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Abstract It was recently proposed (Bushdid et al., 2014) that humans can discriminate between

at least a trillion olfactory stimuli. Here we show that this claim is the result of a fragile estimation

framework capable of producing nearly any result from the reported data, including values tens of

orders of magnitude larger or smaller than the one originally reported in (Bushdid et al., 2014).

Additionally, the formula used to derive this estimate is well-known to provide an upper bound, not

a lower bound as reported. That is to say, the actual claim supported by the calculation is in fact that

humans can discriminate at most one trillion olfactory stimuli. We conclude that there is no evidence

for the original claim.

DOI: 10.7554/eLife.08127.001

Introduction
A recent paper (Bushdid et al., 2014) proposed that humans can discriminate between at least

a trillion olfactory stimuli. Using that paper’s methods to reanalyze the data it presented, we show that

this estimate is problematically fragile. Specifically, it varies systematically and sensitively (over tens of

orders of magnitude, in both directions), for very modest changes in incidental experimental

and analysis parameters against which a result ought to be robust. Had the experiment enlisted ∼ 100

additional subjects similar to the original ones, the same analysis would have concluded that

all possible stimuli are discriminable (i.e., that each of the more than 1029 olfactory stimuli possible in

their framework are mutually discriminable). By contrast, if the same experimental data were analyzed

using moderately more conservative statistical criteria, it would have concluded that there are fewer

than 5000 discriminable olfactory stimuli—no larger than the folk wisdom value that the new estimate

purports to replace.

Therefore, under this framework, data describing the same underlying perceptual abilities admit

a wide range of extremely disparate (varying over 25 orders of magnitude), yet unobjectionable

alternative conclusions (including both the largest and smallest possible estimates allowed by the

analysis framework). We conclude that the framework is unsound: there may be trillions of

discriminable olfactory stimuli, or more, or fewer, but the framework does not provide the means

for settling this question. Here we first demonstrate the framework’s fragility, and then explain the

sources of that fragility. For most of this paper, we remain agnostic about whether the framework is

conceptually sound, to highlight the fact that it has strictly methodological problems of a statistical

origin that do not depend on the validity of a competing set of assumptions.

We also show that the formula used to derive the estimated number of discriminable stimuli, given

an estimated perceptual limen, yields an upper bound, not a lower bound, meaning that any estimate

derived here or in (Bushdid et al., 2014), under any assumptions, is a maximum and not a minimum.

In other words, the original paper in fact supports the conclusion that humans can discriminate at most

one trillion olfactory stimuli (or more or fewer, due to the problem described above), a rather

uninspiring claim. In a concluding section, we explore possibilities for improving the estimate.
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Problems with the estimate
The first main concern is that the estimated number of discriminable stimuli depends steeply,

systematically, and non-asymptotically on choices of arbitrary experimental parameters, among them

the number of subjects enrolled, the number of discrimination tests performed, and the threshold for

statistical significance. We show below that the order of magnitude claim of ‘one trillion olfactory

stimuli’ requires that those parameters assume a very narrow set of values. Certainly, the precise value

of an estimate may change as additional data are collected, but the estimate should not change in

expectation; it should not be possible to make an estimate arbitrarily large (or small), simply by

collecting more (or less) data. Similarly, the estimate itself should not become arbitrarily small or large

with adjustment of a significance criterion. Estimates that scale systematically with such incidental

parameter choices are considered statistically inconsistent (Figure 1). It is the inconsistency of the

present estimate that produces a tremendously large space of extremely different, yet unobjection-

able alternative conclusions that can be reached about the number of discriminable olfactory stimuli.

To illustrate that we can correctly recapitulate the analysis undertaken in (Bushdid et al., 2014),

Figure 2 shows our reproduction (using raw supplementary data from [Bushdid et al., 2014]) of two

critical figures from that paper (Bushdid et al., 2014), from which its main conclusion was drawn. See

Table 1 for definitions of parameters used here and in (Bushdid et al., 2014). Figure 3 and Table 2

quantify the fragility of this conclusion, by generating estimates using the same framework under

trivial alternative scenarios in which different numbers of subjects (or mixtures) were used, or different

choices of statistical threshold (α) were used for assessing discriminability. Thus, we produced all

eLife digest Scientists are interested in the number of colors, sounds and smells we can

distinguish because this information can shed light onto how our brains process these senses both in

health and disease. It is relatively straightforward to determine how many colors we can see or

sounds we can hear because these stimuli are well defined by physical properties such as

wavelength. We know the range of wavelengths that the eye can see or the ear can hear, and we can

also understand how two such stimuli (e.g., red and blue) are arranged perceptually (think of a color

wheel). It is harder, however, to do the same for smell because most ‘olfactory stimuli’ consist of

mixtures of different odor molecules. Moreover, we understand much less about how olfactory

stimuli are arranged perceptually.

In 2014 researchers at Rockefeller University reported that humans can distinguish more than one

trillion smells from one another. To calculate this number the researchers tested the ability of human

subjects to discriminate between mixtures of different odor molecules. Each mixture consisted of 10,

20 or 30 molecules selected from a chemical library of 128 different odor molecules. Since each

mixture of 10 molecules could contain any 10 of the 128 molecules, more than 200 trillion

combinations were possible; the number of possible combinations for the 20- and 30-molecule

mixtures were even higher.

The aim of the experiment was to identify—by sampling from this very large number of

combinations—the number of molecules that two mixtures could have in common and still be

distinguishable to the typical person. The Rockefeller team used this number and a geometrical

analogy to conclude that humans could discriminate at least 1.72 trillion odors, which was much

higher than expected from previous reports and anecdotes.

Now Gerkin and Castro report that the claims made in the Rockefeller study are unsupported

because of flaws in the design of the analytical framework used to make sense of the data. In

particular, Gerkin and Castro report that the results are extremely sensitive to some parameters of

the experimental and analytical design, such as the number of subjects tested, whereas the results of

a robust analysis would not be so sensitive to such factors. By modestly varying any of these

parameters it is possible to obtain almost any value for the number of smells that can be

discriminated. Moreover, the geometrical analogy used set an upper bound on the final answer,

rather than a lower bound: in other words, even assuming that the rest of the analysis was robust, the

result should have been that humans can discriminate ‘no more than’ 1.72 trillion smells rather than

‘at least’. In a separate paper Meister also reports that the 1.72 trillion smells claim is unjustified.

DOI: 10.7554/eLife.08127.002
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values shown here by analyzing the data from

(Bushdid et al., 2014), using the methods

described therein, and varying only parameters.

Code to reproduce these and all subsequent

analyses is available at http://github.com/rger-

kin/trillion, documented at http://nbviewer.ipy-

thon.org/github/rgerkin/trillion/blob/master/

journal.ipynb.

In Bushdid et al., 2014’s experimental frame-

work, there are three sets of experiments, varying

in the number of distinct molecular components

N per mixture tested. We consider the N = 30

case (without loss of generality) for which there

are ∼1029 possible olfactory stimuli, and for

which the smallest possible number of discrimi-

nable stimuli is ∼ 4500 (see Equation 1 below).

Figure 3 and Table 2 thus demonstrate that (1)

there is a regime of reasonable parameter

choices for which one concludes that all possible

olfactory stimuli (i.e., all ∼1029 of them) are

discriminable; and (2) there is another regime of

reasonable parameter choices for which one

concludes that the smallest possible number of

stimuli (i.e., only ∼ 4500) are discriminable. The

only assumption required to obtain these esti-

mates is that performance in new subjects is

similar to performance in the original subjects.

The fragility of the conclusion results from the

claim in (Bushdid et al., 2014) that a modest

(if very interesting) correlation—between the

discriminability of a pair of mixtures and the

overlap (fraction of shared components) of those

mixtures—is evidence that a particular degree of

mixture overlap defines a boundary that parti-

tions the discriminable from the indiscriminable

in a very high-dimensional space. Below, we

explore the consequences of this decision, and its implications for calculating the number of

discriminable olfactory stimuli.

Explanation of the problems with the estimate

Recap of the basic framework
The framework’s logic is built on an analogy to color vision, where estimating the number of

discriminable colors requires knowing only two numbers: the size of the stimulus space (that is, the

range of visible wavelengths), and the minimally discriminable distance between a typical pair of

stimuli (Figure 4). Dividing the first number by the second amounts to asking how many discriminable

intervals can be ‘packed’ into the stimulus space, with that number providing an estimate of the

number of discriminable color stimuli.

Because olfactory stimuli do not have obvious physical dimensions analogous to wavelength,

olfaction is not amenable to an identical calculation. Instead, (Bushdid et al., 2014) established

a theoretical framework that yielded a similar calculation based upon the same underlying idea.

(Bushdid et al., 2014) proposed to divide the size of a investigator-determined olfactory stimulus

space by a data-determined variable representing resolution in this space. Instead of being

continuous, one dimensional, and defined by some intrinsic stimulus variable like wavelength, the

olfactory stimulus space was defined to be the discrete, high-dimensional space spanned by all

mixtures containing N = 30 different components (molecules) that could be assembled from a library

Figure 1. Consistency of an estimator. An estimator is

consistent if the resulting estimate asymptotically con-

verges (in expectation) as sample size increases (black

line). Uncertainty in the estimate (gray area) may shrink

with sample size, but the estimate itself should not

systematically change with sample size, and should

converge on the truth. Estimators without this property

are termed inconsistent (the blue line is a relevant

example), and are considered unreliable, as the result-

ing estimate can be heavily biased by the sample size. If

the estimate has a minimum and maximum allowed

value (see Equation 1), an especially inconsistent

estimator can even produce any estimate within that

range.

DOI: 10.7554/eLife.08127.003

The following figure supplement is available for figure 1:

Figure supplement 1. Fraction discriminated at which

statistical significance is reached.

DOI: 10.7554/eLife.08127.004
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of C = 128 molecules; (Bushdid et al., 2014) also

considers the N = 10 and N = 20 cases, which we

ignore in this section with no loss of generality.

This space of possible mixture stimuli is astro-

nomically large

�
C
N

�
, owing to the proverbial

‘combinatorial explosion’, and each point in the

space corresponds to a specific multi-component

mixture.

One definition of distance between stimuli in

this space is the number of components D by

which the stimuli differ. For example, nearest

neighbors would be stimuli sharing all compo-

nents but one ðD =1Þ, and the most distant

points in this space would be stimuli differing in

all components ðD =NÞ.
(Bushdid et al., 2014) showed that discrimi-

nability of a stimulus pair tends to increase with

the distance D between the stimuli in that pair

(Figure 2A), and then argued for the existence of

a special distance d corresponding to the D at

which stimuli are ‘just discriminable’. In other

words, for D >d stimuli should more often than

not be considered discriminable and for D <d

they should more often than not be considered

indiscriminable. By calculating d, one could in

turn readily calculate the number of stimuli within

a distance D ≤d of a typical point in the stimulus

space using the provided formulas. Geometri-

cally, the set of stimuli with distance D ≤d from

a reference stimulus corresponds to a filled ‘ball’

of stimuli indiscriminable from the reference

stimulus at its center. Conversely, the reference

stimulus should be discriminable from stimuli

outside the ball. We could thus count the number

z of non-overlapping balls that can be packed

into the stimulus space, as proposed in (Bushdid

et al., 2014), by analogy to the example for color

vision:

zðdÞ=

�
C
N

�

ballðd=2Þ (1)

where ‘ball’ is defined as:

ballðrÞ= ∑
r

x =0

�
N
x

��
C−N
x

�
(2)

Equation 1 produces the final estimate z of

the number of discriminable stimuli. Note that

while this has been interpreted as ‘the answer’ to

the sphere packing problem in high dimensions, it is in fact only a best-case scenario (an upper

bound). The exact number of d-spanning spheres that can be packed in a discrete space defined by

a particular C and N has in fact only been computed for a few specific, modest cases of these values. In

general, it is only possible to report bounds for these values. This is discussed at more length in the

section. ‘An upper or a lower bound?’, below, as well in the supplemental materials.

Figure 2. Reproduction of the main result published in

(Bushdid et al., 2014), from analysis of raw data

made available in supplemental materials of (Bushdid

et al., 2014). Compare to Figures 3, 4 in that

publication. (A): Discriminability vs mixture overlap,

expressed as a percentage of the mixture size N. From

this analysis, (Bushdid et al., 2014) derives
d −N

N
∼51%

(vertical dashed line) as the critical value of mixture

overlap at which 50% of mixtures achieve ‘significant

discriminability’. (B): Estimated number of discriminable

mixtures z vs mixture overlap (expressed as a percent-

age of N) allowing discrimination. The plot is obtained

by regression and interpolation of results in A combined

with Equation 1, with colors corresponding to values of

N as shown in A. For a value of ∼51%as derived in A,

one obtains the ‘trillions’ figure reported in (Bushdid

et al., 2014).

DOI: 10.7554/eLife.08127.005

The following figure supplement is available for figure 2:

Figure supplement 1. Reconstruction of percent

correctly discriminated using raw data from (Bushdid

et al., 2014).

DOI: 10.7554/eLife.08127.006
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C and N are fixed by experimenter choices, and d—the resolution-like term—is the only

quantity derived from data that is related to measured psychophysical performance. Note that for

C = 128, N = 30, as used in (Bushdid et al., 2014), the largest and smallest possible values this

equation can produce are ∼1:5× 1029 (for d = 0) and ∼4500 (for d = N), respectively. Assuming this

framework is conceptually unproblematic (but see Meister, 2015), the only question becomes: How

do we derive d from the data?

Derivation of the critical parameter d

Thresholding the fraction discriminated
A classic psychometric curve (Figure 4B), showing discriminability as a function of inter-stimulus

distance D, admits a few plausible ways to derive d. The simplest is to use a discriminability threshold,

such that d corresponds to the distance D at which the ‘fraction correct’ reaches a certain value. In

(Bushdid et al., 2014)’s three-alternative forced-choice experiments, chance responding would

produce a fraction correct of 1
3, so the appropriate threshold would be somewhere between 1

3 and 1.

This threshold choice would be arbitrary—we might say that a fraction correct of 1
2 reflects

discriminability, or alternatively we might choose 2
3 or any other value between 1

3 and 1.

If the psychometric curve is sufficiently steep near some value ofD (Figure 4—figure supplement 1A

represents an ideal case) then the derived d will vary minimally over a wide range of choices for the

threshold. In this scenario, we might be confident that the d we derive is a truly meaningful measure of

resolution—it would be robust. If not (Figure 4—figure supplement 1C), it will be very fragile. We

explored this approach (Figure 4—figure supplement 2), and concluded that it does not suffice for

deriving a robust d.

Thresholding the fraction significantly discriminable
The approach actually used in (Bushdid et al., 2014) is instead to apply a threshold not to

the fraction discriminated (explored in Figure 4—figure supplement 2), but to the fraction

significantly discriminable. In other words, determine for which subjects (or alternatively, for which

classes of mixtures) the fraction discriminated is significantly greater than 1
3, i.e., for which subjects

the null hypothesis of chance discrimination can be rejected. To facilitate visualization of this step,

(Bushdid et al., 2014) re-plotted the summary data (fraction correctly discriminated) as fraction

significantly discriminable (Figure 2A). This view of the data provides a linear relationship between

distance D and the fraction significantly discriminable, which holds across all the values of N tested.

The relationship is much steeper than for fraction discriminable (compare Figure 2 and

Figure 4—figure supplement 2) because this hypothesis-testing step acts as a strong non-linear

threshold that exaggerates otherwise small differences in the data. An arbitrary choice of threshold

is required; (Bushdid et al., 2014) chose a threshold of 50% significantly discriminable, and

computed d from the fraction significantly discriminable using linear regression and interpolation.

Varying the threshold (i.e., 50%) itself (not shown), would change the computed d (and

consequently z), but this is not the largest issue. By introducing a hypothesis-testing step, the

d derived from Figure 2 now varies systematically with the number of subjects enrolled in the

study (and the number of mixtures tested), and with the choice of significance criterion α. This is

because each data point used to compute d becomes the binary result of a hypothesis test, each

Table 1. Definitions of parameters
z Estimated number of discriminable olfactory stimuli

C Number of distinct compounds available to make mixtures

N Number of distinct compounds in a mixture

O Number of distinct compounds shared by a mixture pair

D Number of distinct compounds in one mixture of a pair that are not
shared by the other. ðD=N−OÞ

class All mixture pairs with the same value of N and D.

d The value of D for which mixture pairs of a given N are more likely
than not to be discriminable at a rate significantly above chance.

DOI: 10.7554/eLife.08127.010
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of which depends critically on sample size and test specificity. Because d is then fed into an

expression (Equation 1) that explodes geometrically, the result is a recipe for producing any of

a range of estimates for z that one might choose. If one enlists more subjects or slackens the

Figure 3. The estimation framework supports nearly any alternative conclusion, including the smallest and largest

estimates possible under the framework. (A): Heat map showing alternative conclusions reached for different

choices of T, the number of mixture pairs per class to test, and application of alternative significance threshold α for

discriminability, with the data from (Bushdid et al., 2014). Asterisks (*) show the parameter regime (T = 20 mixtures,

α=0:05) used in (Bushdid et al., 2014). Other values on each axis are chosen in a geometric progression around

those parameters. The contour in the lower right labeled ‘All’ demarcates a regime in which one will conclude that

the largest possible number of mixture stimuli (i.e., all zðd =0Þ=
�
128
30

�
> 1029 of them) are discriminable (see

Equation 1). The contour in the upper left labeled ‘smallest possible’ demarcates a regime in which one will

conclude that the smallest possible number of stimuli are discriminable, that is, only zðd =N=30Þ< 5000 of them.

The contour labeled ‘colors’ demarcates a regime in which one concludes that the number of discriminable olfactory

stimuli is the same order of magnitude as the number of discriminable colors. (B): Heat map similar to left, only with

number of subjects on the vertical axis. A choice of α= 0:025 is necessary to obtain the estimate that (Bushdid et al.,

2014) reports for this analysis. (C): Colorscale for A and B, with reference landmarks.

DOI: 10.7554/eLife.08127.007

The following figure supplement is available for figure 3:

Figure supplement 1. Steep, systematic, and non-asymptotic dependence of the estimate on sample size (S or T)

and threshold α for statistical significance.

DOI: 10.7554/eLife.08127.008
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significance criterion, a very large (even the largest possible) number will be obtained. If one

enlists fewer subjects or makes the significance criterion more strict, a very small (even the

smallest possible) number will be obtained. Figure 3—figure supplement 1 shows the explicit

dependence of the estimate on each of these quantities alone. Naturally, these can be varied in

tandem too, with even more dramatic consequences, as described above (Figure 3 and Table 2).

A hypothesis test is meant to assess the strength of evidence for or against a hypothesis (often

against a null hypothesis), not to make a point estimate. However, it may not be uncommon for

researchers to use hypothesis testing in the manner done in (Bushdid et al., 2014)—to count the

number or fraction of data points exhibiting a certain property. In many cases this may amount to

a venial statistical sin with (hopefully) benign consequences. But that is unfortunately not the case in

(Bushdid et al., 2014), due in part to the extremely steep dependence of z on d guaranteed by

Equation 1.

If one claims that an estimate is meaningful, it is fair to ask how vigorously would one have to

defend a specific choice of arbitrary experimental parameters to defend a particular order-of-

magnitude range around that estimate. Unfortunately, the systematic sensitivities exhibited here

severely undermine the plausibility and relevance of the estimate reported in (Bushdid et al., 2014).

Due to these sensitivities, one could pick almost any number of discriminable stimuli in advance, and

affirm this number using these or similar data. Ultimately, the absence of a robust d to characterize the

data is an insurmountable obstacle for the framework.

Building the stimulus space

The structure of the stimulus space
One might ask: what is the right way to calculate d in order to obtain a robust estimate of the number

of discriminable stimuli? Before heading down this road and devising alternative statistical

approaches, it is worth first clearly articulating the assumptions of a framework in which a single

variable plays such a special role. Under what conditions is it sensible to expect that plugging a single

Table 2. Estimates of z, the number of discriminable olfactory stimuli, for different possible parameters

values, for the C = 128, N = 30 case used in (Bushdid et al., 2014)

A

# Discriminable stimuli (z) Significance threshold (α) # Tests per class (T)

2:02×1012 0.05* 20*

4:56×103† 0.05* 5

1:54×1029‡ 0.05* 185

8:94×103 0.001 20*

1:79×104 0.01 15

B

# Discriminable stimuli (z) Significance threshold (α) # Subjects (S)

3:81×1013 0.025* 26*

4:56×103† 0.025* 7

1:54×1029‡ 0.025* 135

3:47×107 0.001 26*

2:98×105 0.01 15

This recapitulates selected points from Figure 3.

* Indicates that the parameter value was used in (Bushdid et al., 2014). We assume here that new subjects perform

similarly to the original subjects.

Note that 4:56× 103 (†) and 1:54× 1029 (‡) are the smallest and largest possible values allowed by the framework

from (Bushdid et al., 2014).

DOI: 10.7554/eLife.08127.009
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data-derived number (d) into Equation 1 will

produce a meaningful estimate of the number of

discriminable olfactory stimuli?

To gain some intuition into this, we can ask the

analogous question in the simplified visual

system example (Figure 4) that was used as the

principal motivation for the procedure. The

‘sphere packing’ calculation in this case naturally

involves measuring the resolution of perception

in terms of the stimulus, but its validity is not

a consequence of this measurement alone.

Rather, the procedure in Figure 4 is sensible

because the thing we are calling an independent

stimulus dimension (wavelength) is respected as

such by perception: we encounter monotonically

changing, non-redundant percepts as we move

from one extreme of the stimulus space to the

other. If we didn’t—say, if the same percept

‘blue’ were experienced for several non-

overlapping disjoint intervals—the sphere pack-

ing formulation would fall apart. We might

observe that on average discriminability

improves with distance, but this would not be

evidence of a characteristic length scale that

partitions stimulus pairs into discriminable vs

indiscriminable sets.

Thus the sphere-packing framework is valid

only if the underlying geometry of stimulus space

(that the investigator has designed) aligns with

the geometry of perceptual space (as imple-

mented in neural circuitry). Formally, the map

from stimulus space to perceptual space needs

to be homeomorphic, or nearly so. See (Meister,

2015) for further insight on this issue.

Redundancy in the stimulus space
Instead of providing evidence for this homeomor-

phism, it was assumed in (Bushdid et al., 2014) for

the purposes of calculation that each component

of the molecular library (of size C = 128 in

[Bushdid et al., 2014]) spanned an informative

additional dimension for perception to explore:

each molecule in the library is treated as an

olfactory primary that is independent of all the

others. This is the assumption, codified in the

numerator of Equation 1, that allows for a massive

space of potential discriminable stimuli. Indeed,

the guaranteed runaway growth of the numerator

as molecules are added to the C-sized library was

offered in (Bushdid et al., 2014) as an argument

for why the reported ‘trillion’ figure is an under-

estimate—after all, C could always be higher.

It is worthwhile to quantify the behavior of the estimate as C changes. First, the estimate depends

geometrically on C, with a power law exponent of ∼30 (Figure 5, blue line). In other words, if the

chemical library were doubled, the estimate z would increase by a factor of 230 under constant

Figure 4. ‘Sphere packing’ to estimate the number of

discriminable colors: the motivation behind the

framework in (Bushdid et al., 2014). (A): Hypothetical

example showing a range of visible wavelengths.

Relative to a reference stimulus (thick vertical tick mark),

extremely distant stimuli (green circle) in this space are

easy to discriminate, whereas extremely close stimuli

(red circle) may be impossible to discriminate, as they

are beyond the resolution of color vision. At some

critical inter-stimulus distance, d, stimuli will be ‘just

discriminable’ (black circle). A typical stimulus pair

on the space, separated by distance D, will tend to

be discriminable if D >d, and indiscriminable if D <d.

(B): This partitioning into discriminable and indiscrimin-

able sets is captured in the sigmoidal shape of the

psychometric curve plotting discriminability vs distance.

Knowing that an interval of length d on the space will

tend to span ‘just discriminable’ stimuli, one can

calculate how many such intervals, z, can be ‘packed’

onto the space to estimate the number of discriminable

colors.

DOI: 10.7554/eLife.08127.011

The following figure supplements are available for

figure 4:

Figure supplement 1. Behavior of psychometric curves

for hypothetical data describing discriminability vs inter-

stimulus distance.

DOI: 10.7554/eLife.08127.012

Figure supplement 2. Can the fraction discriminated be

used to measure d directly, without resorting to

hypothesis testing?

DOI: 10.7554/eLife.08127.013
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performance. If the component library were

increased to the size of a standard flavor and

fragrance catalog (∼ 2000 chemicals), the esti-

mate would increase to z∼1041, implying

a unique olfactory percept for each carbon atom

on earth.

Subjects’ performance could become worse

when mixtures are drawn from this larger, more

complete library, and we acknowledge that we

cannot know in advance what the newly calcu-

lated resolution d would be on the new stimulus

space. In other words, as the numerator of

Equation 1 increased, its denominator (given by

Equation 2) might conveniently grow propor-

tionally. Let us therefore assume that with

a library of sufficient size, so many mixtures

become indiscriminable that the resolution

becomes as poor as the framework allows, with

d = N. Even in this edge case, if only mixtures

differing in all components were ‘just discrimi-

nable’, we would still calculate 1021 discrimina-

ble stimuli. If C is increased to 106, the smallest

possible number of discriminable percepts (un-

der the assumption of worst measurable perfor-

mance, as above) is 1061, or 10 million trillion

unique olfactory percepts for every carbon atom

on earth (Figure 5, red line). One may object

that the inflation of C here is an unfair critique,

as the perceptual redundancy of molecules must

at some point provide an important constraint

on the size of the artificially constructed stimulus

space. Indeed, it has been reported that as few as thirty components are required to imbue most

mixtures with a common smell, even when there is no component overlap between the mixtures

(Weiss et al., 2012). But this is the essence of the problem with Equation 1: where does that point

lie, and why wasn’t the constraint important to consider for the original C = 128 molecular library?

An upper or a lower bound?
Even if one takes the estimate of d to be unimpeachable, the formula used to derive z does not

provide a lower bound as reported in (Bushdid et al., 2014). This much is suggested by the worst-

case behavior of Equation 1 as C grows. After all, worst case behavior should correspond to z = 1.

If one cannot discriminate anything (maximal d), then there is only one percept. Examining Equation 1

more closely, we see that it is a variant of the so-called Hamming bound for constant weight codes

(MacWilliams and Sloane, 1977). which is well-known to be an upper bound for an identically

formulated problem in the theory of error-correcting codes. It is, as suggested in (Bushdid et al.,

2014), an estimate derived from a hypothetical sphere-packing approach to filling the stimulus space,

but it is the largest possible value for the correct answer, not the smallest. Hence, according to the

Hamming bound, for d =N= 30 the upper bound on the number of discriminable stimuli is 4561, and

we know the correct answer to be 1 (or 4, depending on conventions, see the Supplemental

Materials). Since the upper bound exceeds the correct answer, Equation 1, while not particularly tight

as an upper bound, is nonetheless not wrong, so long as we acknowledge that it is an upper and not

a lower bound. The same applies for all other values of d, including the one derived from the data in

(Bushdid et al., 2014).

Thus Equation 1, as used in (Bushdid et al., 2014), provides no insight into the lower bound for z,

with a lower bound being required to overturn conventional wisdom about the number of

discriminable stimuli. Instead, to obtain a lower bound one must dispense with the factor of 2 in

Figure 5. Explosive growth of the estimate z on the size

(C) of the molecular library. The number of possible

stimuli z that can be assembled by choosing N =
30distinct molecules from a library of size C increases

geometrically with C (black line). If a library of a different

size had been used, and similar subject performance

resulted, the estimated number of discriminable stimuli

z would grow along a similar trajectory (blue line). Even if

performance deteriorated as C increased, the estimate

could never fall below the red line, which represents

worst-case performance (d = N). This results from the

combinatorial explosion inherent in Equation 1.

DOI: 10.7554/eLife.08127.014
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Equation 1, yielding Levenshtein’s constant weight version of the so-called Gilbert-Varshamov bound

for error-correcting codes ([Levenshtein, 1971; MacWilliams and Sloane, 1977; Jiang and Vardy,

2004],see Supplemental Materials). A plot of the lower bound obtained in this manner is shown in

Figure 6B, along with the reconstructed upper bounds from (Bushdid et al., 2014) a, showing the

true bounded interval for z. Intuitively, this corrected lower bound reaches z = 1 for worst-case d,

implying sensibly that anosmics cannot discriminate any stimuli. In contrast, the upper bound

(reported as a lower bound in 1) is on the order of several thousand for worst case d, showing that it

cannot be a lower bound d; this can also be confirmed in Figure 4 of (Bushdid et al., 2014).

Avenues for improving the estimate
If one is seeking a conservative estimate of the number of discriminable stimuli in a perceptual space

whose organization and intrinsic dimensionality are poorly understood, it is arguably more

appropriate to use a model that accounts for the data with the smallest number of dimensions.

The massive estimates possible in the framework of (Bushdid et al., 2014) are an immediate

consequence of a definition of dimensionality driven by experimenter designation, not data.

We therefore propose an alternative framework: use experimental data to create a working map of

the perceptual space, and then apply the sphere-packing framework to that map, rather than to a map

of the stimulus space. In cognitive science, psychometrics, and marketing, subject responses to stimuli

are used to create maps of the underlying perceptual (or conceptual) representations of those stimuli.

These maps are characterized by the attribute that pairs of items which are considered intuitively to be

perceptually near (rated similar or difficult to discriminate) are nearer to one another on the map than

pairs of items which are perceptually more distant (rated dissimilar or easy to discriminate). There

are many algorithms for generating such maps, many of which have been used before in olfaction,

including variants of PCA (Zarzo and Stanton, 2006; Khan et al., 2007; Koulakov et al., 2011),

non-negative matrix factorization (NMF, [Castro et al., 2013]), and multi-dimensional scaling

(Mamlouk et al., 2003). While there are open questions in the generation of these maps (e.g., how

many dimensions should they have?), they all have the virtue that their accuracy can be checked (e.g.,

by examining the correlation between subjects’ indications of item pair dissimilarity and the distance

Figure 6. Upper and lower bounds of the number of discriminable stimuli. (A): Number of discriminable olfactory stimuli as a function of the estimated

difference limen (the fractional mixture overlap allowing discrimination). This is simply the behavior of Equation 1 as a function of d, for the three values of

N used in (Bushdid et al., 2014); the red dot (in both A and C) corresponds to the value reported in (Bushdid et al., 2014). The smallest possible estimate

(thousands of stimuli) is indicated by the dotted line running the length of the abscissa (note also the y-intercept). As described in the text and in the

supplement, this graph in fact shows the behavior of the upper bound (the so-called Hamming bound) for the mathematical problem of sphere packing.

Compare with Figure 3D in (Bushdid et al., 2014). (B): Same plot as in A, only using the lower-bound for the same calculation. (C): Upper and lower

bounds of the sphere packing problem for the N = 30case (green lines from A and B, respectively. The dark gray bar shows the range of defensible

estimates under the sphere-packing framework, using the d calculated in (Bushdid et al., 2014). Using that d, the number of discriminable stimuli may be

as small as ∼10,000, and is guaranteed to be no larger than ∼1 trillion. Since the estimate of d is also fragile (Figure 3), the data may in fact support any

value in the shaded gray area.

DOI: 10.7554/eLife.08127.015
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between that pair on the map), and thus the maps can be improved. Developing these maps may also

have the collateral benefit of revealing stimulus dimensions intrinsic to olfaction (if any), which could

constrain the experimental choice of a resolution to measure.

Unfortunately, it is difficult if not impossible to create these maps from the data discussed here,

because each mixture of a tested pair is used only once in (Bushdid et al., 2014), in that pair alone,

and never in any other pairs. Thus, there are no serial comparisons of the same mixture that could

be used to anchor a stimulus on the map relative to a stimulus against which it was not directly

compared experimentally. Thus, there is no way to compute distances between stimuli that do not

appear together in a tested pair. In other words, the structure of the perceptual space is severely

under-determined by the data. In future experiments such serial repetition of already-tested

mixtures would be required to build up a data set to which the proposed method could

be applied.
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Appendix 1

Proof of sample size dependence
Here, we provide a more detailed statistical argument describing the framework’s extreme

sensitivity to incidental parameters. The crux of the statistical issue is this: the framework could

only be valid if d, the estimated difference limen used in the calculation step, is a measure of

olfactory resolution that converges to the true value of this quantity as more data is collected,

that is, if it is consistent.

‘Significantly discriminable’ is a moving target dependent on sample size, choice of significance

criterion, and correction for multiple comparisons. And d is the only data-dependent value

used in subsequent calculations (Equation 1), Together, this guarantees that the estimate of z

in (Bushdid et al., 2014) is a moving target as well, dependent on these same parameters. d is

generated by testing a number of null hypotheses, and is closely related to the fraction of these

which are rejected. But the probability of and criteria for rejection of these null hypotheses

depends critically on sample size and α, the values that we explored in Figure 3 and Table 2.

Certainly, we would agree that there is nothing objectionable about the specific parameters

chosen in (Bushdid et al., 2014). However, there is nothing objectionable about many other

values for those parameters either.

In effect, calculating d is somewhat like judging whether a coin meets a cutoff for being fair

based on a series of tosses. It matters very much how many tosses one makes, and how much

deviation from chance one is willing to tolerate before calling a coin unfair. If you have no

particular reason to believe a coin is unfair, you might be disinclined to call it unfair if you

observe 6
10 (60%) heads, but probably not if you observed 600

1000 heads (also 60%). However, if you

own a casino, you might call 5100 heads in 10,000 (51%) evidence of an unfair coin. Whether the

coin is fair is not something we directly measure, but rather we have more or less evidence for

various degrees of fairness.

A similar situation applies in (Bushdid et al., 2014)’s analysis by considering its formal definition

of d (a definition we verified by reconstructing the critical figures from (Bushdid et al., 2014) in

Figure 2. d is defined as that inter-stimulus distance D for which 50% of subjects can

significantly discriminate a mixture class. By a mixture ‘class’ we denote the set of mixture pairs

for which each mixture has the same number of total components (N) and each pair has the

same number of distinct, non-overlapping components D (D=N−O, see Table 1). For

example, the mixture pair (ABC, ABC) would be a member of the class with N = 3 and D = 1

distinct components. We focus here on calculations pertaining to the number of tests T per

class, but the same argument is readily translated over to the number of subjects S.

To assess significant discriminability from chance, (Bushdid et al., 2014) used a two-tailed

binomial test. Thus if a p-value is smaller than α
2 then the subject is considered able to

significantly discriminate from pairs in the mixture class. The p-value is given by 1 minus the

cumulative binomial distribution function for n = T trials, k successes, and a probability of

success equal to 1
3, with k corresponding to the number of subjects discriminating correctly, and

1
3 to chance in a 3-way forced choice task. Thus, the subject’s discrimination performance is

significant if:

α
�
2> 1− cdfbinomial

�
T ; k;

1

3

�
= ∑

k

i = 0

�
T
i

��
1

3

�i�2
3

�T−i

(3)

For α=0:05, T = 20 (as used in [Bushdid et al., 2014]), this inequality is satisfied for k > = 11.

For each subject, k might be any value between 0 and 20 depending on olfactory acuity.

If k > =11 for more than 50% of subjects, then the value of D characterizing that mixture pair is

necessarily >d. If k > =11 for fewer than 50% of subjects, then D <d. If k > =11 for exactly 50%
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of subjects, then D = d. The actual estimate for d is obtained by regression in the spirit of

Figure 2.

What kind of subject can discriminate successfully 11 times out of 20? Consider a mixture class

XN;D (characterized by N and D), and a subject performance of fN;D , corresponding to the

proportion of mixtures correctly discriminated from a sample of size T. Note that fN;D is simply

the abscissa of Figure 1 from (Bushdid et al., 2014). A subject with fN;D =0:55 would get

k =TpfN;D = 11 out of T = 20 correct on average. So we can rewrite the inequality above as an

equation:

1− α
�
2= ∑

fN;D*T

i =0

�
T
i

��
1

3

�i�2
3

�T−i

(4)

If the above equation is satisfied, then the subject will be considered to be on the boundary

between significantly discriminating and not significantly discriminating mixture pairs in the

class. If half of subjects perform better than fN;D , and half less, then half of subjects will be

considered to significantly discriminate mixture pairs in the class (and half not), and so d will be

set equal to D. This is simply the definition of d.

The value fN;D for which that equation is satisfied depends upon α and T. fN;D is related toN and

D through the data, and so the value of D for which the equation is satisfied (i.e., D = d)

depends upon α, T, and the data. However, it is inappropriate for the discriminability limen to

depend on α and T in this way. As we showed above, this has serious consequences for the

estimate of d, and therefore also for the estimate of z. It is what makes z inconsistent.

Figure 1—figure supplement 1 shows the relationship between the critical fN;D , T, and α. Note

that this relationship is independent of the data. The data only determine how fN;D depends

upon D and consequently determines z. In summary, a smaller (larger) value of α or T requires

a much higher (lower) value of fN;D to satisfy the equation. This higher (lower) value of fN;D might

only be found at a much larger (smaller) value of D, implying a much larger (smaller) value of

d and therefore a much smaller (larger) value of z.

With a sufficient number of subjects (or tests), even barely above chance performance can

produce estimates of z equal to the largest possible number of stimuli (Figure 3 and

Figure 3—figure supplement 1). In fact, this is guaranteed by Equation 4. The critical values

of fN;D required for statistical significance will asymptotically approach 1
3 (chance) as T

approaches infinity. The same principle applies to a consideration of changes to the number of

subjects S, instead of the number of tests. This illustrates the core of the problem.

Discriminating significantly above chance can be a very high bar or a very low bar depending on

the parameters of the experiments and the analysis, including S, T, and α.

Can regularization solve this problem?
An alternative way to generate hypothetical data for larger values of S or T would be to imagine

mean discrimination performance converging to the true population value as sample size

increases. This has intuitive appeal, as surely the fraction discriminated should converge to 1
3 for,

say, identical stimuli, as the number of subjects approaches infinity. However, there is no clean

way to generate hypothetical data in such a way for non-trivial cases, such as data where the

mixtures are clearly discriminable, without knowing in advance what the population average is!

If one could partition mixture classes into clearly discriminable and indiscriminable, and assume

that the indiscriminable converge to 1
3 discriminated, and the discriminable to same value larger

than 1
3, the resulting plot would show a clear limen boundary where the data departed from 1

3.

However it is likely that all mixture classes have at least some discriminable pairs, and even if

that is only one pair out of a thousand, and only one subject out of a thousand can discriminate

it, we would declare the class to be discriminable and the limen d to be smaller than the D for

that class; we would likely do this for all classes, resulting in the conclusion (using Equation 1)

that all stimuli are discriminable. This occurs because we need d to be a property of the
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stimulus space in general, not a quirk of a small fraction of mixtures. But this kind of d is elusive.

So deriving d in this way won’t justify the use of the subsequent sphere-packing framework.

Correct bounds for the sphere packing problem
Here we elaborate on our claim that the ‘trillions’ figure is in fact an estimate for an upper

bound, and not an estimate for a lower bound, as advertised in the title of (Bushdid et al.,

2014), and throughout that report. The practical upshot of this is that even if one grants all

other aspects of the framework, it still makes an unremarkable claim, one concerning how many

olfactory stimuli humans can discriminate at most. Claiming to be at least 7 feet tall is a bold

claim indeed. In contrast, claiming to be at most 7 feet tall is not a claim worth making.

Providing a very high upper bound for the number of olfactory stimuli that humans can

discriminate does nothing to advance our understanding of human olfactory ability. An

expanded version of the following (including code for all calculations, and additional

supporting plots) can be found at http://github.com/rgerkin/trillion.

The minimum possible number of discriminable stimuli occurs when olfactory resolution is as

bad as possible. This occurs when d, the discriminability limen, is equal to N, the number of

components. This means that even when every component is substituted in a mixture,

discrimination is still hard or impossible. In the visual system, the equivalent situation would be

a discriminability limen that spans the entire range of visible wavelengths. Here, the ‘sphere

packing’ calculation for such a limen produces the sensible result that there is only one

resolvable color percept, only if one large ‘sphere’ of diameter d spans these wavelengths.

Curiously though, using Equation 1 (implemented exactly from [Bushdid et al., 2014]), and

setting d = N, we obtain the value 4561 (for N = 30), that is, we would estimate that there are

thousands of discriminable stimuli. This can be confirmed in (Bushdid et al., 2014) by

inspecting the y-intercept of its Figure 4C,D, or in our Figure 6A. Clearly this is problematic

since d = N should correspond to worst possible performance.

Perhaps this simply traces back to ambiguity in how the limen d is defined, and how end-points

are treated. For example, we could adopt the convention that a limen of 20 nm in color vision

means that stimuli separated by 20 nm are just discriminable; alternatively, that such stimuli are

the farthest that are still indiscriminable, which is slightly different. Along similar lines, one

interpretation of a limen of d = N is that stimuli are only discriminable when all components are

replaced. If this is the case, then the estimate should be equivalent to the number of ways

replacing all N components. For a library of size C, this can be done in C
N= 128

30 ∼4 ways, which is

still clearly discordant with the result from Equation 1 (4561). While 4561 is not remarkably high,

it is clearly inconsistent with common sense. Furthermore, the edge-case, d = N behavior of

Equation 1 as C increases produces increasingly implausible results, which are independent of

the data: they are guaranteed by the equation (see Figure 5).

In an effort to understand the behavior of Equation 1, which is advertised in (Bushdid et al.,

2014) to provide the number of discriminable stimuli, one can ask ‘what value d >N is needed

to produce the result that there is only 1 discriminable stimulus?’ (that is, that only 1 ‘ball’

occupies the range of discriminable stimuli). The answer is that d must be equal to 2N before

Equation 1 will provide the result of 1 discriminable stimulus. But clearly d = 2N is impossible

since d < =N by definition. This indicates that there is potentially a spurious factor of two

somewhere in the calculation for the lower bound.

Correcting the lower bound
A common-sense interpretation of a scenario where no N-component mixtures differing in all

components (d = N, the largest possible limen) can be discriminated from one another is that

there is only one resolvable percept (not thousands). This interpretation will be secured using

the following corrected equation for the lower bound:
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zðdÞ=

�
C
N

�

ballðdÞ (5)

instead of the equation used in (Bushdid et al., 2014) and in the main text here as Equation 1:

zðdÞ=

�
C
N

�

ballðd=2Þ (6)

Figure 6 shows the behavior of the estimated number of discriminable stimuli, z, as a function

of the discriminability limen, d, for these two equations. Note three important features in the

behavior of Equation 5 (as seen in Figure 6B):
c First, for worst possible discrimination (d = N) the minimal number of discriminable stimuli is
1, which is sensible.

c Second, the maximal number of discrimianble stimuli is still equal to the total number of
mixtures that can be constructed from the library (as with the original Equation 6), which is
again sensible.

c Third, and most importantly, the number of discriminable stimuli estimated from the data is
now orders of magnitude smaller, and within the folk wisdom range.

Note that Equation 5 will still underestimate z, given d and the acceptance of the remainder of

the assumptions in the framework. After all, it is a lower bound. But similarly, Equation 6 will

always overestimate it. This is well-known from the theory of error-correcting codes, where

Equations 5, 6 represent lower and upper bounds on the solution to a homologous problem in

coding theory (MacWilliams and Sloane, 1977). These bounds are essentially the constant-

weight versions of the Gilbert-Varshamov and Hamming bounds, respectively, and have been

proven mathematically; specifically, the lower bound is due to Levenshtein (Levenshtein, 1971;

Jiang and Vardy, 2004), and the upper bound is slightly weaker version of that developed by

Freiman, Berger, and Johnson (Freiman, 1964; Agrell et al., 2000).
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