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Recent years have shown a gradual shift in the content of biomedical publications that is freely accessible, from titles and abstracts
to full text. This has enabled new forms of automatic text analysis and has given rise to some interesting questions: How informative
is the abstract compared to the full-text? What important information in the full-text is not present in the abstract? What should
a good summary contain that is not already in the abstract? Do authors and peers see an article differently? We answer these
questions by comparing the information content of the abstract to that in citances—sentences containing citations to that article.
We contrast the important points of an article as judged by its authors versus as seen by peers. Focusing on the area of molecular
interactions, we perform manual and automatic analysis, and we find that the set of all citances to a target article not only covers
most information (entities, functions, experimental methods, and other biological concepts) found in its abstract, but also contains
20% more concepts. We further present a detailed summary of the differences across information types, and we examine the effects
other citations and time have on the content of citances.

1. Introduction

Text mining research in biosciences is concerned with how
to extract biologically interesting information from journal
articles and other written documents. To date, much of
biomedical text processing has been performed on titles,
abstracts, and other metadata available for journal articles
in PubMed1, as opposed to using full text. While the advan-
tages of full text compared to abstracts have been widely
recognized [1–5], until relatively recently, full text was rarely
available online, and intellectual property constraints remain
even to the present day. These latter constraints are loosening
as open access (OA) publications are gaining popularity
and online full text is gradually becoming the norm. This
trend started in October 2006, when the Wellcome Trust2, a
major UK funding body, changed the conditions of grants,
requiring that “research papers partly or wholly funded
by the Wellcome Trust must be made freely accessible via
PubMed Central3 (PMC) (or UK PubMed Central once
established) as soon as possible, and in any event no later
than six months after publication” [6]. Canadian Institutes

of Health Research followed, as did the National Institute of
Health (NIH) in the USA in April 2008.4 Moreover, many
publishers founded and promoted OA initiatives, namely,
BioMed Central5 (BMC) and the Public Library of Science6

(PLoS). PubMed now offers access to all OA publications via
PMC. The availability of OA publications has allowed several
recent text mining and information retrieval competitions
turning to use full-text corpora, for example, BioCreAtIvE
since 2004, the TREC Genomics Track since 2006, and the
BioNLP shared task since 2011.

The rise of full text, which differs in length (both overall
length and average sentence length), structure (e.g., use of
parenthesized text, tables, and figures), and content from
abstracts, has posed many new challenges for biomedical
text processing, for example, standard tools like part-of-
speech and gene mention taggers were found to perform
much worse on article bodies than on abstracts [7]. The
availability of full text has further opened up some more
general interrelated questions.

(1) How informative is the abstract compared to the full
text?
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(2) What important information in the full text does not
appear in the abstract?7

(3) What should an ideal summary of the full text contain
that is not already in the abstract?

(4) What are the differences in the way authors and peers
see an article?

We explore these questions indirectly, using an under-
explored information source: the sentences containing the
citations to a target article or citances. While cocitation
analysis is commonly-used for determining the popularity,
and by association, the importance of a publication [8–15],
our focus here is on the contents of the sentences containing
the citations, that is, the citances.

In particular, we compare the information content of the
abstract of a biomedical journal article to the information
in all citances that cite that article, thus contrasting the
important points about it as judged by its authors versus
as seen by peer researchers over the years following its
publication. Put another way, we use citances as an indirect
way to access important information in the full text8. The
idea is that (1) any information not mentioned in the abstract
but referred to in citances should be coming from the full
text, and (2) entities and concepts mentioned in a citance
should be important and somewhat representative of their
source.

To give an example, here is the abstract of an article
(PubMed ID 11346650):

Multiple Mechanisms Regulate Subcellular Local-
ization of Human CDC6.

CDC6 is a protein essential for DNA replication,
the expression and abundance of which are cell
cycle-regulated in Saccharomyces cerevisiae. We
have demonstrated previously that the subcellu-
lar localization of the human CDC6 homolog,
HsCDC6, is cell cycle-dependent: nuclear during
G(1) phase and cytoplasmic during S phase.
Here we demonstrate that endogenous HsCDC6
is phosphorylated during the G(1)/S transition.
The N-terminal region contains putative cyclin-
dependent kinase phosphorylation sites adjoin-
ing nuclear localization sequences (NLSs) and
a cyclin-docking motif, whereas the C-terminal
region contains a nuclear export signal (NES).
In addition, we show that the observed regu-
lated subcellular localization depends on phos-
phorylation status, NLS, and NES. When the
four putative substrate sites (serines 45, 54,
74, and 106) for cyclin-dependent kinases are
mutated to alanines, the resulting HsCDC6A4
protein is localized predominantly to the nucleus.
This localization depends upon two functional
NLSs, because expression of HsCDC6 containing
mutations in the two putative NLSs results in
predominantly cytoplasmic distribution. Further-
more, mutation of the four serines to phosphate-
mimicking aspartates (HsCDC6D4) results in

strictly cytoplasmic localization. This cytoplasmic
localization depends upon the C-terminal NES.
Together these results demonstrate that HsCDC6
is phosphorylated at the G(1)/S phase of the
cell cycle and that the phosphorylation status
determines the subcellular localization.

And here are some citances pointing to it:

Much of the soluble Cdc6 protein, however, is
translocated from the nucleus to the cytoplasm
when CDKs are activated in late G1 phase,
thus preventing it from further interaction with
replication origins [#C, #C and #TC].

To ensure that the pre-RC will not re-form in S
or G2, Cdc6p is phosphorylated and degraded in
yeast (#C; #C; #C) or exported to the cytoplasm in
higher organisms (#TC; #C; #C; #C; #C).

It is phosphorylated by cyclin A-cdk2 at the G1-
S transition and this modification causes some,
but not all, of the Cdc6 to be exported out of the
nucleus (#TC; #C; #C and #C).

Cdc6CyΔ has a mutation in a cyclin binding
motif that is an essential part of the substrate
recognition signal for cdks (#TC).

After entry into S phase, phosphorylation of
HsCdc6, probably by cyclinA/CDK2, leads to its
export from nucleus to the cytoplasm via NES
[#TC].

Once replication begins, Cdc6 is degraded in yeast
(#C, #C, #C, #C, #C), whereas for mammals it has
been suggested that Cdc6 is translocated out of the
nucleus during S phase in a cyclin A-Cdk2- and
phosphorylation-dependent manner (#C, #TC,
#C,-#C, #C) and then subject to degradation by
the anaphase-promoting complex (#C, #C, #C).

In the above examples, #TC refers to the publication
we are comparing against (the target citation: PubMed
ID 11346650), whereas #C refers to other publications.
Throughout this paper, we will refer to these citation
sentences to other publications as adjoining citations.

Previous studies have discussed some of the potential of
the use of citances for literature mining [16, 17]. Similar to
anchor text on the web (visible, clickable text in a webpage,
clicking on which navigates the user to another webpage),
they are votes of confidence about the importance of a
research article. Collectively, they also summarize the most
important points about the target article, which makes them
a potential surrogate for its full text [18] and an important
knowledge source when generating a survey of scientific
paradigms [19].

While previous work has focused on the words in
citances, we compare their contents to the contents of the
abstracts using coarse-grained biologically meaningful con-
cepts such as entities, functions, and experimental methods.
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Focusing on the area of molecular interactions, we perform
careful manual analysis, and we present detailed summary
of the differences across information types. We further study
the effects that other citations and temporal measures have
on the contents of citances. Finally, we verify these manual
results with a large-scale automatic analysis.

In the remainder of this paper, we first discuss related
work, then we describe our concept annotation scheme, we
perform manual and automatic analysis, and we summarize
the results, aggregating them over information types. Finally,
we discuss the findings and we point to some promising
directions for future work.

2. Related Work

In the bioscience literature, several studies focused on com-
paring the information structure of abstracts to that of full-
text. Schuemie et al. [4], building on work by Shaw [3],
looked into the density (the number of instances found
divided by the number of words) of MeSH terms and gene
names in different sections of full text articles. They found
that the density was highest in the abstract and lowest in the
Methods and the Discussion sections. They further found
that nearly twice as many biomedical concepts and nearly
four times as many gene names were mentioned in the full
text compared to the abstract. In a related study, Yu et al. [2]
compared abstracts and full text when retrieving synonyms
of gene and protein names and found more synonyms in the
former. A more comprehensive study on the structural and
content difference of abstracts versus full text can be found
in [7].

There has been extensive work on automatically gen-
erating an article abstract from full text, which studies
the relationship between sentences in full text to those
in abstracts [1, 5]. However, this work does not consider
citances.

A lot of work on citation analysis has focused on citation
links and counts, which have been used to determine the
relative importance of publications within a field and to
study the interaction between different fields [11–14, 20].
Today, this kind of analysis is at the core of a number of schol-
arly sites, including CiteSeerX9, DBLP10, Google Scholar11,
Microsoft Academic Search12, ACM Digital Library13, IEEE
Xplore14, ACL Anthology15, and ArnetMiner16, to mention
just a few. There have been also specialized research tools for
exploring citation networks, for example, [21].

In natural language processing (NLP), research has
focused in a different and arguably more interesting direc-
tion, using citations as an (additional) information source to
solve various text processing problems. The growing interest
in the research community on the topic culminated in 2009
in a specialized workshop on Text and Citation Analysis
for Scholarly Digital Libraries (collocated with the 2009
Conference on Empirical Methods on Natural Language
Processing17).

An early overview of this general research direction was
presented by White [16], who described three main lines of
research.

First, citation sentences can be categorized, for example,
as conceptual versus operational, organic versus perfunctory,
and so forth. For example, Teufel and Moens [22] identified
and classified citations in scientific articles and used them as
features for classifying noncitance sentences, for the purpose
of text summarization.

Second, context analysis is concerned with identifying
recurring terms in citances and using them to help solve
information retrieval tasks. For example, Nanba et al. [23]
used citances as features to help classify papers into topics.
Similarly, Bradshaw [24] indexed articles with the terms
in the citances that cite them. Mercer and Di Marco [25]
applied a similar idea to biomedical documents. Tbahriti
et al. [26] used paper cocitation as a similarity measure
when evaluating a biomedical information retrieval system.
Rosario and Hearst [27] demonstrated that using citances
to a publication can yield higher accuracy compared to
using other sentences for the problem of multiway relation
classification, applied to the identification of the interactions
between proteins in bioscience text. Similarly, Kolchinsky
et al. [28] improved protein-protein interaction extraction
using citation network features. Aljaber et al. [29] used
citances text as an additional input to improve document
clustering, and Aljaber et al. [30] used the text contained
in citances as an additional information source to improve
the assignment of Medical Subject Headings (MeSH) terms,
which are commonly-used in PubMed and other databases
administered by the National Library of Medicine.

The third line of research, according to White, is
concerned with citer motivation, that is, with identifying the
reason authors cite earlier work, and why some work is more
cited than other. Lehnert et al. [31] created a taxonomy
of 18 citation types, such as method, attribution, fact,
example, critisism, and built a system to classify citations in
these types. Similarly, Teufel et al. [32] annotated citation
sentences from computational linguistics papers according
to their rhetorical functions (e.g., contrast/comparison in
goals or methods, contrast/comparison in results, weakness
of cited approach, neutral description, etc.), and Teufel
et al. [33] and Teufel and Kan [34] described algorithms to
automatically assign such rhetorical functions.

Another informative early overview can be found in
Nakov et al. [17], who also proposed the use of citances
(they coined this neologism to refer to citation sentences)
for bioscience papers for various semantic processing tasks,
including summarization of target papers, synonym iden-
tification and disambiguation, and as a way to generate
candidate sentences for manual curation. They further
applied text paraphrase techniques to normalize the myriad
forms of expression of citances in order to determine which
of them express the same subsets of concepts. This last
objective was later facilitated by the work of Schwartz et
al. [35] using multiple sequence alignment and conditional
random fields with posterior decoding.

More importantly, Nakov et al. [17] proposed to use
citances as an information source for automatic sum-
marization of the scientific contributions of a research
publication, which is somewhat related to the idea of using
the information in hyperlinks to summarize the contents of
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a web page [36, 37]. This direction has been explored by a
number of researchers thereafter.

Schwartz and Hearst [38] hypothesized that in many
cases, as time goes by, citances can indicate the most
important contributions of a paper more accurately than its
original abstract.

Qazvinian and Radev [39] used citation summaries
and network analysis techniques to produce a summary of
the important contributions of a research paper. A related
technique for the same problem was proposed by Mei and
Zhai [40], who relied on language modeling techniques.
In a subsequent extension, Qazvinian and Radev [41] have
proposed a general framework to pick the sentence(s) from
a target paper that a citance in another paper is most likely
referring to.

More closely related to the present work, Elkiss et al. [18]
compared the information contained in the set of all citances
citing a given biomedical paper and the abstract for that
paper, using a lexical similarity metric called cohesion. They
found significant overlaps but also many differences since
citances focus on different aspects than abstracts.

Mohammad et al. [19] compared and contrasted the
usefulness of abstracts and of citances in automatically
generating a technical survey on a given topic from multiple
research papers from the ACL Anthology. They found that
while abstracts are undoubtedly useful, citances contain
important additional information. They further noted that
abstracts are author-biased and thus complementary to the
broader perspective inherent in citances.

There has been also work that goes in the opposite
direction: instead of trying to summarize a document using
the textual content of multiple citances to it, Wan et al. [42]
built a system that summarizes it using its full text in order to
provide the reader with a summary relevant to a given citance
in another document.

Hoang and Kan [20] introduced another interesting task:
automatic related work summarization. Given multiple arti-
cles (e.g., conference/journal papers) as input, they created
a topic-biased summary of related work that is specific to a
given target paper.

Citations, citances, and links between them are similar to
hyperlinks and hypertext on the web. Anchor text has been
used in most search engines for indexing and retrieval of web
pages. Applications of anchor text include identification of
home pages of people and companies [43], classification of
web pages [44, 45], Web crawlers [46], improved ranking of
search results [47], and web page summarization [36]. See
[24] for an overview of the uses of anchor text.

Our present work is more general and more quantitative
than that in the above publications. First, we do not restrict
ourselves to a particular application, while most work
above was limited to, for example, summarization. Second,
we study the degree of overlap between the information
contained in abstracts and citances from a biomedical
perspective focusing on molecular interactions and using
biomedically meaningful semantic units (rather than words)
such as entities, functions, dependencies, characteristics,
locations, species, time, experimental methods, chemicals,
and disorders. Third, we use and/or map our annotations to

MeSH18, a standardized hierarchical resource, thus allowing
for further comparisons and applications. Fourth, we study
the effect of time on the way papers are cited. We further
investigate the effect of the presence of adjoining citations.
Finally, we report the results from both small and focused
manual analysis and from large-scale automatic analysis.

3. Methods

We performed small-scale detailed manual analysis and
large-scale fully automatic comparison of the information
contained in citances and abstracts.

In the manual analysis, we considered 6 abstracts from
PubMed in the molecular interaction domain, published
during 1996–2002, and 136 citances to them, which we
carefully annotated with the mentions of entities, functions,
experimental methods, and other biological concepts. More
details about the dataset can be found in Table 1. We used
this dataset to compare the set of concepts that appear in the
abstract of an article to the set of concepts that appear in
the citances to that article. We also looked at the concepts
mentioned in the citances over a six-year period to study
changes over time.

In the automatic comparison, we analyzed 104 journal
publications in PubMed (this included the six articles used
for the manual analysis), again from the molecular interac-
tion domain, published during 1995–2002, which received a
total of 11,199 citances in the period 1995–2005. We anno-
tated the MeSH terms in the abstracts of these publications
and in the corresponding citances, and we mapped these
terms to broad biomedical concepts; then, we proceeded with
the manual analysis. MeSH is a comprehensive controlled
vocabulary created for the purpose of indexing journal
articles and cataloging books in the life sciences, and it is
commonly used for annotations in the biomedical domain.
We chose MeSH for our automatic annotations because it
is a formal established resource that has a relatively simple
structure, allowing for intuitive, pragmatic analysis.

3.1. Data Selection. Our goal was to find articles that are
highly cited and are in an area of biology that has attracted a
lot of text mining interest. The “Molecular Interaction Maps”
NIH website19 lists a number of annotations and references
for each interaction map that the site covers. We selected
104 target articles from the “Replication Interaction Maps”
collection and used the ISI citation service20 to find which
articles cite the targets. We downloaded them and used the
code developed by Nakov et al. [17] to extract the citances.
We further collected the abstracts and the full text as well as
the MeSH terms and the substances indexed by PubMed for
these articles. Six of the 104 articles were used for manual
analysis.

3.2. Manual Annotation. We performed detailed manual
analysis of the mentions of various biologically meaningful
concepts in the abstracts of the target six articles and in 136
citances to them. For one target article, we considered all 46
available (in our dataset) citances, and for another one, we
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Table 1: Summary of the data used for the manual analysis.

PubMed ID Of the target Year of publication
Number of sentences analyzed Number of annotations in Number of papers the

citances are derived fromAbstract Citances Abstract Citances

8939603 1996 17 51 192 728 27

11346650 2001 11 45 141 761 24

11125146 2000 8 10 91 144 10

11251070 2001 12 10 142 128 10

11298456 2001 9 10 146 178 9

11850621 2002 8 10 132 157 8

All 65 136 844 2096 88

selected a comparable number of 51 citances, whereas for
each of the remaining four articles, we analyzed 10 randomly
selected citances to ensure some variation. We annotated a
total of 844 concepts in the six abstracts and 2,096 in the 136
citances. See Table 1 for more detail.

The goal of the annotation was to represent as much of
the important contents of the citances as possible. Table 2
describes the different types of concepts we annotate, and
Figure 1 shows an example of an annotated citance.

Table 2 shows the categories for manual annotation.
All datasets used in this study were annotated manually
following a number of rules. Every unit (word or short
phrase) was assigned an ID, and any matching unit within
the same set was given the same ID. A few categories of
units were decided for each set; they were reflected in the
first part of the ID by a capital letter. The IDs, whenever
possible, were very simple: composed of a single letter and
a number. However, sometimes we tried to capture more
complex units, for example, if “Xenopus” = “S1”, “orc” = ”E1”
and “antibody” = “E10”, then “anti-Xorc1” = “E10.E1.S1.1”,
and if “DNA” = “H1” and “synthesis” = “F1”, then “DNA
synthesis” = “H1.F1” so “DNA” is given the IDs: “H1, H1.P1”
and “synthesis” is assigned “P1, H1.P1”. The last column
shows the corresponding MeSH IDs, which were used for the
automatic annotation.

We identified the distinct semantic units, words or
phrases, and we assigned them annotation IDs, which
had different prefixes (E, H, etc.) for different types of
information. We assigned suffixes for subtypes (e.g., E2), and
we represented complex concepts by combining IDs (e.g.,
E2.2). We used the same rules to annotate the citances (given
below).

Manual Annotation Rules

(1) Try to identify units (words or phrases) that convey
information in one of the annotation categories
(Table 2). Use words as annotation units, whenever
possible.

(2) Compare units by trying to match them to parts of
other citances within the set.

(3) If an entity (category E) is comprised of more than
one word, consider the words as one unit and assign
the same ID to each word.

(4) Try to group entities together (extending to protein
complexes and families) if used in the same context
throughout the citances for a target document. Use
subtypes when necessary to keep related concepts
similarly labeled (.a, .b, .c. . . or .1, .2, .3).

(5) If an entity is complex, use ”·” to join IDs, but
keep the main entity in the front. For example, if
Xenopus = S1, orc = E1 and antibody = E10, then
the annotation for anti−Xorc1 is E10.E1.S1.1 and for
Xorc2 is E1.S1.2.

(6) Annotate individual word units, but also consider
complex concepts (e.g., DNA replication). Similarly to
entities, capture concepts that are made of more than
one unit by concatenating their IDs with “·”.

(7) When annotating complex concepts, annotate each
unit of the concept with the unit’s ID followed by a
comma, followed by the concept ID.

(8) Consider opposite information units (e.g., compe-
tent-incompetent, increase-decrease). Capture these
in the IDs by adding “.o”.

(9) Consider subcategories of IDs by appending .a, .b,
. . . or .1, .2,. . . extensions if appropriate for the same
citance set, for example, prevent and inhibit.

3.3. Data Analysis. The annotations of the citances and
abstract sentences shown in Table 1 enabled us to run a
number of comparisons between the content of the abstract
and the corresponding citances, the outcomes of which are
presented in the next section.

In our automatic analysis, we relied on MeSH, the
U.S. National Library of Medicine’s controlled hierarchical
vocabulary. There are 15 main subtrees in MeSH, each
corresponding to a major branch of the biomedical ter-
minology, for example, subtree A corresponds to anatomy,
subtree B to organisms, subtree C to diseases, and so forth.
Down the MeSH hierarchy, concepts are assigned one or
more positional codes, for example, A (anatomy), A01
(body regions), A01.456 (head), A01.456.505 (face), and
A01.456.505.420 (eye). Note that MeSH is not a tree, but
a lattice, and thus multiple paths are possible for the same
concept, for example, eye is ambiguous, and it has one
additional code: A09.371 (A09 represents sense organs).
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Table 2: Categories used in the manual annotation.

Categories Description Examples MeSH Tree IDs

E (entities) Genes and proteins MCM, protein, ORC, Skp2 D06, D08, D12, and D23.529

F (function) Biological function or process Regulation, pathway, and function G, F01, F02

D (dependency) Relationship type Involve, cause N/A

X (characteristic) Modifier Unstable, common, and ionizing N/A

L (location) Cellular or molecular part C-terminal, cytosol, and motif A

S (species) Any taxonomic description Human, mammal, and S. cerevisiae B

T (time) Temporal information During, after, and following N/A

M (exp methods) Methods and their components Recombination, transfect E

H (chemicals) Not including genes/proteins DNA, thymidine, and phosphoryl
D (except: D06, D08, D12,

and D23.529)

R (disorders) Names and associated terms Cancer, tumor, and patient C, F03

Special Types:

IDs with subtypes Subtype of a BASIC type Retain-change, common-distinct

IDs with opposite Opposite of a BASIC type Cell cycle—G phase, CDK–CDK2

Complex IDs Combination of BASIC types Radio-resistant DNA synthesis

We used an in-house MeSH term recognizer and
normalizer tool, which we originally developed for our
participation in the first Genomics Track [48], but which
we significantly expanded thereafter. We used a version of
the tool developed for the Second BioCreAtIvE Challenge
[49]. The tool uses normalization rules in order to allow
for the following variations in form: (1) removal of white
space, for example, “BCL 2”⇒“BCL2,” (2) substitution of
nonalpha-numerical characters with a space, for example,
“BCL-2”⇒“BCL2,” and (3) concatenation of numbers to the
preceding token, for example, “BCL 2”⇒“BCL2.” All possible
normalizations and expansions of all known MeSH terms
and their synonyms were generated offline and then matched
against a normalized version of the input text using an
exact, first-longest-string-matching measure. The matches
were then mapped back to the original unnormalized text,
and the corresponding MeSH IDs were assigned.

Once the MeSH terms were identified, we considered
(1) the whole MeSH tree ID and (2) the MeSH tree tag
truncated to maximum 2 levels (xxx.xxx) in abstracts and
citances21. We performed automatic analysis and mapping
to identify different MeSH annotation groups (shown in
Figure 2) and their counts in abstracts, corresponding
citances, and their overlap. We also looked at annotations
in citances with 0 adjoining citations (whose contents
must have come from the target article) and how they
compare to the annotations in abstracts. Finally, we looked
at citances’ annotations appearing in the same year as the
original publication, as well as at additional/new annotations
appearing in the following year, and additional annotations
appearing 2, 3, and 4+ years later, and how they compare to
annotations from the abstracts.

3.4. Category Mapping. There are a few distinct annotation
categories in each manual and automatic schemata. However,

E1.6.4 D15 F6.0 H3 X6

F6 H2 E2.2 F6, L4.s.F6 L4.s, L4.s.F6

Cdc6A4 carries nonphosphorylatable alanines in place of the

photoacceptor serines at the cdk2 phosphorylation sites

Figure 1: Example of an annotated citance. The citance is for PMID
11346650, demonstrating different categories of annotation (e.g., E,
D; F; H. . .), subtypes (e.g., E1.64; L4.s; E2.2. . .), opposite concepts
(e.g., F6.o), and complex IDs (e.g., L4.s.F6).

for most categories of interest for the area of molecular
interactions, the semantic annotations overlap. We provide
the mapping in Figure 2.

4. Results

Here we describe the results of our manual and automatic
analysis, trying to answer the research questions posed in the
introduction. We further study the effect of the presence of
adjoining citances and of the passage of time.

4.1. Differences between Abstracts and Citances. In order to
examine the differences in the contents of abstracts and
citances, we compared the distributions of the ten categories
of concepts that we considered in the manual analysis (see
Table 2). Figure 3 shows these distributions (a) over abstracts
and (b) over citances. It further presents these distributions
(i) for all six articles, and (ii) for one article only, namely, the
one with PubMed ID 11346650.

In Figure 3, we can see that there are generally higher
proportions of “entities” and “experimental methods” anno-
tations in citances than in abstracts. The difference for
experimental methods was statistically significant for the two
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Anatomy Organisms Diseases Chemicals
Drugs

Chemicals
Entities

Experim.
Methods

Psyc.
Functions

Psyc.
Disorders

Processes
Functions

Educ./Soc.
Technology
Indus./Agr.

Humanities Information
Science

Named
Groups

Health
Care

Publication
Occup.

Anatomy

Organisms

Diseases

Chemicals-Entities

Experimental Methods

Processes-Functions

Humanities

Information Science

Named Groups

Health Care

Geographicals

Dependency

Characteristic
Time

[A]

[B]

[C]

[D]: 01-05, 09-10, 13, 20, 23 (not: 23.529)

[D]: 06, 08, 12, 23.529

[E]

[F]: 01-02

[F03]

[G], [F]: 01-02

[H]

[I]

[J]

[K]

[L]

[M]

[N]

[V]

[Z]

n/a (involve, cause...)

n/a (unstable, common, ionizing...)

n/a (during, after, following...)
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Figure 2: Semantic annotation groups. This figure depicts all different annotation types associated with abstract sentences and with citances.
The overlap and, where possible, the mapping of automatic and manual annotations categories are also shown. See also Table 2 for details
on the mapping of MeSH IDs to categories from the manual annotation.

larger sets, corresponding to PubMed IDs 11346650 and
8939603.

The top of Figures 4 and 5 use Venn diagrams to show
the overlap of unique (i.e., each ID was counted just
once regardless of how many times it actually occurred)
semantic annotations between abstracts and citances for the
large-scale automatic analysis. Figure 4 shows the overlap
over MeSH annotation categories that can be mapped (see
Figure 2) to the manually assigned annotations, that is, those
categories that were included in both the automatic and the
manual analysis, whereas Figure 5 presents the overlap over
annotation categories that were studied in the automatic but
not in the manual analysis.

We see that indeed the categories in Figure 4, which
we considered important for our dataset and used for the
manual annotation, have a lot more unique annotations than
the categories in Figure 5 that are largely less pertinent for
molecular interactions (see Figure 2 for more details on the
categories). We do see, however, that across all categories
in both figures, citances carry a lot more annotations than
abstracts with the overlap between the two being at least 50%
of the abstract’s unique annotations (with the exception of

psychological disorders, representing a very small portion of
the annotations). For most categories, the overlap is about
75–80%.

4.2. The Effect of Adjoining Citations and the Differences
between Abstracts and Citances. Looking more closely at the
data in Figure 3, we found that every annotation in our six
manually annotated abstracts could be found in at least one
citance. For the four articles for which we only consider 10
citances, we had to look for additional unannotated citances
to get complete coverage for some of the concepts.

The contrary, however, was not true: some concepts
found in citances were not mentioned in the abstract. Before
describing this point in detail, we would like to note that
very often in bioscience journal articles, a citation sentence
backs up its claims with more than one reference. As we
mentioned earlier, we call the references that appear in
addition to the target adjoining citations. Our analysis has
shown that citances containing adjoining citations are the
source of most of that extra information. Thus, we decided
to have a closer look at the clean cases of citances with zero
adjoining citations (referred to as “zero adjoining citations”
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Figure 3: Distribution (in %) of the manually annotated categories
for abstracts and citances. Shown are results for all abstracts and for
the one with PubMed ID 11346650.

or “cit 0” below), that is, those that cited our target article
only. Citances that refer to only one paper should really
contain information that can be found in the citing paper.

In the manual analysis, we examined 23 citances with no
adjoining citations, which corresponded to five of our target
papers, and we found 73 distinct annotation types in the
citances that did not appear in the abstracts. First, we checked
whether the annotations conveyed biological meaning; if not,
they were marked as “n/a.” Then we tried to find the extra
annotations in the full text of the targets, and we examined
the “MeSH/substances” that the target article was indexed
with in PubMed. After all these checks, a few annotations
were still “not found.” The distribution for each of the six
articles is shown in Table 3.

Table 3 and Figure 6 (manual evaluation) show that most
of the concepts that abstracts do not contain fall under the
entities or the experimental methods categories. Two others
were mentioned in figures of the full text paper (PMID:
11298456) as part of describing an experimental technique.
Two more were actually found in the full text (PMID:
8939603) as restriction enzymes, which are commonly
used in experiments to cut dsDNA. Some other distinct
annotation types missed by abstracts were also related to
Methods, for example, plasmid, which was annotated as a
chemical; in fact, plasmids are commonly-used in genetic
engineering as vectors.

Some other entities had subtypes (e.g., Wee1A) and
although the main type was matched in the full text, the
specific subtype was not. In the species category, a sentence
from cit 0 for the target PubMed ID 11251070 was referring
to the animal category, which was not mentioned in the
abstract. The full text mentioned eukaryotes and various

organisms, but it was indexed with the more general MeSH
term animals.

We further analyzed how adjoining citations affect the
number of distinct annotation types by grouping the citances
into five groups: cit 0, which cites the target paper only,
cit 1/cit 2/cit 3, with one/two/three adjoining citations, and
cit 4+, with four or more adjoining citations. In order to
compare the effect of the adjoining citation, we took the
abstract of each set (representing the minimum number
of distinct annotation types), and we added each of the
above groups separately as well as together (the abstract and
the citances representing the maximum number of distinct
annotation types). The results are shown in Table 4. We can
see that the more references a citance has, the more distinct
the annotation types that are introduced. The effect is most
clearly pronounced for the two papers with a larger set of
citances, those with PubMed IDs 8939603 and 1346650.

We also studied the effect of the adjoining citations in
the larger dataset, which we used for the automatic analysis.
Figure 4 shows the effect that adjoining citations have on
the semantic annotation content of citances. We can see that
“zero adjoining citances” contain much less annotations in
comparison to all citances, but the overlap of annotations
with the abstracts’ annotations are, proportionately, much
larger.

4.3. The Effect of Time. Next, we studied how the concepts
mentioned in the citances changed over time. For each target
article in our large dataset, we grouped the citances per year
of citation, from cited in the same year of publication to cited
up to 4+ years thereafter.

Our results (see Figure 7) show that with every year
passing, new annotations are being assigned to the target
paper via its citances. The majority of citances’ annotations
that overlap with abstracts’ annotations appear within the
first couple of years, but more are constantly added each
following year. This is quite uniform across all categories. It
would be of interest to conduct more in-depth analysis to
see if these new annotations are representative of the research
trends progression across the biomedical literature.

5. Discussion

In this section, we discuss the effect of the internal structure
of the sentences on our methodology. We further provide
a critical overview of our combination of manual and
automatic analysis. Finally, we discuss the significance of
our results and how they can be applied in a number of
areas aiming at improving literature-mining solutions for life
sciences research.

5.1. The Internal Structure of Citances. As we have seen
above, the relationship between citances and citations is
not always 1 : 1, for example, in some cases, a citance
would contain citations to multiple target articles. While
we acknowledged and analyzed the issue, we still treated
citances as atomic from the viewpoint of the target article(s),
assuming that the whole citance was commenting on it/them.
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Things are more complicated though: it is often the case
that only part of a citance is really relevant. This is
similar to HTML pages, where only part of a sentence
containing a hyperlink is actually included in the hyperlink.
Unfortunately, research publications, unless published in
some hyperlink-friendly format, do not use such precise
mechanisms for pointing out the relevant part of a citance.

Yet, authors of research articles do use citations that refer
to part of a citance, which poses interesting challenges to
research on citances. See [50] for an overview. Below we list
and illustrate three ways in which authors use references:

Type 1. Use separate citations for different parts of the
citance.
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Table 3: Comparison of the number of distinct annotation types in abstracts and citances with zero adjoining citations. We used all sentences
from the 6 abstracts and all 23 citances that were only citing one paper for this analysis.

PubMed ID Abstract Abstract and citances 0 Difference n/a In full text In MeSH or substances Not found

8939603 52 65 13 1 10 2

11346650 52 75 23 3 14 6

11251070 57 73 16 2 3 2 9

11298456 60 71 11 6 5

11850621 61 71 10 9 1

Total 282 355 73 6 42 2 25

Table 4: Number of citances with a different number of adjoining citations in each article and the number of distinct annotation types they
contain. These statistics are for the manual analysis. For the automatic analysis, see Figure 4 and the supplementary material.

PMID
Citance number Distinct annotation types (abstract and citances)

All cit. Cit 0 Cit 1 Cit 2 Cit 3 Cit 4+ All cit. Cit 0 Cit 1 Cit 2 Cit 3 Cit 4+

8939603 51 3 8 12 10 18 121 65 68 63 87 85

11346650 45 7 3 4 7 24 170 75 66 66 73 144

11125146 10 0 6 3 1 0 80 67 65 43

11251070 10 7 0 0 0 3 88 73 73

11298456 10 3 3 2 0 2 96 71 72 66 70

11850621 10 3 4 1 0 2 98 71 76 67 71

Total 136 23 24 22 18 49 653 355 349 327 203 443
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Figure 6: Categories of distinct manual annotation types not found
in abstracts.

Example. Subsequently, it has been observed that a similar
motif is present also in substrates like Cdc6 [21] and
retinoblastoma family of proteins [22] and the activator
Cdc25A [13].

Type 2. Use citation(s) for part of the citance only.

Example. The nucleosolic or nonutilized Cdc6 then could
either be translocated to the cytoplasm (10, 11, 16, 28, 33)

or have its affinity for chromatin reduced but still remain in
the nucleus (as our immunohistochemical and biochemical
data would suggest); this would prevent inappropriate pre-
RC formation and reinitiation of DNA replication.

Type 3. List multiple references together at the end of the
citance.

Example. These and other biochemical and genetic studies
in Drosophila and Xenopus demonstrate that the ORC
functions in chromosomal DNA replication in multicellular
eukaryotes, just as it does in yeast (25, 28–30, 48, 49).

Citances of Type 2 might have been the reason that a
number of biological concepts mentioned in citances were
not found in the full text of the target citations. Additionally,
we could have used citances of Type 1 to detect more
accurately the origin of the information in citances.

Notwithstanding that having considered this variation
in citance structure would had enabled us to determine the
source of information more accurately, as we discussed in the
related work section, a lot of work has been done on the basis
that references that appear together are related. Therefore,
any additional information from other references can be used
to augment the information from the target citation.

Finally, we should note that even knowing when a
sentence contains a citation is a challenging task by itself
since citation markers can differ in style. Moreover, even
after a citation has been identified in text, resolving its target
article is not a trivial task. For a further discussion on these
issues, see [51–53].
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5.2. Combining Manual and Automatic Analysis. We strived
to map the categories of our manual schema to the automatic
annotation schema the best possible way, while keeping them
pertinent to the area of molecular interactions. Despite the
significant overlap between these two schemata, the mapping
was not ideal, as Figure 2 shows. For example, we could not
use MeSH to automatically generate concepts covering events
and relations, which were present in the manual annotation.
To compensate for this, we added a number of additional
concept categories that were easy to identify in MeSH, for
example, disciplines, humanities, healthcare, and so forth
(see Table 2, Figure 2).

Another issue with the automatic analysis was that the
1 : 1 mapping to the concept categories for the manual
annotation was not possible since MeSH categories did not
always align perfectly to our concepts. On the positive side,

we relied on MeSH, which is a standard resource that is
widely used in biomedical text mining. It provides many
variants and synonyms for the concepts it covers, which
allows us to handle the variety in expression that is inherent
in natural language. Moreover, the MeSH concepts are
organized in a hierarchical structure, which allows for a very
easy mapping of whole subtrees to predefined categories; in
the ideal case, all that is needed to define the mapping is
to find the correct level of generalization in MeSH. Table 2
shows how this was done in our case.

5.3. Using Semantic Annotations Found in Citances to Aug-
ment Annotations in Abstracts. While studying the effect of
adjoining citations, we found that the majority of citances’
unique annotation IDs that overlap with unique annotations
found in the original target abstract can indeed be found in
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citances with 0 adjoining citations. This means that citances
that cite multiple papers can be used to complement the
abstract of each citing paper with more annotations. Imagine
that an abstract with 20 semantic annotations assigned to
it has 0adj citances with 30 annotations and 15 of them
overlap with the abstract annotations. Now, we have 15 more
annotations that can be mapped to the abstract. The target
paper is about to have 1+adj citances that can be associated
with a larger number of annotations, say 60; these new
annotations can now also be associated with the original
paper.

Much like modern media’s social boosting from users
assigning tags, these new annotations provided by expert
peers can be used to help various NLP tasks. Here we propose
utilization of these annotations for document summariza-
tion, document ranking, and automatic biological database
annotation.

In the case of document summarization where most
related work has concentrated on, we observe the follow-
ing opportunities (1) A way to expand information by
combining (union) the citances, which contain the best
representative information from the full text (rich peer-
produced resource), with the abstract (author-produced
resource)—this would offer the best complete, inclusive
summary. (2) A way to narrow down the information by
using the intersection of the information found in citances
and abstracts, especially years later—this would offer the
most distilled, concentrated summary. (3) A way to generate
a summary for a paper, even when its abstract and/or full
text are not available in electronic form—that is, use just the
citances.

In the case of document/sentence ranking, the density
of these annotations in a sentence (or, alternatively, the
category/type of annotation, or the relationship of the
annotations to the original source) can be used to boost a
weight-based ranking system.

Furthermore, our approach can be extended to other
standardized resources (e.g., GO and UMLS) that are
often used in biomedical databases to automatically map
normalized entities and concepts to each other as well as to
articles.

5.4. The Four Questions. Let us now go back to the four
original research questions, keeping in mind that our dataset
focused on molecular interactions, a very hot area for
literature mining, as it is the main resource for constructing
molecular networks and thus answering systems biology
questions.

(1) How informative is the abstract compared to the full
text? We have shown that the information contained
in the abstract and in the citances overlap to a large
extent. Yet, there is information in the full text that is
important enough to be referred to in citances, but it
is not included in the abstract. Thus, abstracts cannot
substitute the full text since peers cite information
from the full text that is not always included in the
abstract.

(2) What important information in the full text does not
appear in the abstract? We have shown that citances
contain additional information that does not appear
in abstracts. Since this information appears in a
citance, then (1) it should come from the full text,
and (2) it should be seen by peers as important. We
studied several categories of biologically meaningful
concepts and we found that citances contained more
information for each of these categories; still, the
differences were most pronounced for biological
entities and experimental methods.

(3) What should a summary of the full text contain that
is not already in the abstract? We believe that a
good summary of an article should combine the
information from its abstract and from citances.
Citances give the viewpoint of multiple peers and are
thus a very valuable information source. Our study
has found that citances tend to mention more bio-
logical entities and to care more about experimental
methods than authors do in their abstracts. Thus,
we would recommend that summaries pay more
attention to molecular entities and even consider
including information on methods.

(4) What are the differences in the way authors and peers
see an article? Authors’ viewpoint is summarized
in the articles abstract, while peers’ viewpoint is
reflected in the citances to that article. Thus, articles
are author-biased, while the set of citances, which
are produced by many peers, is more objective.
Moreover, citances are written years after the article
was published, which also contributes to a more
objective view to the contribution of an article: we
have seen that, in the first year peers largely agreed
with the authors, while differentiation was observed
later when the citances have become arguably more
divergent in content than the original target paper.
The overlapping information though (found both
in abstracts and in citances from years later) can
be perceived as the most interesting, as it remains
pertinent scientifically years later. Overall, we have
found that authors focused in their abstracts on a
smaller number of concepts compared to their peers.
Moreover, peers tended to pay more attention to
experimental methods compared to authors.

5.5. Future Directions. In future work, we would like to
do a more careful study that would cover more and finer-
grained categories in MeSH; trying resources like UMLS
and GO is another attractive option. Looking at facts of
larger granularity than just concepts, for example, looking at
predicate-argument relations is another interesting direction
for future work. We further plan to analyze the internal
structure of citances, so that we can identify which part of
the citance is relevant to a given citation. It would be also
interesting to try similar analysis for other disciplines and
areas of science, where the way research publications are
written and the number of citations a publication receives
may differ a lot from what we observe in life sciences.
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Another interesting aspect is the passage of time. We have
seen that while early citations tend to agree with the authors,
later ones tended to diverge more from the original abstract.
It would be interesting to see whether this means that later
citations are really more objective. An important tool in this
respect would be to look at the repetitiveness of citations,
which we ignored in our present study, where we focused
on unique concept mentions instead: if many peers stated
the same fact, then maybe it should be deemed not only
more important, but also more objective. Peer motivation for
citing an article is important as well, for example, citations
that cite a fact would probably agree with the abstract more
than those that criticize it.

Last but not least, we are interested in using citances
to help NLP applications. While previous work has already
shown a number of such examples including information
retrieval [24, 25], document summarization [19, 39, 40],
document categorization [23], document clustering [29],
MeSH terms assignment [30], relation extraction [27], and
automatic paraphrasing [17], we believe that this list can be
extended significantly.

6. Conclusion

Citances tell us what peers see as contributions of a given
target article, while abstracts reflect the authors viewpoint on
what is important about their work. Unlike citances, which
typically focus on a small number of important aspects,
abstracts serve a more general purpose: they not only state
the contributions, but also provide a summary of the main
points of the paper; thus, abstracts tend to be generally
broader than citances. Yet, our manual and automatic
comparison of abstracts and citances for articles describing
molecular interactions has shown that, collectively, citances
contain more information than abstracts.

We performed manual evaluation, which revealed that
while all concepts in an article’s abstract could be found
in the citances for that article (provided that the article
has already accumulated enough citations), the reverse was
not true: citances mentioned about 20% more concepts
than abstracts. Assuming that any information that is not
mentioned in the abstract but is important enough to be
referred to in citances should be coming from the full text, we
can conclude that full text contains important information
that is not mentioned in the abstract. We did not detect any
significant changes in concept mentions over time.

The automatic analysis verified the results of the manual
analysis on a larger scale, using MeSH terms, which were
automatically mapped to the biological concepts from the
manual analysis. These experiments confirmed our findings
that most concepts mentioned in abstracts can be also found
in citances. They further confirmed that citances contained
some additional information, which in our case was primar-
ily related to biological entities and experimental methods.
The large-scale analysis has shown that the manual analysis
could indeed be automated; the approach can be extended
to other commonly-used biomedical resources such as GO
and UMLS, which allow for uniform representation of
concepts, that is, useful information about the semantic

relationship between abstracts and citation sentences and
among concepts themselves.

Overall, our results show that citances are good surro-
gates of the information contained in a biomedical journal
article. The set of all citances citing a given research pub-
lication can be seen as concise summaries of its important
contributions and thus using them can be preferable to the
full text in a variety of scenarios. For example, they allow
text mining applications to concentrate on potentially useful
sentences without the need to deal with the full text, which is
long, has a complex structure, and often would not be avail-
able at all, for example, for older publications. Since our work
was based on biologically meaningful semantic concepts, it
provides quantitative justification of their usefulness for text
mining as it has been observed in previous work [17, 27, 30].

We can conclude that, with the recent growth of free
access to journal articles and open access publications, full
text should be seriously considered for yet another reason:
it contains citances with information on the publications
referenced therein. Peers cite (mention and comment) infor-
mation that they see as important even if it is not mentioned
in the original publication’s abstract. We would further like to
draw special attention to citances, as a good source of concise,
verifiable information on molecular interaction networks. To
answer the question posed by our title “Do Peers See More
in a Paper than its Authors?”: yes they do, and we should
leverage this information.
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Endnotes

1. http://www.ncbi.nlm.nih.gov/pubmed/

2. http://www.wellcome.ac.uk/

3. http://www.ncbi.nlm.nih.gov/pmc/

4. http://grants.nih.gov/grants/guide/notice-files/NOT-
OD-08-033.html

5. http://www.biomedcentral.com/

6. http://www.plos.org/

7. Our study also helps answer the question: what abstract
claims are not (strongly) supported by the full text? We
hypothesize that these would be those claims that are
cited very infrequently or not cited at all, but a separate
study is required to answer this question.

8. Note that here we assume that peers base their citations
on full text and not only on the abstract. While this
is a strong assumption, we believe that it generally
holds in the research community. Our previous studies
have shown that biomedical researchers like to verify
reported results, for example, by looking at the methods
that were used and by exploring the images and the
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tables in the full text. This has also motivated us to
create a specialized search engine, the BioText Search
Engine (http://biosearch.berkeley.edu/), for searching
the figures and tables contained in open access journals,
which is described in [54, 55].

9. CiteSeerX: http://citeseer.ist.psu.edu/

10. DBLP: http://www.informatik.uni-trier.de/∼ley/db/

11. Google Scholar: http://scholar.google.com/

12. Microsoft Academic Search: http://academic.research
.microsoft.com/

13. ACM Digital Library: http://dl.acm.org/

14. IEEE Xplore Digital Library: http://ieeexplore.ieee.org/
Xplore/

15. ACL Anthology: http://aclweb.org/anthology-new/

16. ArnetMiner: http://arnetminer.org/

17. EMNLP 2009: http://conferences.inf.ed.ac.uk/emnlp09/

18. http://www.nlm.nih.gov/mesh/

19. http://discover.nci.nih.gov/mim/index.jsp

20. http://isiknowledge.com/

21. The data on the analysis considering the extended tree
IDs can be found in the supplementary material avail-
able online at doi:10.1155/2012/750214. The majority of
results discussed in this paper refer to higher MeSH level
annotation representing broader entities and concepts.
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