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We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co,sZn,;Fe,O,) nanoparticles, using
layer-by-layer (LbL) self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth
applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-
assembly, we fabricated two types of films: (1) a blended three-component LbL film consisting of a sequential poly(acrylic
acid)/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride) layer and (2) a tetralayer LbL film consisting of sequential
poly(diallyldimethylammonium chloride), poly(sodium-4-sulfonate), bPEI-ferrite, and poly(sodium-4-sulfonate) layers. We
compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles
(Coy5Zn, sFe,0,) were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition
of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron
microscopy; and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure,
and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured

using a profilometer, atomic force microscope, and scanning electron microscope.

1. Introduction

Microwave absorbing materials, commonly known as radar
absorbing materials, are in high demand for microwave
absorption coatings on the surface of military stealth aircraft
to avoid detection by enemy radar. A number of microwave
absorbing materials have been explored for this application:
conducting fibers [1, 2], ferromagnetic composites [3], car-
bon nanotubes [4], and ferrites [5-8] are frequently used.
In particular, the unique microwave absorbing properties
of ferrite nanoparticles, resulting from both magnetic and
dielectric losses, have been explored by many groups [9-
15]. Particularly, ferrite nanoparticles are widely used in the
microwave absorbing technology. By controlling composi-
tion of ferrite, the performance of microwave absorbing can
be tuned. Spinel ferrite has large resistivity and large mag-
netic loss; therefore, it has been used for microwave absorbing
materials. Application of spinel ferrite is limited in 1-3 MHz
region because of its low resonance frequency; however,
by doping with metallic ions such as Co, Zn, and Mg the

absorbing range can be controlled which leads to unlimited
possibility of spinel ferrite. For examples, Zhao group doped
cobalt and cupper ions with Ni-Zn spinel ferrite to tune the
microwave absorbing properties. The microwave absorbing
region, in which reflection loss values are lesser than —10 bB,
of NiCoZnFe, O, is achieved at 3.9-11.5 GHz. The control of
microwave absorption of metallic ion doped Ni-Zn ferrites
mainly results from magnetic loss change derive from metal-
lic ions [16].

At present, however, 3-dimensional arrangements of
microwave absorbing materials are not well developed.
Microwave absorbing materials are usually prepared as a
suspension of colloidal nanoparticles in a solvent, in which
electrostatic or steric repulsive forces prevent aggregation of
nanoparticles [17], and conventional 3-dimensional arrays of
magnetic nanoparticles are fabricated as pressed or mixed
pellets [18-20]. However, these methods are costly and
require an excessive volume of material, as the ferrite nano-
particles are not densely packed in the pellets. Therefore, a



more effective method such as film deposition is needed for
industrial applications.

Layer-by-layer (LbL) self-assembly consists of sequential
adsorption of oppositely charged polymers to build up a mul-
tilayer thin film at the molecular level [21-24]. It allows the
fabrication of multilayered thin films having desired thick-
ness, composition, and density [25, 26]. Moreover, various
materials ranging from polyelectrolytes to nanoparticles [27],
DNA [28], block copolymer micelles [29], and any kind of fer-
rite nanoparticles, such as cobalt ferrites [30], zin ferrites [31],
and other mixed ferrites [32], can be incorporated into a LbL-
deposited multilayer thin film through complementary inter-
actions (e.g., electrostatic interactions, covalent bonding,
hydrogen bonding, and hydrophobic interactions) [33-35].

There are previous studies about film deposition method
that incorporates ferrite nanoparticles into multilayered film
by LbL self-assembly [36-38].

In this study, we report a facile and simple method of
preparing microwave absorbing nanofilm containing densely
packed and well-organized ferrite nanoparticles. Since ferrite
nanoparticles are inorganic, as-synthesized oleic-acid- (OA-
) stabilized nanoparticles do not disperse in water and are
unsuitable for electrostatic interaction-based LbL self-assem-
bly. Therefore, additional ligand exchange treatment is
needed to incorporate ferrite nanoparticles in an LbL-assem-
bled film. During this study, we examined two different
types of films and compared their surface morphologies,
thicknesses, and the packing density of incorporated ferrite
nanoparticles. The blended three-component LbL film con-
sists of a weak-polyelectrolyte/ferrite-nanoparticle-blended
layer and an oppositely charged weak polyelectrolyte layer.
Poly(allylamine hydrochloride) (PAH) and poly(acrylic acid)
(PAA) are typically used weak polyelectrolytes for electro-
static interaction-based LbL self-assembly and are used as
building blocks for fabricating blended three-component LbL
films. Tetralayer LbL films consist of two kinds of strong
polyelectrolytes and ferrite nanoparticles. Poly(diallyldim-
ethylammonium chloride) (PDADMAC) and poly(sodium
4-styrenesulfonate) (PSS) are used as strong polyelectrolytes
for tetralayer LbL films. The main difference between a
blended three-component LbL film and a tetralayer LbL
film is that the blended three-component LbL film can be
built using as-synthesized oleic-acid- (OA-) stabilized ferrite
nanoparticles without functionalization of the nanoparticles,
whereas the tetralayer film needs ligand exchange of the
ferrite nanoparticles. The effect of ligand-exchanged nano-
particles and the composition of two types of LbL self-
assembled films are examined in this study.

2. Material and Methods

2.1. Materials. Tron(IIT) chloride hexahydrate, zinc sulfate
heptahydrate, cobalt(II) chloride hexahydrate, oleic acid
(OA), and sodium hydroxide powder were purchased from
DaeJung. Trioctylphosphine oxide (TOPO), poly(diallyld-
imethylammonium chloride) solution (PDADMAC, Mw
200,000-350,000, 20wt. % in H,O), poly(sodium 4-sty-
renesulfonate) (PSS, Mw 70,000), and branched polyethylen-
imine (bPEIL, Mw 25,000) were obtained from Sigma Aldrich.
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2.2. Synthesis of Ferrite Nanoparticles

2.2.1. Oleic-Acid- (OA-) Stabilized Ferrite Nanoparticles. Co-
balt-doped zinc ferrite (Co, sZn, sFe,O,) nanoparticles were
prepared following the procedure reported by Lopez et
al. [39]. Briefly, FeCl;-6H,O (15mL; 0.4 M), CoCl,-6H,0
(15mL; 0.1M), and ZnSO,-7H,0O (15mL; 0.1M) solutions
were mixed as the precursor solution. NaOH (15mL; 3 M)
was added as the coprecipitation agent to the precursor solu-
tion, dropwise with vigorous stirring. Precipitation occurred
immediately, changing the solution’s color to brown. The
precipitated solution was stirred at 80°C for 1h for reaction.
After reaction the pH of the solution changed from 12 to
10.5 by washing with DI water. To prevent aggregation of
ferrite nanoparticles, 5 mL of OA was added to the solution
as a coating agent and surfactant and then stirred for 2h at
80°C. The precipitate was washed twice with DI water and
then washed with ethanol and acetone to remove unnecessary
compounds. The supernatant was separated by centrifugation
for 15 min at 4000 rpm, and the precipitate dried overnight in
an 80°C oven.

2.2.2. bPEI Ligand-Exchanged Ferrite Nanoparticles. Trioct-
ylphosphine oxide (TOPO) was added as cosurfactant when
the oleic acid was introduced to the ferrite solution (TOPO:
1g,2.5mmol; OA:1mL, 3.2 mmol). The remainder of the pro-
cess was as above for the OA-stabilized ferrite nanoparticles.
Well-dried OA + TOPO stabilized ferrite nanoparticles were
dispersed into chloroform in a bath sonicator to obtain the
ferrite solution (5 mg/mL). Ferrite solution (2mL; 5 mg/mL)
was mixed with branched polyethylenimine (MW 25,000)
in 100 mL of DMSO. After 48h at room temperature for
reaction, the bPEI-ferrite nanoparticles were collected by
centrifugation for 1 h at 8000 rpm and redispersed into 10 mL
of DI water.

2.3. Layer-by-Layer Assembly

2.3.1. Blended Three-Component LbL Film. LbL multilayer
films were fabricated by hand-dipping. The silicon wafer was
exposed to O, plasma to produce a negatively charged sur-
face. The negatively charged wafer was dipped into cationic
PAH solution (pH 7.5) for 15s and then washed by dipping
two times in DI water for 15s to remove weakly attached
polyelectrolytes. The PAA/ferrite blended layer, which follows
in the sequence, was deposited on the PAH coated wafer
surface by dipping the substrate into the blended solution
of PAA and ferrite (pH 3.5). Washing was repeated as in
the previous step. The pH of the solution was adjusted using
NaOH (0.2M).

2.3.2. Tetralayer LbL Film. Following O, plasma exposure,
the negatively charged wafer was dipped into cationic PDAD-
MAC solution for 10 min and washed three times by dipping
in DI water for 2min, 1 min, and 1min to remove weakly
attached PDADMAC. The PSS, bPEI-ferrite, and PSS layers
were then deposited in sequence on the PDADMAC layer,
using the same adsorption process. The PDADMAC and PSS
solutions contained NaCl (0.3 M).
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ScHEME 1: Schematic of two types of layer-by-layer (LbL) nanofilm assembly on Si wafer. (a) Three-component blend LbL film (PAH/PAA +
ferrite),,, and (b) tetralayer LbL film (PDADMAC/PSS/bPEI-ferrite/PSS),,.

The processes for fabricating the two types of films are
illustrated in Scheme 1.

2.4. Characterization of Ferrite Nanoparticles and Multilayer
Films. Energy-filtering transmission electron microscopy
(EF-TEM) images of ferrite nanoparticles were obtained
using a LIBRA 120 microscope (Carl Zeiss). Energy-dis-
persive X-ray spectroscopy (EDX), in conjunction with field-
emission scanning electron microscopy (FE-SEM), was used
for analysis of the dried ferrite nanoparticle powders. Atomic
force microscopy (AFM) images were obtained with NX-
10 (Park Systems) in noncontact mode. The thickness of
multilayer thin films on wafers was measured by Profilometer
(Dektak 150, Veeco).

3. Results and Discussion

LbL self-assembly provides opportunities to control film
thickness, composition, and morphology. Although inter-
molecular interactions such as hydrogen bonding, covalent
bonding, and charge transfer can be adopted for LbL self-
assembly, electrostatic interactions are most commonly used.
During electrostatic interaction-based LbL assembly, the
structure and morphology of fabricated multilayer thin film
can be affected by parameters such as pH, adsorption time,
and concentration of solute and salt. The charge density
of weak polyelectrolytes is tunable through its sensitivity
to the solution’s pH. In comparison, the ionic strength of
strong polyelectrolytes can be controlled through NaCl con-
centration. NaCl screens the repulsive interaction of strong
polyelectrolytes, leading to an increased film thickness [40].

As-synthesized oleic-acid-stabilized ferrite nanoparticles
do not disperse in water and require additional processes such
as blending with charged polyelectrolytes or ligand exchange
if they are to be used as building blocks for LbL-deposited
films. Figure 1(a) presents a TEM image showing the size
and morphology of OA-stabilized Co,sZn,sFe,O, ferrite
nanoparticles, while Figure 1(b) shows ligand-exchanged
bPEI-ferrite nanoparticles.

The average size of synthesized OA-stabilized ferrite
nanoparticles was about 18.5 nm; in comparison, the ligand-
exchanged bPEI-ferrite nanoparticles average size was about

7 nm. The size reduction of ferrite nanoparticles originated in
the added TOPO, which was introduced as a cosurfactant and
coating agent to increase stability and to provide sufficient
binding sites for bPEI ligands. This ligand exchange enabled
water dispersion of inorganic nanoparticles: the amine group
of the bPEI ligand protonated in the water solvent and had
a positive zeta potential value of +34.3 mV. The inset images
of Figure 1 show ferrite nanoparticles in water: OA-stabilized
ferrite nanoparticles did not disperse in water (Figure 1(a),
left), while ligand-exchanged bPEI-ferrite nanoparticles were
well dispersed (Figure 1(b), right). When magnetic nanopar-
ticles are incorporated into film, a decreased magnetic dipole
interaction between magnetic nanoparticles is important in
creating a well-organized nanostructure.

X-ray diffraction patterns of the powdered OA-stabilized
ferrite nanoparticles confirmed a cubic spinel structure of
Coy5Zn, sFe,0, (Figure 1(c)). Peaks indexed (220), (311),
(400), (422), (511), and (440) were observed; a strong (311)
plane reflection indicates the ferrite cubic spinel structure.
The synthesized ferrite nanoparticles were observed to have
good crystallinity and high quality, as there were no peaks
observed from other phases. Microwave energy can be
absorbed and transformed into heat energy by dielectric and
magnetic losses when the absorber’s characteristic impedance
is matched to the characteristic impedance of free space
[41]. Over the gigahertz (GHz) range, dielectric losses are
negligible (¢"/¢" = 0) and only magnetic loss affects micro-
wave absorption. Spinel ferrites are familiar electromagnetic
wave absorbers because of their resistivity and magnetic
losses; however, at gigahertz frequencies, their permeabil-
ity decreases according to Snoek’s limit [42]. To increase
microwave absorption properties, metal ions such as cobalt
and zinc can be doped into spinel-type ferrites. Doped
metallic ions change the permeability of ferrite nanoparticles
which result in enhancement of microwave absorption prop-
erties by magnetic losses. The composition of synthesized
ferrite nanoparticles was determined by EDX-SEM analysis
(Figure 2 and Table 1), showing a molar ratio of about
0.5:0.5:2:4 [Co/Zn/Fe/O].

Because the pK, value of PAA is 4.5, the degree of
ionization of PAA (pH 3.5) is about 30-40%, which offers
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FIGURE 1: TEM images of (a) synthesized OA-stabilized Co,sZn,;Fe,O, ferrite nanoparticles, and (b) ligand-exchanged bPEI-
Coy5Zn, ;Fe,0, ferrite nanoparticles. Inset images show the ferrite nanoparticles from the respective treatments that (a) precipitated in
water and (b) dispersed in water. (c) XRD patterns of powdered OA-stabilized Co, ;Zn, ;Fe,O, nanoparticles.
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FIGURE 2: EDX spectrum of the as-prepared ferrite nanoparticles.
Inset image shows the SEM top view of ferrite nanoparticles.

sufficient binding sites for blended ferrite nanoparticles and
sequential PAH (pH 7.5) layers [43]. Figure 3 shows the thick-
ness growth curves of the two different types of LbL assem-
bled film. The notation of LbL film listed as (PDADMAC/
PSS/bPEI-ferrite/PSS), s, represents multilayer film consist-
ing of PDADMAG, PSS, bPEI ligand-exchanged ferrite, and
PSS where n means the number of layers. For examples,
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FIGURE 3: Growth curves of three-component blend LbL film (red
line) and tetralayer LbL film (black line).
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FIGURE 4: FE-SEM images of (a) blended three-component LbL film: (PAA + ferrite/PAH),,, and (b) tetralayer LbL film: (PDADMAC/
PSS/bPEI-ferrite/ PDADMAC),,. Inset image in (a) shows higher magnification.
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FIGURE 5: FE-SEM top-view images of tetralayer LbL films (PDADMAC/PSS/bPEI-ferrite/PSS),,. (a) n = 3, (b) n = 10, and (c) n = 15. (d) A

cross-sectional SEM image of (PDADMAC/PSS/bPEI-ferrite/PSS),,.

TaBLE 1: Composition of the as-prepared ferrite nanoparticles.

Atomic ratio

Sample Elements Atomic % Weight % (Zn=0.5)
Co 7.37 13.04 0.62
Coy5Zn, sFe,0, Zn 5.87 11.53 0.50
Fe 28.20 47.29 2.40
(0] 58.56 28.14 4.98

the notation of (PDADMAC/PSS/bPEI-ferrite/PSS),, where
n is 20 represents 10-tetralayer multilayer film consisting of
repeated PDADMAC/PSS/bPEI-ferrite and PSS. Thickness of
the blended three-component LbL film (red line) increased

linearly with the number of bilayers, indicating that the
PAA + ferrite nanoparticle layer and the PAH layer success-
fully developed an LbL film. Thickness of the tetralayer LbL
film also increased with the number of the bilayers, once five
tetralayers had been deposited (black line). The top-view FE-
SEM image shows the surface of the three-component LbL
film consisting of (PAH/PAA + ferrite),, (Figure 4(a)) and
the tetralayer LbL film (PDADMAC/PSS/bPEI-ferrite/PSS),,
(Figure 4(b)). The aggregation of ferrite nanoparticles in both
films results from the nature of magnetic nanoparticles. Since
ligand exchange of OA-stabilized ferrite nanoparticles with
bPEI reduces the aggregation, the surface of the tetralayer LbL
film shows much more densely packed ferrite nanoparticles
than the blended three-component film. The key parameter
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FIGURE 6: AFM images of tetralayer LbL film. (a) (PDADMAC/PSS/bPEI-ferrite/PDADMAC);, (b) (PDADMAC/PSS/bPEI-ferrite/
PDADMAC);, (c) (PDADMAC/PSS/bPEI-ferrite/ PDADMAC),, and (d) (PDADMAC/PSS/bPEI-ferrite/ PDADMAC),;.

for the phase distribution of ferrite nanoparticle is balance
between attraction force of magnetic nanoparticles and
repulsion force of positively charged bPEI ligand of ferrite
particles [44]. Figures 5(a), 5(b), and 5(c) show top-view
FE-SEM images of tetralayer LbL films. As the number of
tetralayers increased, the surface density of ferrite nanopar-
ticles gradually increased. The cross-sectional SEM image
shows a homogeneously fabricated ferrite multilayer film that

corresponds well to the thickness measured using a pro-
filometer (Figure 3). The AFM height image (Figure 6) dis-
plays the surface morphology of tetralayer LbL film; ferrite
nanoparticles did not fully cover the surface of the Si wafer
until 10 tetralayers had been deposited. The root-mean-
square (R,) surface roughness was 66.726 nm for 10 tetralay-
ers and 67.052nm for 15 tetralayers. These rough surfaces
resulted from aggregation of ferrite nanoparticles caused by
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strong polyelectrolytes. Since the size of ligand-exchanged
bPEI-ferrite nanoparticles was about 7nm as measured
from the TEM image (Figure 1(b)), the spherical structures
appearing in Figure 6(c) indicate aggregates of tens of bPEI-
ferrite nanoparticles. Even though the positively charged
bPEI ligand counteracted the magnetic attraction between
nanoparticles, an aggregated ferrite structure was observed.

4. Conclusion

In this study, we focused on incorporating ferrite nanopar-
ticles into a multilayer nanofilm. The inorganic ferrite na-
noparticles were oleic-acid- (OA-) stabilized or ligand-
exchanged using bPEI; the OA-stabilized nanoparticles had
a diameter of about 18.5 nm, compared to 7 nm after ligand
exchange. We successfully fabricated two types of nanofilms:
(1) a blended three-component LbL film consisting of PAA/
ferrite and PAH and (2) a tetralayer LbL film consisting
of PDADMAC/PSS/bPEI-ferrite/PSS. In both methods, fer-
rite nanoparticles were deposited onto a Si wafer using
an electrostatic-interaction-based LbL self-assembly method.
Surface morphologies, thicknesses, and packing densities of
the two types of film were investigated. Even though blended
three-component LbL film is much simpler and faster than
the tetralayer LbLfilm, the tetralayer LbL films had a better
organized nanostructure of ferrite nanoparticles, in compar-
ison to blended three-component LbL films. In conclusion,
by employing LbL self-assembly, we can fabricate densely
packed and well-organized multilayer ferrite films using
either weak or strong polyelectrolytes. We believe that further
research on this film deposition method for microwave
absorbing ferrite nanoparticles will accelerate their industrial
and military application in, for example, electronic devices,
stealth aircraft, and other military technologies.
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