𝑑2)/2

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
4
�̇� (𝑠) 𝑑𝑠

− 2∫

𝑡−(𝑑+𝑑2)/2

𝑡−𝑑

�̇�
𝑇
(𝑠) 𝑑
1
𝑊
4
�̇� (𝑠) 𝑑𝑠

≤ −2[𝑥 (𝑡 − 𝑑
2
) − 𝑥(𝑡 −

𝑑 + 𝑑
2

2

)]

𝑇

× 𝑊
4
× [𝑥 (𝑡 − 𝑑

2
) − 𝑥(𝑡 −

𝑑 + 𝑑
2

2

)]

− 2[𝑥(𝑡 −

𝑑 + 𝑑
2

2

) − 𝑥 (𝑡 − 𝑑)]

𝑇

× 𝑊
4
× [𝑥(𝑡 −

𝑑 + 𝑑
2

2

) − 𝑥 (𝑡 − 𝑑)] ,

(25)

− ∫

𝑡

𝑡−𝑑2

�̇�
𝑇
(𝑠) 𝑑
2
𝑊
5
�̇� (𝑠) 𝑑𝑠

= −2∫

𝑡

𝑡−𝑑2/2

�̇�
𝑇
(𝑠)

𝑑
2

2

𝑊
5
�̇� (𝑠) 𝑑𝑠

− 2∫

𝑡−𝑑2/2

𝑡−𝑑2

�̇�
𝑇
(𝑠)

𝑑
2

2

𝑊
5
�̇� (𝑠) 𝑑𝑠

≤ −2(∫

𝑡

𝑡−𝑑2/2

�̇� (𝑠) 𝑑𝑠)

𝑇

𝑊
5
(∫

𝑡

𝑡−𝑑2/2

�̇� (𝑠) 𝑑𝑠)

− 2(∫

𝑡−𝑑2/2

𝑡−𝑑2

�̇� (𝑠) 𝑑𝑠)

𝑇

𝑊
5
(∫

𝑡−𝑑2/2

𝑡−𝑑2

�̇� (𝑠) 𝑑𝑠)

= −2[𝑥(𝑡 −

𝑑
2

2

) − 𝑥 (𝑡 − 𝑑
2
)]

𝑇

× 𝑊
5
[𝑥(𝑡 −

𝑑
2

2

) − 𝑥 (𝑡 − 𝑑
2
)]

− 2[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑
2

2

)]

𝑇

𝑊
5
[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑
2

2

)] .

(26)

Hence, according to (16)–(26), we can obtain

�̇� (𝑥 (𝑡)) ≤ 𝜉
𝑇
(𝑡) Φ𝜉 (𝑡) + �̇�

𝑇
(𝑡)𝑀�̇� (𝑡) , (27)

where

𝜉
𝑇
(𝑡) = [𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡 −

𝑑
1

2

)

× 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡)) 𝑥
𝑇
(𝑡 − 𝑑

1
)

× 𝑥
𝑇
(𝑡 −

𝑑 + 𝑑
1

2

) 𝑥
𝑇
(𝑡 −

𝑑

2

)

× 𝑥
𝑇
(𝑡 − 𝑑

2
− 𝑑
1
(𝑡)) 𝑥
𝑇
(𝑡 − 𝑑 (𝑡))

× 𝑥
𝑇
(𝑡 − 𝑑) 𝑥

𝑇
(𝑡 −

𝑑
2

2

)

× 𝑥
𝑇
(𝑡 − 𝑑

2
) 𝑥
𝑇
(𝑡 −

𝑑 + 𝑑
2

2

)] ,

(28)

𝑀 = 𝑑
2

1
𝑊
1
+ 𝑑
2

2
𝑊
2
+ 𝑑
2
𝑊
3
+ 𝑑
2

1
𝑊
4
+ 𝑑
2

2
𝑊
5
. (29)

Inequality (27), which by the Schur complement on (10),
is equivalent to

�̇� (𝑥 (𝑡)) < 0. (30)

Then we have �̇�(𝑥(𝑡)) < −𝜆|𝑥
2
(𝑡)| for a sufficiently small

positive constant 𝜆, which means that system (6) with two
additive time-varying delays 𝑑

1
(𝑡) and 𝑑

2
(𝑡) satisfying (2)

and (3) is asymptotically stable. Accordingly, the proof is
completed.

Remark 4. In this paper, the information about 𝑑(𝑡), 𝑑
1
(𝑡),

𝑑
2
(𝑡), and𝑑

2
+𝑑
1
(𝑡) is fully considered in Lyapunov functional

(14). Not only that, but we also consider the information of
𝑑/2, 𝑑

1
/2, 𝑑
2
/2, (𝑑 + 𝑑

1
)/2, and (𝑑 + 𝑑

2
)/2. So the Lyapunov

functional in our paper is more general than the existing
paper, and the stability criteria in our paper may be more
applicable and less conservative.

Remark 5. It is noted that the delay decomposition is very
important to improve the delay-dependent stability results.
For example, this novel term 𝑉

3
(𝑥(𝑡)) is introduced in

our Lyapunov functional. Furthermore, some techniques in
the process of the computation for the derivative of the
constructed Lyapunov functionals also play an important
role in reducing conservativeness of our results. So, for
example, −∫

𝑡

𝑡−𝑑1

�̇�
𝑇
(𝑠)𝑑
1
𝑊
1
�̇�(𝑠)𝑑𝑠 is equivalently converted

to two parts in (20), which is in concert with the derivative of
the 𝑉
3
(𝑥(𝑡)), Because it would guarantee the quadratic term

of 𝑥(𝑡 − 𝑑
1
/2) is negative in the derivative of 𝑉(𝑥(𝑡)) for the

system. And there are similar settlements in other places.

Remark 6. The reciprocally convex combination lemma is
important to increase the upper bound of time delay,
although it brings many free matrices which may increase
the complexity of the computation. It can be shown in the
example. With the approach, it neither extends directly the
𝑑
1
(𝑡) nor the 𝑑

2
(𝑡) and 𝑑(𝑡) to its upper bound or lower

bound; thus, it would reduce the conservatism. In this paper,
it just transfers the term −∫

𝑡−𝑑1

𝑡−𝑑
�̇�
𝑇
(𝑠)𝑑
2
𝑊
2
�̇�(𝑠)𝑑𝑠 to (23).
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It is worthwhile to note that convex polyhedral method may
bring more conservativeness compared to the reciprocally
convex method, because it always generates more than one
conditions, which result in many matrices used again and
again.

3.2. Controller Design. The approach of Theorem 3 can be
used as a useful tool for the stabilization problem of system
(1) with 𝑢(𝑡) = 𝐾𝑥(𝑡). Now we are in a position to design the
controller by convex optimization approach.

Theorem 7. System (1) with 𝑢(𝑡) = 𝐾𝑥(𝑡) and two additive
time-varying delays 𝑑

1
(𝑡) and 𝑑

2
(𝑡) satisfying (2) and (3) is

asymptotically stable if there exist matrices 𝑃 = 𝑃

𝑇

> 0, 𝑍
𝑖
=

𝑍

𝑇

𝑖
> 0 (𝑖 = 1, 2, 3), 𝑊

𝑖
= 𝑊

𝑇

𝑖
> 0 (𝑖 = 1, 2, . . . , 5), 𝑆

𝑖𝑗
(𝑗 ≥

𝑖, 𝑖 = 1, 2, 3, 4, 𝑗 ≤ 4), 𝑇
12
, 𝑇
13
, 𝑇
23
, and a scalar 𝜆 > 0, such

that

Σ =
(

(

(

Φ 𝑌 𝑌 𝑌 𝑌 𝑌

 Ω
1

0 0 0 0

  Ω
2

0 0 0

   Ω
3

0 0

    Ω
4

0

     Ω
5

)

)

)

< 0, (31)

𝑆 = (

𝑆
11

𝑆
12

𝑆
13

𝑆
14

𝑆

𝑇

12
𝑆
22

𝑆
23

𝑆
24

𝑆

𝑇

13
𝑆

𝑇

23
𝑆
33

𝑆
34

𝑆

𝑇

14
𝑆

𝑇

24
𝑆

𝑇

34
𝑆
44

) > 0, (32)

Γ = (

𝑊
2

𝑇
12

𝑇
13

𝑇

𝑇

12
𝑊
2

𝑇
23

𝑇

𝑇

13
𝑇

𝑇

23
𝑊
2

) ≥ 0, (33)

Ω
1
= 𝑑
−2

1
(

1

𝜆
2
𝑊
1
−

2

𝜆

𝑃) ,

Ω
2
= 𝑑
−2

2
(

1

𝜆
2
𝑊
2
−

2

𝜆

𝑃) ,

Ω
3
= 𝑑
−2

(

1

𝜆
2
𝑊
3
−

2

𝜆

𝑃) ,

Ω
4
= 𝑑
−2

1
(

1

𝜆
2
𝑊
4
−

2

𝜆

𝑃) ,

Ω
5
= 𝑑
−2

2
(

1

𝜆
2
𝑊
5
−

2

𝜆

𝑃) ,

(34)

whereΦ ∈ 𝑅
12×12 and Ψ ∈ 𝑅

12×1 are block matrices, such as

Φ
11

= 𝑆
11

+ 𝑆
11

− 2𝑊
1
− 2𝑊

3
− 2𝑊

5
+ 𝑍
1

+ 𝑍
2
+ 𝑍
3
+ 𝐿𝐴 + 𝐴

𝑇
𝐿 + 𝑃𝐴 + 𝐴

𝑇
𝑃,

Φ
12

= 𝑆
12

+ 2𝑊
1
, Φ

16
= 𝑆
14

+ 2𝑊
3
,

Φ
18

= 𝐵𝑃, Φ
1,10

= 𝑆
13

+ 2𝑊
5
,

Φ
22

= 𝑆
22

− 4𝑊
1
, Φ

24
= 2𝑊

1
,

Φ
26

= 𝑆
24
, Φ

2,10
= 𝑆
23
,

Φ
33

= − (1 − 𝜇
1
) 𝑍
1
, Φ

44
= −2𝑊

1
− 𝑊
2
,

Φ
47

= 𝑇
12

− 𝑇
13
, Φ

48
= 𝑊
2
− 𝑇
12
,

Φ
49

= 𝑇
13
, Φ

55
= −𝑆
22

−

2𝑑𝑊
3

𝑑
1

−

2𝑑𝑊
3

𝑑
2

,

Φ
56

=

2𝑑𝑊
3

𝑑
1

− 𝑆

𝑇

12
, Φ

59
=

2𝑑𝑊
3

𝑑
2

− 𝑆
24
,

Φ
5,12

= −𝑆
23
, Φ

66
= 𝑆
44

− 𝑆
11

− 2𝑊
3
−

2𝑑𝑊
3

𝑑
1

,

Φ
69

= −𝑆
14
, Φ

6,10
= 𝑆

𝑇

34
,

Φ
6,12

= −𝑆
13
, Φ

77
= 𝑇
23

− 2𝑊
2
+ 𝑇

𝑇

23
+ (𝑢
1
− 1)𝑍

3
,

Φ
78

= 𝑊
2
− 𝑇

𝑇

12
+ 𝑇

𝑇

13
− 𝑇

𝑇

23
, Φ

79
= 𝑊
2
− 𝑇
23
,

Φ
88

= 𝑇
12

− 2𝑊
2
+ 𝑇

𝑇

12
+ (𝑢 − 1)𝑍

2
, Φ

89
= 𝑇
23

− 𝑇
13
,

Φ
99

= −𝑆
44

− 𝑊
2
− 2𝑊

4
−

2𝑑𝑊
3

𝑑
2

, Φ
9,12

= 2𝑊
4
− 𝑆

𝑇

34
,

Φ
10,10

= 𝑆
33

− 4𝑊
5
, Φ

10,11
= 2𝑊

5
,

Φ
11,11

= −2𝑊
4
− 2𝑊

5
, Φ

11,12
= 2𝑊

4
,

Φ
12,12

= −𝑆
33

− 4𝑊
4
,

𝑌 = (𝐴𝑃 + 𝐷𝐿 0 0 0 0 0 0 𝐵𝑃 0 0 0 0)

𝑇

,

(35)

and the rest of the items of (31) are all zero.
Furthermore, a desired controller gain matrix is given by

𝐾 = 𝐿(𝑃)

−1

. (36)

Proof. When the controller 𝑢(𝑡) = 𝐾𝑥(𝑡), then the closed-
loop system (1) is formulated as follows:

�̇� (𝑡) = (𝐴 + 𝐷𝐾) 𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑑
1
(𝑡) − 𝑑

2
(𝑡)) . (37)

Replace 𝐴 with (𝐴 + 𝐷𝐾) in Theorem 3, and use the Schur
complement, (10) can be expressed as

Φ + 𝑌
1
𝑀𝑌
𝑇

1
< 0 (38)

with 𝑌
1

= (𝐴 + 𝐷𝐾 0 0 0 0 0 0 𝐵 0 0 0 0)

𝑇. Let
block diagonal matrices 𝐽

1
= diag{𝑃−1, 𝑃−1, . . . , 𝑃−1} with 12

dimensions, 𝐽
2

= diag{𝑃−1, 𝑃−1, 𝑃−1}, and 𝐽
3

= diag{𝑃−1 ,
𝑃
−1
}. And 𝑃 = 𝑃

−1, 𝑍
𝑖

= 𝑃
−1
𝑍
𝑖
𝑃
−1

(𝑖 = 1, 2, 3), 𝑊
𝑖

=

𝑃
−1
𝑊
𝑖
𝑃
−1

(𝑖 = 1, 2, 3), 𝑄
11

= 𝑃
−1
𝑄
11
𝑃
−1, 𝑄
12

= 𝑃
−1
𝑄
12
𝑃
−1,

𝑄
22

= 𝑃
−1
𝑄
22
𝑃
−1, 𝑅
11

= 𝑃
−1
𝑅
11
𝑃
−1, 𝑅
12

= 𝑃
−1
𝑅
12
𝑃
−1,

𝑅
22

= 𝑃
−1
𝑅
22
𝑃
−1, 𝑆
𝑖𝑗
= 𝑃
−1
𝑆
𝑖𝑗
𝑃
−1

(𝑗 > 𝑖, 𝑖 = 1, 2, 3, 4, 𝑗 ≤ 4),
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and 𝑇
𝑖𝑗

= 𝑃
−1
𝑇
𝑖𝑗
𝑃
−1

(𝑗 > 𝑖, 𝑖 = 1, 2, 𝑗 ≤ 3). With these
notations and (36) in mind, performing a congruence trans-
formation to (38) and (11)-(12) by 𝐽

1
, 𝐽
2
, and 𝐽

3
, respectively,

and by Schur complements, one can get

(

(

Φ 𝑌 𝑌 𝑌 𝑌 𝑌

 Ω
1

0 0 0 0

  Ω
2

0 0 0

   Ω
3

0 0

    Ω
4

0

     Ω
5

)

)

< 0, (39)

𝑆 =
(

(

𝑆
11

𝑆
12

𝑆
13

𝑆
14

𝑆

𝑇

12
𝑆
22

𝑆
23

𝑆
24

𝑆

𝑇

13
𝑆

𝑇

23
𝑆
33

𝑆
34

𝑆

𝑇

14
𝑆

𝑇

24
𝑆

𝑇

34
𝑆
44

)

)

> 0, (40)

Γ = (

𝑊
2

𝑇
12

𝑇
13

𝑇

𝑇

12
𝑊
2

𝑇
23

𝑇

𝑇

13
𝑇

𝑇

23
𝑊
2

) ≥ 0, (41)

with

Ω
1
= −𝑑
−2

1
𝑃

−1

𝑊

−1

1
𝑃

−1

, Ω
2
= −𝑑
−2

2
𝑃

−1

𝑊

−1

2
𝑃

−1

,

Ω
3
= −𝑑
−2
𝑃

−1

𝑊

−1

3
𝑃

−1

, Ω
4
= −𝑑
−2

1
𝑃

−1

𝑊

−1

4
𝑃

−1

,

Ω
5
= −𝑑
−2

2
𝑃

−1

𝑊

−1

5
𝑃

−1

,

(42)

where Φ and 𝑌 are defined in Theorem 3. Noting that there
exists a positive number 𝜆 such that

(𝜆𝑃 − 𝑊
𝑖
)𝑊

−1

𝑖
(𝜆𝑃 − 𝑊

𝑖
) ≥ 0 (𝑖 = 1, 2, 3) , (43)

it is easy to see that

−𝑃𝑊

−1

𝑖
𝑃 ≤ −

2

𝜆

𝑃 +

1

𝜆
2
𝑊
𝑖

(𝑖 = 1, 2, 3) . (44)

Therefore, (31)–(33) hold if (10)–(12) hold. The proof is
completed.

Remark 8. It is very important to introduce a positive scalar
𝜆 to the effectiveness of Theorem 7. It is high load for −𝑃 to
stabilize the five positive definite matrices𝑊

𝑖
(𝑖 = 1, 2, . . . , 5)

stabilized in (39). Therefore, 𝜆 could play an important role
in adjusting the computation of LMIs inTheorem 7.

4. Numerical Examples

In order to show the reduced conservatism and the effective-
ness of the approaches presented in this paper, in this section,
two numerical examples are provided.

Example 9 (see [21]). Consider the delayed system (6) with

𝐴 = (

−2 0

0 −0.9
) , 𝐵 = (

−1 0

−1 −1
) ,

̇
𝑑
1
(𝑡) ≤ 0.1,

̇
𝑑
2
(𝑡) ≤ 0.8.

(45)

We intend to find the upper bound 𝑑
2
of 𝑑
2
(𝑡) when 𝑑

1
is

known and the upper bound 𝑑
1
of 𝑑
1
(𝑡) when 𝑑

2
is known,

below which the system is asymptotically stable; see Table 1.
From Table 2, it is easy to see that our proposed stability

criterion gives a less conservative result than the one in [16–
21], when 𝑑

2
is known, however, our condition is only less

conservative than [16–20] when the 𝑑
1
gets bigger and bigger,

such as 𝑑
1

= 1.2 and 𝑑
1

= 1.5. So, this leaves much room
for improvement on the stability conditions of dynamical
systems with two additive time-varying delays. This should
be a goal of future studies.

Example 10 (see [21]). Consider the dynamical system (5)
with

𝐴 = (

2 0

0 0.9
) , 𝐵 = (

−1 0

−1 −1
) , 𝐷 = (

1 −2

−1.2 0.8
) ,

̇
𝑑
1
(𝑡) ≤ 0.1,

̇
𝑑
2
(𝑡) ≤ 0.8.

(46)

If we set 𝑑
1

= 1, 𝑑
2

= 5.334, and 𝜆 = 1/500, it is clear to
see that the systems cannot be stable without the controller.
However, with the controller, the dynamical systemswith two
additive time-varying delays can be stabilized. By computing
in the MATLAB, we can obtain some matrices as

𝑃 = (

1.7347 −0.7745

−0.7745 1.7318
) , 𝐿 = (

3.8075 7.2104

7.9126 2.8749
) ,

𝐾 = 𝐿𝑃

−1

= (

5.0657 6.4292

6.6260 4.6236
) ,

𝑊
1
=(

0.0068 −0.0031

−0.0031 0.0068
) , 𝑊

2
=(

0.0033 −0.0027

−0.0027 0.0040
) ,

𝑊
3
=(

0.0022 −0.0022

−0.0022 0.0029
) , 𝑊

4
=(

0.0068 −0.0031

−0.0031 0.0068
) ,

𝑊
5
=(

0.0033 −0.0026

−0.0026 0.0040
) , 𝑍

1
=(

0.7096 −0.0646

−0.0646 0.3778
) ,

𝑍
2
=(

6.7190 −0.1826

−0.1826 2.3906
) , 𝑍

3
=(

0.7016 −0.0470

−0.0470 0.3539
) .

(47)

This example shows again that our approach is effective for
the stabilization for the control system with two additive
time-varying delays.

5. Conclusion

In this paper, we study the problem of stabilization for delay
system with two additive time-varying delays. First of all,
the less conservative delay-dependent stability conditions
are given by constructing a new Lyapunov functional based
on the ideal of delay decomposition, combining the anal-
ysis technique of inequalities with the reciprocally convex
approach. And then, the controller of the closed-loop system
is designed by the transformation technique of inequalities.
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Table 1: The maximal allowable bounds of 𝑑
1
when 𝑑

2
is known.

Method 𝑑
1

1 1.2 1.5
[16] 𝑑

2
0.415 0.376 0.248

[17] 𝑑
2

0.512 0.406 0.283
[18] 𝑑

2
0.872 0.672 0.371

[19] 𝑑
2

0.5188 0.4528 0.3777
[20] 𝑑

2
0.8731 0.6766 0.4529

[21] 𝑑
2

0.983 0.849 0.671
Theorem 3 𝑑

2
0.8731 0.6883 0.5381

Table 2: The maximal allowable bounds of 𝑑
2
when 𝑑

1
is known.

Method 𝑑
2

0.1 0.2 0.3
[16] 𝑑

1
2.263 1.696 1.324

[17] 𝑑
1

2.300 1.779 1.453
[18] 𝑑

1
1.770 1.672 1.571

[19] 𝑑
1

2.9182 2.3304 1.8324
[20] 𝑑

1
2.5583 2.1003 1.8083

[21] 𝑑
1

3.057 2.647 2.329
Theorem 3 𝑑

1
4.334 3.248 2.450

Finally, two examples are analyzed to show the less conser-
vative than some existing results and the effectiveness of our
approach provided in this paper.
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