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In order to solve the tracking problem of radarmaneuvering target in nonlinear systemmodel and non-Gaussian noise background,
this paper puts forward one interacting multiple model (IMM) iterated extendedH

∞
particle filter algorithm (IMM-IEHPF). The

algorithm makes use of multiple modes to model the target motion form to track any maneuvering target and each mode uses
iterated extendedH

∞
particle filter (IEHPF) to deal with the state estimation problem of nonlinear non-Gaussian system. IEHPF is

an improved particle filter algorithm, which utilizes iterated extendedH
∞
filter (IEHF) to obtain the mean value and covariance of

each particle and describes importance density function as a combination of Gaussian distribution.Then according to the function,
draw particles to approximate the state posteriori density of each mode. Due to the high filter accuracy of IEHF and the adaptation
of system noise with arbitrary distribution as well as strong robustness, the importance density function generated by this method
is more approximate to the true sate posteriori density. Finally, a numerical example is included to illustrate the effectiveness of the
proposed methods.

1. Introduction

In the field of manoeuvring target tracking, IMM [1, 2]
algorithm is a popular method. It uses multiple modes to
model the target motion form to track any maneuvering
target andmodes transition governed by a first-orderMarkov
chain. However, in everymode aKalman filter is running that
the performance is deteriorated by nonlinearities and non-
Gaussian. Although EKF [3, 4] and UKF [5] can deal with
the nonlinear problem, they cannot avoid the limitation of
Gaussian hypotheses.

Recently, particle filter (PF) [6] has been paid attention
to due to its capacity of dealing with the state estimation
problem in any nonlinear non-Gaussian system and it has
been widely applied [7–10]. It represents the required state
posteriori density by a stochastic particles (or samples)
with associated weights and to compute estimates based
on these particles and weights. Particle filter methods for
Markovian switching systems have also been proposed in [11–
13]. However, a major drawback of these methods is that
the number of particles in each mode is proportional to
the mode probability. If a mode probability is close to 0,
the particles in that mode will be lost in a large number.

When the mode probability increases again, particles need
to be reconfirmed, which certainly will result in a signif-
icant increase of estimation errors in certain period. This
phenomenon is known to cause numerical problems and is
also discussed in [14]. To overcome this problem, Boers and
Driessen [15] combine IMM with particle filter (IMM-PF)
and there is an interaction between modes. Each mode uses
a fixed number of particles and runs a regularised particle
filter. The state posteriori density of the system is a weighted
sum of posteriori density of each mode. Subsequently, the
approach has been extensively used in variety manoeuvring
target tracking scenarios. For example, in [16, 17], IMM-PF
was applied to the problem of tracking ground target, and
in [18, 19], it was applied to solve the maneuvering target
tracking problem in non-Gaussian noise background. The
multirate IMM-PF developed in [20] placed emphasis on
computation savings, which enabled the particles in each
model to be updated at a different rate. An IMM Gaussian
particle filter was proposed in [21], which made particle filter
able to concurrently process and saved operation time.

However, in IMM-PF, the particles in each mode are
drawn according to the prior density without any consider-
ation of current measurements, which have a large deviation
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with the particles generated from the true posteriori density.
Particularly in the case of the measurement model with
high accuracy or target maneuvering, this issue will be
more serious. To import the current measurements into
the particle sampling process, an EKPF and an UPF were
applied in each mode of the IMM algorithm presented in
[20] and in [22], respectively. They used EKF or UKF to
construct an importance density function for approximating
the posteriori density for the state in each mode, during
which themeasurementswere utilized. And then the particles
were drawn from the function. Nevertheless, due to the
limitation of Gaussian hypothesis, their filter performance
has no obvious improvement in non-Gaussian condition.

On the other hand, over the past decades, considerable
attention has been devoted toH

∞
filtering, andmany impor-

tant results have been reported in [23–34], and references
therein. One of its main advantages is the fact that it is
insensitive to the exact knowledge of the statistics of the
noise signals. The idea of substituting an extendedH

∞
filter

(EHF) for EKF or UKF in the PF framework (called PF-
EHF) was first proposed in [24]. However, direct utilization
of EHF can face the same problem of model linearisation
error as EKF. To eliminate this error and further enhance
the filter accuracy, this paper uses an iterative technique
to improve the Jacobian linearisation of nonlinear system
on basis of EHF, namely, linearize the dynamical model at
smoothed values and linearizemeasurementmodel at filtered
value, respectively (called IEHF). Meanwhile, the iterative
technique can repeat many times at one step to improve the
degree of linearisation approximation of nonlinear system.
As the importance density function generated by IEHF, the
resulting filter called IEHPF.

In this paper, we propose to combine IMM with IEHPF
(IMM-IEHPF) for the tracking problem of maneuvering
target in nonlinear non-Gaussian system. The filter accuracy
of IEHF is higher than that of EKF and UKF, and IEHF is
insensitive to the exact knowledge of the noise processes,
therefore the importance density function generated by it is
more approximate to the true state posteriori density.

The structure of this paper is as follows. Section 2 presents
the problem formulation of the dynamical system model
for maneuvering target. Section 3 describes the IMM-IEHPF
algorithm to be used for the modes. In Section 4, through
simulation example, several algorithms are compared and
analyzed. Finally, the conclusion is provided in Section 5.

2. System Model and Problem Description

Consider the following discrete nonlinear time-varying sys-
tems for maneuvering target tracking:

x (𝑘 + 1) = 𝑓 (x (𝑘) , 𝑟 (𝑘)) + 𝑔 (x (𝑘) , 𝑟 (𝑘)) k (𝑘) , 𝑘 ∈ N,

z (𝑘) = ℎ (x (𝑘)) + w (𝑘) , 𝑘 ∈ N,

(1)

where𝑓(⋅) and𝑔(⋅) represent the system function and process
noise function in mode 𝑟(𝑘), respectively. The target state

vector is x(𝑘) = [ 𝑥(𝑘) ̇𝑥(𝑘) 𝑦(𝑘) ̇𝑦(𝑘) ]T, where 𝑥(𝑘), 𝑦(𝑘), and
𝑥̇(𝑘), ̇𝑦(𝑘) denote the target position, velocity in Cartesian
coordinates. T represents transpose. z(𝑘) is themeasurements
at time 𝑘. ℎ(⋅) is the nonlinearmeasurement function inmode
𝑟(𝑘). The process noise k(𝑘) and the measurement noisew(𝑘)
are mutually independent.Themode transition of the system
is modelled by a Markov chain with

Pr {𝑟 (𝑘) = 𝑗 | 𝑟 (𝑘 − 1) = 𝑖} = 𝜋
𝑖𝑗
, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑈} , (2)

where 𝜋
𝑖𝑗
is the transfer probability and 𝑈 is the number of

modes in the IMM.
The state estimation problem of system described in

(1)∼(2) solved by IMM can be divided into four parts,
which are interaction, filtering, mode probability update, and
combination. Among them, the combination is a weighted
sum of filtering estimation and mode probability of each
mode. Therefore, filtering is the key element. Take model
𝑖 as an example and in view of Bayesian estimation, the
filtering estimation of this mode is to obtain the posteriori
density 𝑝(x

𝑖
(𝑘) | Z(𝑘)) of state x

𝑖
(𝑘) in model 𝑖 given all

measurements Z(𝑘) = {z(1), z(2), . . . , z(𝑘)}. Based on this a
posteriori density, an estimate of the state is, easily obtained
as

x̂
𝑖
(𝑘) = ∫ x

𝑖
(𝑘) 𝑝 (x

𝑖
(𝑘) | Z (𝑘)) 𝑑x

𝑖
(𝑘) . (3)

So, the final combination is given by

x̂ (𝑘) =
𝑈

∑

𝑖=1

𝑢
𝑖
(𝑘) x̂
𝑖
(𝑘) , (4)

where x̂
𝑖
(𝑘) and 𝑢

𝑖
(𝑘) represent the state estimation andmode

probability of mode 𝑖 at time 𝑘, respectively.
It is well known that Kalman filter can get the optimal

state estimation in the linear Gaussian system. However,
in practice, most cases belong to nonlinear non-Gaussian
system, so the analytic expression of posteriori density
𝑝(x
𝑖
(𝑘) | Z(𝑘)) is difficult to get. Even thoughwe can get it, the

integral operation involved in (3) is very complex. Therefore,
it is urgent to find out an effective filtering method to solve
the problem of state estimation of nonlinear non-Gaussian
system.

3. Proposed Algorithm

IMM-IEHPF algorithm proposed in this paper, in fact, is
the combination of IMM algorithm and IEHPF algorithm.
Compared with IMM-PF, IMM-IEHPF has considered the
latest measurements in the particle sampling process by
utilizing the prediction and updating mechanism of IEHF.
Therefore, the distribution of particles ismore approximate to
the true state posteriori density and the filter accuracy can be
enhanced. We first briefly describe the H

∞
filter [23] ahead

of IEHF and then provide the mathematical model and the
concrete implementation steps of IMM-IEHPF algorithm.
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3.1. H
∞

Filter. Consider the following state space model of
linear time-varying system:

x (𝑘) = F (𝑘) x (𝑘 − 1) + G (𝑘) k (𝑘) ,

z (𝑘) = H (𝑘) x (𝑘) + w (𝑘) ,

s (𝑘) = L (𝑘) x (𝑘) 𝑘 = 0, 1, 2, . . . ,

(5)

where F(𝑘) ∈ C𝑛×𝑛, G(𝑘) ∈ C𝑛×𝑚, H(𝑘) ∈ C𝑎×𝑛, and
L(𝑘) ∈ C𝑏×𝑛 are known and the definition of other parameters
is the same as the above.The statistical properties of v(𝑘) and
w(𝑘) are unknown and mutually independent. The system
initial state x(0) is unknown. s(𝑘) is the signal we intend to
estimate. If we want to directly estimate x(𝑘) then we set
L(𝑘) = I

𝑛
(I
𝑛
represents the 𝑛 × 𝑛 identity matrix). Let x̂(𝑘) =

F(z(0), z(1), . . . , z(𝑘)) denote the estimate of x(𝑘) for a given
set of measurements Z(𝑘). The estimation error e(𝑘) can be
described as

e (𝑘) = s (𝑘) − ŝ (𝑘) = x (𝑘) − x̂ (𝑘) , (6)

and theH
∞

norm [23] can be defined as

𝐽 = sup
x(0),w,v∈ℎ

2

((

𝑘

∑

𝑝=0

eT (𝑝) e (𝑝))

× ( (x (0) − x̂ (0))Π−1
0
(𝑥 (0) − 𝑥 (0))

+

𝑘

∑

𝑝=0

vT (𝑝) v (𝑝)

+

𝑘

∑

𝑝=0

wT
(𝑝)w (𝑝))

−1

) ,

(7)

where Π
0
is a positive-definite matrix which reflects a priori

knowledge as to how close x(0) is to the initial guess x̂(0).The
H
∞

norm can thus be interpreted as the maximum energy
gain from the input {Π−1/2

0
(x(0) − x̂(0)), {v(𝑝)}𝑘

𝑝=0
, {w(𝑝)}𝑘

𝑝=0
}

to the output {e(𝑝)}𝑘
𝑝=0

. However, the closed-form solution
of the H

∞
optimal estimation problem is available only in

specific cases, so the realization of H
∞

optimal filter is a
suboptimal filtering.

Suboptimal H
∞

filtering problem: given a scalar
𝛾 > 0, find an H

∞
suboptimal estimation strategy

F(z(0), z(1), . . . , z(𝑘)) that achieves 𝐽 < 𝛾
2. This clearly

requires checking whether

𝛾 ≥ inf 𝐽. (8)

The solution of the optimal H
∞

filtering problem can be
obtained by iterating on 𝛾 of the suboptimalH

∞
problem.

For a given 𝛾 > 0, if the [F(𝑘),G(𝑘)] is full rank, then an
estimator that achieves 𝐽 < 𝛾2 exists if, and only if [24],

P−1 (𝑘 + 1
𝑘

) +HT
(𝑘 + 1)H (𝑘 + 1) − 𝛾−2I

𝑛
> 0, (9)

where P(0) = Π
0
is a given positive definite matrices and

P(𝑘 + 1/𝑘) satisfies the Riccati recursion [24]

P(𝑘 + 1
𝑘

) = F (𝑘)P( 𝑘

𝑘 − 1

) FT (𝑘) + G (𝑘)GT
(𝑘)

− F (𝑘)P( 𝑘

𝑘 − 1

) [HT
(𝑘) IT
𝑛
]

× R−1
𝑒
(𝑘) [

H (𝑘)
I
𝑛

]P( 𝑘

𝑘 − 1

) FT (𝑘) ,

(10)

where

R
𝑒
(𝑘) = [

I
𝑎

0
0 −𝛾

2I
𝑛

]+[

H (𝑘)
I
𝑛

]P( 𝑘

𝑘 − 1

) [HT
(𝑘) IT
𝑛
] ,

(11)

I
𝑎
represents the 𝑎 × 𝑎 identity matrix.
The covariance updating is

P (𝑘) = P( 𝑘

𝑘 − 1

) − P( 𝑘

𝑘 − 1

) [HT
(𝑘) IT
𝑛
]

× R−1
𝑒
(𝑘) [

H (𝑘)
I
𝑛

]P( 𝑘

𝑘 − 1

) .

(12)

H
∞

filter gain is given by

K = P( 𝑘

𝑘 − 1

)HT
(𝑘) (I

𝑎
+H(𝑘)P( 𝑘

𝑘 − 1

)HT
(𝑘))

−1

.

(13)

So, the state updating equation ofH
∞

filter is given by

x̂ (𝑘) = F (𝑘) x̂ (𝑘 − 1) + K (z (𝑘) −H (𝑘)F (𝑘) x̂ (𝑘 − 1)) .
(14)

H
∞

filter can be extended to nonlinear systems by using
Jacobian linearisation technique. The resulting filter is called
EHF. Compared to EKF andUKF, themain advantage of EHF
is that there is no limitation about system noise distribution
and it treats the system noise as an energy-bounded signal.
Through adjusting parameter 𝛾, the state estimation error can
be minimized.

3.2. IEHF. Although EHF can adapt to the case of system
noise with non-Gaussian distribution, it also will face the
problem of model linearisation error. Therefore, to further
enhance the degree of linearisation approximation of non-
linear system, this paper makes improvements on model
linearisation technique and proposes IEHF algorithm. Its
fundamental idea is as below.

Given the filtered estimation x̂(𝑘 − 1) at time 𝑘 − 1. Take
the general nonlinear system described in (1) as an example,
linearize the dynamical model at x̂(𝑘 − 1), and retain first-
order small quantity (for simplicity, omitmodel variable 𝑟(𝑘))

x (𝑘) ≈ 𝑓 (x̂ (𝑘 − 1)) +
𝜕𝑓 (x̂ (𝑘 − 1))
𝜕x̂ (𝑘 − 1)

× (x (𝑘 − 1) − x̂ (𝑘 − 1)) + v (𝑘) .
(15)
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Similarly, linearize measurement model at state predictive
value x̂(𝑘/𝑘 − 1)

z (𝑘) ≈ ℎ(x̂( 𝑘

𝑘 − 1

)) +

𝜕ℎ (x̂ (𝑘/𝑘 − 1))
𝜕x̂ (𝑘/𝑘 − 1)

× (x (𝑘) − x̂( 𝑘

𝑘 − 1

)) + w (𝑘) .
(16)

It is not difficult to see that x̂(𝑘 − 1) and x̂(𝑘/𝑘 − 1) have
nothing to do with the current measurement z(𝑘). However,
the smoothed value x̂(𝑘−1/𝑘) and filtered value x̂(𝑘) obtained
from measurement z(𝑘) are obviously superior to x̂(𝑘 − 1)
and x̂(𝑘/𝑘 − 1). If we linearize the dynamical model and
linearize measurement model at the smoothed value and
filtered value, respectively, the approximation degree of the
model linearisation will be further improved. Therefore, this
paper adopts the linearisation form as follows.

Linearize the dynamical model at the smoothed value
x̂(𝑘 − 1/𝑘)

x (𝑘) ≈ 𝑓(x̂(𝑘 − 1
𝑘

)) +

𝜕𝑓 (x̂ (𝑘 − 1/𝑘))
𝜕x̂ (𝑘 − 1/𝑘)

× (x (𝑘 − 1) − x̂(𝑘 − 1
𝑘

)) + v (𝑘) .
(17)

Linearize the measurement model at the filtered value
x̂(𝑘)

z (𝑘) ≈ ℎ (x̂ (𝑘)) + 𝜕ℎ (x̂ (𝑘))
𝜕x̂ (𝑘)

(x (𝑘) − x̂ (𝑘)) + w (𝑘) . (18)

In order to further improve the filtering accuracy, the
linearisation technique can be repeated many times at one
step. All these contribute to IEHF algorithm. However, for
many nonlinear filtering problems, the performance is not
significantly improved after repeating iterations. Usually it
ends after two or three times of iterations. According to the
above thoughts, the implementation steps of IEHF algorithm
are as follows.

Assume that the iterative filtering value x̂𝑑(𝑘 − 1) and
covariance P𝑑(𝑘 − 1) at time 𝑘 − 1 are known, the iterative
filtering value x̂𝑐(𝑘) in 𝑐 (1 ≤ 𝑐 ≤ 𝑑) iteration process at time
𝑘 can be solved according to the following expression:

x̂𝑐 (𝑘) = x̂𝑐 ( 𝑘

𝑘 − 1

)

+ K𝑐 {z (𝑘) − ℎ (x̂𝑐−1 (𝑘))

−h𝑐−1 (x̂𝑐 ( 𝑘

𝑘 − 1

) − x̂𝑐−1 (𝑘))} ,

(19)

where

x̂𝑐 ( 𝑘

𝑘 − 1

) = 𝑓(x̂𝑐−1 (𝑘 − 1
𝑘

))

+ f𝑐−1 (x̂𝑑 (𝑘 − 1) − x̂𝑐−1 (𝑘 − 1
𝑘

)) ,

P𝑐 ( 𝑘

𝑘 − 1

) = f𝑐−1P𝑑 (𝑘 − 1) f(𝑐−1)T +Q (𝑘 − 1) ,

K𝑐 ( 𝑘

𝑘 − 1

) = P𝑐 ( 𝑘

𝑘 − 1

) h(𝑐−1)T

× {h(𝑐−1)TP𝑐 ( 𝑘

𝑘 − 1

) h(𝑐−1)T + I
𝑎
}

−1

,

P𝑐 (𝑘) = P𝑐 ( 𝑘

𝑘 − 1

) − P𝑐 ( 𝑘

𝑘 − 1

)

× [h(𝑐−1)T IT
𝑛
]R−1
𝑒
(𝑘) [

h𝑐−1
I
𝑛

]P𝑐 ( 𝑘

𝑘 − 1

) ,

f𝑐−1 =
𝜕𝑓 (x̂𝑐−1 (𝑘 − 1/𝑘))
𝜕x̂𝑐−1 (𝑘 − 1/𝑘)

, h𝑐−1 =
𝜕ℎ (x̂𝑐−1 (𝑘))
𝜕x̂𝑐−1 (𝑘)

.

(20)

The smoothing value required by 𝑐 + 1 iteration is

x̂𝑐 (𝑘 − 1
𝑘

) = x̂𝑑 (𝑘 − 1) + P𝑑 (𝑘 − 1) f(𝑐−1)T

× (P𝑐 ( 𝑘

𝑘 − 1

))

−1

(x̂𝑐 (𝑘) − x̂𝑐 ( 𝑘

𝑘 − 1

)) .

(21)

3.3. IMM-IEHPF. On the basis of IMM-PF [15] algorithm,
this section provides the implementation process of IMM-
IEHPF algorithm.

Step 1 (interaction stage). Calculate the mixing probability

𝑢
𝑖𝑗
(𝑘 − 1) =

1

𝑐
𝑗

𝜋
𝑖𝑗
𝑢
𝑖
(𝑘 − 1) ,

𝑐
𝑗
=

𝑈

∑

𝑖=1

𝜋
𝑖𝑗
𝑢
𝑖
(𝑘 − 1) ,

(22)

where 𝑢
𝑖𝑗
(𝑘−1) represents the mixed probability of the mode

at time 𝑘 − 1. The interactive input state x̂
𝑜𝑗
(𝑘 − 1) and the

corresponding covariance P̂
𝑜𝑗
(𝑘 − 1) are given by

x̂
𝑜𝑗
(𝑘 − 1) =

𝑈

∑

𝑖=1

x̂
𝑖
(𝑘 − 1) 𝑢

𝑖𝑗
(𝑘 − 1) , 𝑖, 𝑗 = 1, 2, . . . , 𝑈,

̂P
𝑜𝑗
(𝑘 − 1) =

𝑈

∑

𝑖=1

𝑢
𝑖𝑗
(𝑘 − 1)

× {P̂
𝑖
(𝑘 − 1) + (x̂

𝑖
(𝑘 − 1) − x̂

𝑜𝑗
(𝑘 − 1))

× (x̂
𝑖
(𝑘 − 1) − x̂

𝑜𝑗
(𝑘 − 1))

T
} ,

(23)

where x̂
𝑖
(𝑘 − 1) and ̂P

𝑖
(𝑘 − 1) are the state estimate and

covariance estimation in mode-matched filter 𝑖 at time 𝑘 − 1,
respectively.
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Step 2 (filtering stage). (1) According to the Gaussian distri-
bution constructed by x̂

𝑜𝑗
(𝑘 − 1) and ̂P

𝑜𝑗
(𝑘 − 1), each mode

draws particles randomly,

x𝑙
𝑖
(𝑘 − 1) ∼ 𝑁 (x̂

𝑜𝑗
(𝑘 − 1) ,

̂P
𝑜𝑗
(𝑘 − 1)) ,

𝑙 = 1, 2, . . . , 𝑁
𝑠
, 𝑖 = 1, 2, . . . , 𝑈,

(24)

where𝑁
𝑠
is the number of particles.

(2) Importance sampling. Use IEHF algorithm
in Section 3.2 to update every particle x𝑙

𝑖
(𝑘 − 1) and

obtain a combination of a bank of Gaussian distribution
𝑁(x̂𝑙,𝑑
𝑖
(𝑘), P̂𝑙,𝑑
𝑖
(𝑘)), 𝑙 = 1, 2, . . . , 𝑁

𝑠
, 𝑖 = 1, 2, . . . , 𝑈. Then

draw particles according to this distribution

x̃𝑙
𝑖
(𝑘) ∼ 𝑁 (x̂𝑙,𝑑

𝑖
(𝑘) , P̂𝑙,𝑑

𝑖
(𝑘)) , 𝑖 = 1, 2, . . . , 𝑁

𝑠
. (25)

Calculate the particle weights [6]

𝑤
𝑙

𝑖
(𝑘) =

𝑝 (z (𝑘) | x̃𝑙
𝑖
(𝑘)) 𝑝 (x̃𝑙

𝑖
| x𝑙
𝑖
(𝑘 − 1))

𝑁 (x̂𝑙,𝑑
𝑖
(𝑘) ,

̂P𝑙,𝑑
𝑖
(𝑘))

, (26)

where 𝑝(z(𝑘) | x̃𝑙
𝑖
(𝑘)) is likelihoods function, 𝑝(x̃𝑙

𝑖
| x𝑙
𝑖
(𝑘 −

1)) is the priori density, and 𝑁(x̂𝑙,𝑑
𝑖
(𝑘),

̂P𝑙,𝑑
𝑖
(𝑘)) represents

importance density function generated by IEHF.
Normalizing

𝑤
𝑙

𝑖
(𝑘) =

𝑤
𝑙

𝑖
(𝑘)

∑
𝑁
𝑠

𝑙=1
𝑤
𝑙

𝑖
(𝑘)

. (27)

(3) Resampling. According to the normalized weight,
resample to get the new particles {x𝑙

𝑖
(𝑘), (1/𝑁

𝑠
)}
𝑙=1,2,...,𝑁

𝑠

𝑖=1,2,...,𝑈
.

(4) State estimation of each mode

x̂
𝑖
(𝑘) =

1

𝑁
𝑠

𝑁
𝑠

∑

𝑙=1

x𝑙
𝑖
(𝑘) . (28)

Covariance estimation

̂P
𝑖
(𝑘) =

1

𝑁
𝑠

𝑁
𝑠

∑

𝑙=1

(x̂
𝑖
(𝑘) − x𝑙

𝑖
(𝑘)) (x̂

𝑖
(𝑘) − x𝑙

𝑖
(𝑘))

T
. (29)

Step 3 (update the mode probability). Particle residual of
each mode

𝛿
𝑙

𝑖
(𝑘) = z (𝑘) − ℎ (x̂𝑙

𝑖
(𝑘)) , (30)

where ℎ(x̂𝑙
𝑖
(𝑘)) is measurement predicted output.

Covariance of residual

S
𝑖
(𝑘) =

1

𝑁
𝑠

𝑁
𝑠

∑

𝑙=1

(z
𝑖
(𝑘) − ℎ (x̂𝑙

𝑖
(𝑘))) (z

𝑖
(𝑘) − ℎ(x̂𝑙

𝑖
(𝑘))

T
,

(31)

where z
𝑖
(𝑘) = (1/𝑁

𝑠
) ∑
𝑁
𝑠

𝑙=1
ℎ(x̂𝑙
𝑖
(𝑘)) is mean of predicted

output over the sample set.

Mode likelihood function

𝐿
𝑖
(𝑘) =

1

𝑁
𝑠

𝑁
𝑠

∑

𝑙=1

𝑁(𝛿
𝑙

𝑖
(𝑘) ; 0, S

𝑖
(𝑘)) . (32)

Mode probability

𝑢
𝑖
(𝑘) =

1

𝐶

𝐿
𝑖
(𝑘) 𝑐
𝑖
, 𝐶 =

𝑈

∑

𝑖=1

𝐿
𝑖
(𝑘) 𝑐
𝑖
. (33)

Step 4. Combination

x̂ (𝑘) =
𝑈

∑

𝑖=1

𝑢
𝑖
(𝑘) x̂
𝑖
(𝑘) ,

P̂ (𝑘) =
𝑈

∑

𝑖=1

𝑢
𝑖
(𝑘) (P̂

𝑖
(𝑘) + (x̂

𝑖
(𝑘) − x̂ (𝑘)) (x̂

𝑖
(𝑘) − x̂ (𝑘))T) .

(34)

4. Simulation Results and Analysis

In order to validate the filtering performance of IMM-IEHPF
algorithm, this paper compares standard IMM, IMM-PF, and
IMM-IEHF algorithm. The experiment scene is designed
as follows. Radar scanning interval is 𝑇 = 1 s and repeat
for 100 times. The target moves in straight line in the
former 34 s, then it turns anticlockwise with turning speed
of 𝜔 = 0.1 rad/s until 67 s and moves in straight line in
the last 33 s. Adopt the system model in (1)∼(2) and the
target state x(𝑘) = [ 𝑥(𝑘) ̇𝑥(𝑘) 𝑦(𝑘) ̇𝑦(𝑘) ]

T, which includes the
position (m) and velocity component (m/s) in 𝑥-axis and
𝑦-axis. Mode 𝑟(𝑘) ∈ {1, 2, 3}, 𝑟(𝑘) = 1 corresponds to the
uniform rectilinear model. The 𝑟(𝑘) = 2 and 𝑟(𝑘) = 3

correspond to the anticlockwise turning mode and clockwise
turning mode, respectively. With the known initial state
x(0) = [ 200m 15m/s 150m 6m/s ]T, the target state was evoluted
according to different system functions as follows.

Mode 1 (CV mode, 𝑟(𝑘) = 1):

𝑓 (x (𝑘) , 1) =
[

[

[

[

1 𝑇 0 0

0 1 0 0

0 0 1 𝑇

0 0 0 1

]

]

]

]

,

𝑔 (x (𝑘) , 1) =

[

[

[

[

[

[

[

[

[

[

[

𝑇
2

2

0

𝑇 0

0

𝑇
2

2

0 𝑇

]

]

]

]

]

]

]

]

]

]

]

,

Q
1
(𝑘) = diag ([52 22 52 22]) .

(35)
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Mode 2 (CT mode, 𝑟(𝑘) = 2):

𝑓 (x (𝑘) , 2) =

[

[

[

[

[

[

[

[

[

[

[

1 sin 𝜔𝑇
𝜔

0

(cos𝜔𝑇 − 1)
𝜔

0 cos𝜔𝑇 0 − sin𝜔𝑇

0

(1 − cos𝜔𝑇)
𝜔

1

sin𝜔𝑇
𝜔

0 sin𝜔𝑇 0 cos𝜔𝑇

]

]

]

]

]

]

]

]

]

]

]

,

𝑔 (x (𝑘) , 2) =

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑇
2

2

0

𝑇 0

0

𝑇
2

2

0 𝑇

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Q
2
(𝑘) = diag ([102 52 102 52]) ,

(36)

where 𝜔 is the turning coefficient.
Mode 3 is the same asMode 2; however, in mode 2, 𝜔 > 0

corresponds to the anticlockwise manoeuvre, and in mode 3,
𝜔 < 0 corresponds to the clockwise manoeuvre. The initial
mode probabilities are set as 𝑢

1
(0) = 𝑢

2
(0) = 𝑢

3
(0) = 1/3,

and the mode transition matrix [𝜋
𝑖𝑗
] is given by [15]

[𝜋
𝑖𝑗
] =
[

[

0.96 0.02 0.02

0.02 0.96 0.02

0.02 0.02 0.96

]

]

. (37)

Wemeasure the range and bearing, and themeasurement
function ℎ(⋅) is mode- and time-independent and is given by

ℎ (x (𝑘)) = [√𝑥2(𝑘) + 𝑦2(𝑘) arctan
𝑦(𝑘)

𝑥(𝑘)

]

T
. (38)

Measurement noise standard deviations are 𝜎
𝑟
= 30m

for the range measurement, 𝜎
𝜃
= 2mrad for the bearing, and

the number of particles is 𝑁
𝑠
= 1000 [15]. In IMM-IEHPF

algorithm, parameter 𝛾 = 1.6. Usually, in order to ensure the
robustness of the algorithm, parameter 𝛾 should be as small
as possible when meeting the existence conditions of (9). At
present, it can only be got through trial and error. Iteration
times 𝑑 = 3. We carried out Monte Carlo simulation for𝑀 =

100 times and the position root mean square error (RMSE) at
time 𝑘 is defined as

RMSE (𝑘)

= (

1

𝑀

𝑀

∑

mot=1
[(𝑥

mot
(𝑘) − 𝑥(𝑘))

2

+(𝑦
mot
(𝑘) − 𝑦 (𝑘))

2

])

1/2

.

(39)

Figure 1 compares the state estimation generated from a
single run of IMM, IMM-IEHF, IMM-PF and IMM-IEHPF.
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Figure 1: Position estimate.

For observing the state estimation diversity of the four
methods, we have magnified Figure 1.

As seen from Figure 1, these four methods do well in the
target state estimation in the two straight-line movements.
However, in the anticlockwise turning period, the deviation
from the true values obtained from IMM is larger than those
of the other three methods. Among them, IMM-IEHPF has
the best state estimation in themaneuvering stage.We can see
that the trajectory of IMM-IEHPF is in accordance with the
true trajectory.

To compare the filtering accuracy of the previous four
methods, Figure 2 shows the position root mean square error
of the fourmethods. From Figure 2, we observe that the IMM
filter diverges after 𝑡 = 34 s until 𝑡 = 67 s. The reasons for
this is that in the IMM filter the speed is wrongly estimated.
This is due to the nonlinearity in the measurements in
the maneuvering mode. Compared with IMM, the position
RMSE of IMM-IEHF, and IMM-PF also increase to certain
extent, but both are less than that of IMM. IEHF improves
the degree of approximation of the nonlinear system through
iteration and PF can deal with nonlinear filtering problem
by describing posteriori density through a series of particles,
which achieve better filtering accuracy than EKF. However,
IEHF is just a linear approximation for nonlinear system
and improvement of filtering accuracy is limited. PF adopts
the prior density as the importance density function with-
out considering the latest measurement information. When
the target maneuvering and the measurement information
change greatly, the particles generated from the functionmay
deviate from the true posteriori density, resulting in a bad
filtering performance.

The IMM-IEHPF algorithm, however, can deal with
target maneuvering and we see that the filter also performs
well after 𝑡 = 34 s until 𝑡 = 67 s. IEHPF takes advantages
of IEHF and PF together in itself. In the filtering process,
IEHPF not only considers the latest measurements in the
particle sampling process but also reduces the influence
of error caused by linearizing measurement model. When
these algorithms are directly applied to the IMM framework,
posteriori density of each mode is described much more well
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Figure 2: Position RMSE.

by IEHPF than EKF, IEHF, and PF. Therefore, the filtering
accuracy of IMM-IEHPF is the highest.

To quantitatively analyse the filtering performances of the
four methods, Table 1 lists the mean value and variance of
position RMSE of each method in different observed bearing
standard deviation, which stands for different disturbances
of receiver noise and atmospheric. From Table 1, we can see
that the mean value and variance of position RMSE of all
four methods grow with the increase of the observed bearing
standard deviation 𝜎

𝜃
, nevertheless, which of IMM-IEHPF

are less than those of the others (which is in accordance with
the analytical results in Figure 2), especially when the bear-
ing standard deviation is considerable high, our proposed
method still demonstrates higher tracking precision (i.e.,𝜎

𝜃
=

10mrad, taking the mean of RMSE as the metric, it reduces
by 57.86% compared with IMM, and 7.53% compared with
IMM-PF).

5. Conclusions

This paper has investigated the problem of maneuvering
target tracking in the nonlinearities of the dynamic state-
space and the non-Gaussian measurement noise. We have
presented a new IEHPF method in the IMM framework.The
performance of the proposed method is evaluated via sim-
ulations and compared with IMM, IMM-IEHF, and IMM-
PF, which illustrates that the tracking performance of our
proposed method is superior to the others. We have also pro-
vided insight into the influence of various bearing standard
deviations. Three bearing standard deviations are given for
comparing the performance of our proposedmethodwith the
other methods. We have found that IMM-IEHPF is weakly
sensitive to noise levels. The simulation results have well
verified the validity of the proposed method.

This paper only considers amaneuvering target appearing
in the scanned region of radar at whole time step. However,
in actual radar target tracking, target may disappear at any
time step. Therefore in future work, we will study how to
construct a suitable model to describe target appearance or
disappearance in maneuvering target tracking under a low
SNR environment.

Table 1: Mean and variance of RMSE under different measurement
bearing deviations.

Algorithm Bearing standard
deviations 𝜎

𝜃
(mrad) Mean Variance

IMM 2 9.7293 98.2215
IMM-IEHF 2 4.0394 5.6625
IMM-PF 2 4.1397 2.4750
IMM-IEHPF 2 2.7593 0.3633
IMM 5 12.794 159.49
IMM-IEHF 5 6.5694 7.5583
IMM-PF 5 5.2413 2.9841
IMM-IEHPF 5 5.3559 1.1192
IMM 10 18.421 333.87
IMM-IEHF 10 8.6552 10.3592
IMM-PF 10 8.3949 8.2179
IMM-IEHPF 10 7.7631 3.4886
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