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A model of shear thickening in dense suspensions of Brownian soft sphere colloidal particles is established. It suggests that shear
thickening in soft sphere suspensions can be interpreted as a shear induced phase transition. Based on a Landau model of the
coagulation transition of stabilized colloidal particles, taking the coupling between order parameter fluctuations and the local
strain-field into account, the model suggests the occurrence of clusters of coagulated particles (subcritical bubbles) by applying
a continuous shear perturbation. The critical shear stress of shear thickening in soft sphere suspensions is derived while reversible
shear thickening and irreversible shear thickening have the same origin. The comparison of the theory with an experimental
investigation of electrically stabilized colloidal suspensions confirms the presented approach.

1. Introduction

Concentrated colloidal dispersions are of technological rel-
evance for various industrial products such as paints, phar-
maceuticals, cosmetics, lubricants, and food. They are often
processed at high shear rates and stresses. In strong viscous
flows, colloidal dispersions exhibit a unique transition related
to an increase of the shear viscosity, termed shear thickening
[1]. This effect makes it harder to pump suspensions and can
cause equipment damage and failure in the production pro-
cesses (flow blockage). Next to reversible shear thickening,
also the irreversible aggregation of the dispersion after shear
thickening has been reported known as irreversible shear
thickening [2]. A fundamental understanding of the relation
between particle and flow properties of dense colloidal
suspensions is required in order to provide clues minimizing
undesired effects or exploiting useful applications of shear
thickening [3].

It has long been an issue to understand the underlying
mechanisms involved in shear thickening. A number of
theoretical attempts were made explaining shear thickening

in sheared suspensions of Brownian particles where inertial
effects can be neglected (non-Brownian particles [4] and
deformable spheres like emulsions, etc. are not considered
here). We have to distinguish between hard sphere sus-
pensions with an interaction potential confined to the bare
particle (Born-) repulsion and soft sphere suspensions with a
combination of van derWaals attraction and long-range elec-
trostatic or steric repulsion in addition to the Born-repulsion.

The dynamics of sheared hard sphere suspensions can
be studied in simulations. In dense suspensions, the particle
interaction is essentially determined by lubrication forces.
When particles are pushed together along the compres-
sion axis of a sheared suspension, they must overcome
the viscous drag forces between neighbouring particles in
order to move away from each other. Above a critical shear
rate, particles stick together generating the formation of
shear induced clusters (hydroclusters) [5–8]. At high volume
fractions, these transient touched particles induce jamming
and an increase of the viscosity at a critical shear stress
[9]. An alternative concept explaining shear thickening is
related to an order-disorder transition. In this approach, an
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ordered, layered structure of colloidal particles in a sheared
suspension becomes unstable above a critical shear rate
[10–13]. Shear thickening occurs when lubrication forces
between neighbouring particles cause particles to rotate out
of alignment of the sheared structure, destabilizing the flow.
A more sophisticated approach is based on an ad hoc mode-
couplingmodel. It describes the instability as a stress-induced
transition into a jammed state [14–17]. Also suggested is that
dilation of confined suspensions may cause a rapid increase
of the viscosity termed discontinuous shear thickening [18].

The presented theory is confined to the study of Brownian
soft sphere suspensions. As long as the attractive interaction
can be neglected, soft spheres can be approximated as so-
called effective hard spheres and the abovementioned mech-
anisms for shear thickening in hard sphere suspensions may
apply. However, soft sphere particles have a much more com-
plex interaction than hard spheres. With increasing volume
fraction van der Waals attraction causes a coagulation of col-
loidal particles, in particular when the repulsive stabilization
of the particles is small. For soft sphere suspensions, the hard
sphere approach to shear thickening has to be extended. An
approach aiming at understanding shear thickening in soft
sphere suspensions is an activation model [19–21]. It takes
advantage from the complex interaction potential and sug-
gests that colloidal particles arranged along the compression
axis of a sheared suspensionmay overcome themutual repul-
sion at a critical shear stress. As a result, the viscosity increases
when clusters of coagulated particles are formed. For a suffi-
ciently strong attraction between particles, these clusters can-
not be disrupted by the applied shear leading to irreversible
shear thickening. Otherwise, shear thickening is reversible.

While the activation model is a microscopic approach,
this paper presents an alternative mesoscopic approach to
shear thickening in dense soft sphere suspensions. It suggests
that shear thickening is related to a shear induced phase
transition.The transition is formulated in terms of a thermo-
dynamic standard concept known as the Landau model [22,
23].TheLandaumodel is amean field theory originally devel-
oped to understand symmetry breaking phase transitions. It
is a widely accepted theory utilized in particular to model
the dynamics of fluids and polymers [24]. Here the theory
is used to describe the equilibrium coagulation transition
of soft spheres. Taking the coupling of density fluctuations
to the viscoelastic medium into account, it can be shown
that sheared dense suspensions induce clusters of coagulated
particles in equivalence to the microscopic activation model.

The paper is organized as follows. First, shear thickening
in suspensions of hard and soft spheres is discussed. After
establishing a hydrodynamic model for a dense suspension
and deriving a Landau model for the coagulation transition,
the models are combined in a subcritical bubble theory to
predict the occurrence of coagulated particle clusters. The
application of the subcritical bubble approach to sheared
dense suspensions allows an estimation of the critical stress
for shear thickening. After comparing the model with an
experimental investigation, the paper ends with concluding
remarks on the rheology of concentrated soft sphere suspen-
sions in relation to their equilibrium phase diagram.

2. The Model

2.1. The Shear Thickening in Hard Sphere Suspensions. Hard
spheres have an interaction potential that is zero when parti-
cles do not overlap and infinite otherwise (Born-repulsion).
The phase diagram depends on the volume fraction Φ of the
bare particles determined by

Φ =
𝜋𝑎
3
𝑁

6𝑉
, (1)

where 𝑎 is the particle radius and 𝑁 the number of particles
in the volume 𝑉. As shown by simulations, monodisperse
hard sphere suspensions form a liquid phase and a (face-
centred cubic) solid phase for volume fractions Φ > 0.54

in the absence of flow. However, even for a polydispersity
of the particles >5%, this transition is suppressed. At a
packing fractionΦ > 0.58, the relaxation time becomes large
compared to typical experimental time scales. The system
does not relax anymore.This jammed state is called a colloidal
glass [25, 26]. Approaching the jamming volume fractionΦ

𝑗
,

the apparent shear viscosity of a hard sphere suspension 𝜂HS
diverges with

𝜂HS (Φ) ∼
1

(Φ − Φ
𝑗
)
𝛽 (2)

while 𝛽 ≈ 2 is the critical exponent for low shear rates ̇𝛾 →

0 [27]. The mode-coupling theory predicts that a dynamic
glass transition occurs already at Φ ≈ 0.516. It suggests
that approaching the jamming volume fraction large density
fluctuations with glass-like dynamics occur in concentrated
suspensions.They determine the internal relaxation time of a
concentrated suspension and are related to the divergence of
the viscosity approaching the jamming transition by

𝜏HS ∼ 𝜂HS (Φ) ∼ (Φ − Φ
𝑗
)
−𝛽

. (3)

The flow properties of sheared dense suspensions are
essentially governed by 𝜏HS. If the applied shear rate is much
smaller than the inverse relaxation time ̇𝛾𝜏HS ≪ 1, density
fluctuations disappear before they can be perturbed. For
the case ̇𝛾𝜏HS ≈ 1, however, they are deformed by the
convective shear flow. As a consequence, density fluctuations
are compressed along the compression axis and stretched
along the elongation axis of the sheared suspension while
rotating in time as schematically displayed in Figure 1. This
effect causes a decrease of the apparent viscosity of hard
sphere suspensions termed shear thinning [28].

The deformation of density fluctuations leads to the com-
pression of particles arranged along the compression axis. To
move away from each other, they must overcome the viscous
drag forces created by the small gaps between neighbouring
particles.This lubrication effect determines the characteristic
separation time 𝜏

𝑃
of a pair of particles. For shear rates ̇𝛾𝜏

𝑝
≪

1, there is sufficient time for hard spheres to detach. However,
for ̇𝛾𝜏

𝑝
≫ 1, particles arranged along the compression

axis start to form transient clusters (so-called hydroclusters).
Shear thickening occurs in this view when the applied shear
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Figure 1: Displayed is the deformation of a large density fluctuation
of volume 𝑉

𝑓
in a simple shear geometry for an applied shear stress

𝜎.

rate is ̇𝛾
HS
𝐶
𝜏
𝑝
≈ 1 [8]. Based on this approach, several relations

have been established characterizing the critical shear stress
[2]. As a rule of thumb, the onset of shear thinking can
be estimated for Brownian colloids by the relation between
Brownian and hydrodynamic forces governed by a Peclet
number Pe = 6𝜋𝜂

𝑆
𝑎
3
̇𝛾/𝑘
𝐵
𝑇, where 𝑘

𝐵
is the Boltzmann

constant, 𝑇 the temperature, and 𝜂
𝑆
the Newtonian viscosity

of the solvent. Shear thickening occurs for hard spheres when
the shear stress 𝜎 increases thermal diffusion of the particles
when Pe > 100. Hence, the critical stress for the onset of shear
thickening is of the order [2]

𝜎
HS
𝐶

= ̇𝛾
HS
𝐶
𝜂
𝑆
≈
50𝑘
𝐵
𝑇

3𝜋𝑎3
. (4)

Shear thickening in hard sphere suspensions occurs as a
gradual increase of the viscosity with increasing shear rate
(continuous shear thickening), since lubrication forces pro-
hibit a direct contact of the particles. Discontinuous shear
thickening, related to a rapid increase of the viscosity at the
critical shear rate ̇𝛾

HS
𝐶
, occurs only when the particles come

sufficiently close such that lubrication breaks down and the
surface roughness of the particles comes into play [18].

2.2. The Shear Thickening in Soft Sphere Suspensions

2.2.1. The Activation Model. The hard sphere model is an
idealization of the colloidal particle interaction. In practical
applicationsmainly soft sphere suspensions with electrostatic
or steric repulsion are utilized. For convenience, we want
to confine our considerations to soft sphere suspensions of
electrically stabilized monodisperse colloidal particles. The
DLVO theory states that the total two-particle interaction
potential can be expressed as the sum of the double-layer
potential𝑈el and van derWaals attraction𝑈vdW (note that for
high volume fractions short range surface forces and also the
surface roughness may come into play not taken into account
here; for more details, see [20]):

𝑈 (ℎ) = 𝑈el (ℎ) + 𝑈vdW (ℎ) , (5)

where ℎ is the surface-to-surface distance. In numerous cases,
a simple equation derived by Hogg et al. [29] was found to be
a suitable approximation, which for our case can be expressed
for a constant surface potential by

𝑈CP (ℎ) = 2𝜋𝜀0𝜀𝑟𝑎𝜁
2 ln (1 + 𝑒−𝜅ℎ) (6)

Primary
minimum

Secondary
minimum

Effective hard spheres

U(h)

h
h0hmax

Figure 2: Displayed are two interaction potentials 𝑈(ℎ) of electri-
cally stabilized colloidal particles as a function of the surface-to-
surface distance ℎ. The combination of electrostatic repulsion and
van der Waals attraction leads to the occurrence of a primary and
a secondary potential minimum, while ℎmax indicates the potential
maximum and ℎ

0
the average mutual distance of the particles. For

highly stabilized particles (effective hard spheres), the secondary
minimum disappears.

and for a constant surface charge approach of the particles by

𝑈CC (ℎ) = −2𝜋𝜀0𝜀𝑟𝑎𝜁
2 ln (1 − 𝑒−𝜅ℎ) , (7)

where we approximated the surface potential by the 𝜁-poten-
tial. The parameters 𝜀

0
and 𝜀
𝑟
are the absolute and relative

dielectric constants. The Debye reciprocal length 𝜅 is defined
by

𝜅 = √
2𝐶
𝑆
𝑁
𝐴
𝑍
2
𝑒
2

0

𝜀
0
𝜀
𝑟
𝑘
𝐵
𝑇

(8)

while 𝑒
0
is the elementary electric charge, 𝑁

𝐴
the Avogadro

number, 𝑍 the ionic charge number, and 𝐶
𝑆
the salt concen-

tration. The nonretarded van der Waals attraction between
two spheres can be described by

𝑈vdW (ℎ) = −
𝐴𝑎

12ℎ
, (9)

where the effective Hamaker constant 𝐴 is determined by
the dielectric constants of the solvent-particle combination.
The corresponding interaction potential is schematically
displayed in Figure 2. It consists of a primary and a secondary
minimum due to van der Waals attraction and a repulsive
potential barrier caused by the electric double layer.

While the hard sphere phase diagram is a function of
the volume fraction, the phase diagram of soft spheres is
much richer. The two-particle interaction potential depends
onmany variables characterizing the impact of attractive and
repulsive forces. We want to confine the discussion here to
two variables: the volume fractionΦ and theDebye screening
reciprocal length 𝜅. The latter characterizes the electrostatic
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Figure 3: Schematically displayed are the Landau free energies of a stabilized dense suspension in equilibrium near the liquid-solid
(coagulation) transition (solid line) and at the critical shear stress 𝜎 = 𝜎

𝐶
(dashed line). Also displayed schematically is the equilibrium phase

diagram of electrically stabilized colloidal suspensions as a function of the volume fraction Φ and Debye screening parameter 𝜅 [30–32]. It
shows the first order transition lines separating the colloidal vapor, liquid, and solid phase.

interactionwhile an increasing 𝜅 indicates decreasing electro-
static repulsion. The equilibrium phase diagram is schemat-
ically displayed in Figure 3 [30–32]. The phase diagram
of electrically stabilized monodisperse colloidal particles
separates into colloidal vapour, liquid, and solid phase (the
glass state arises for polydisperse particles). For high 𝜅 and
lowΦ, Brownian particles with an attractive interaction form
a vapour phase that undergoes a flocculation (gel) transition
into a solidwith increasing volume fraction.The binodal lines
of this first order phase transition are displayed in Figure 3.
With decreasing 𝜅, the vapour phase becomes more stable
and turns into a liquid phase. In this phase, Brownian par-
ticles have to overcome an increasing electrostatic potential
barrier. The transition into (fcc-) colloidal crystal occurs at
volume fraction Φ

𝐶
. This first order liquid-solid transition

is termed coagulation. At high volume fractions, however,
suspensions do not exhibit a fast phase separation due to the
slow dynamics of the bare (hard sphere) particles. Instead, the
particles are captured in metastable glassy states.

The coagulation transition induced by Brownian motion
at low volume fractions (also termed perikinetic coagulation)
can be described as an activation process determined by
the frequency ] of bond-forming events. In equilibrium,
particles may overcome their repulsion with the frequency ]
by thermal excitations. The nucleation rate is governed for a
pair of colloidal particles by

] = ]
0
exp(− 𝑈

𝐵

𝑘
𝐵
𝑇
) , (10)

where 𝑈
𝐵
is the repulsive energy barrier and ]

0
the collision

frequency. The potential barrier formed by the two-particle
interaction has the form

𝑈
𝐵
= 𝑈 (ℎmax) − 𝑈 (ℎ0) (11)

while ℎ
0
is the equilibrium particle surface-to-surface dis-

tance and ℎmax expresses the distance to the maximum of the
interaction potential (Figure 2).

In sheared suspensions, colloidal particles arranged along
the compression axis are pushed together. The key idea to
understand shear thickening in soft sphere suspensions is to
realize that these particles may also overcome their mutual
repulsion and form transient bonds. For a sheared suspen-
sion, we have to correct the undisturbed activation model
equation (10) by taking a perturbation due to the applied
shear stress 𝜎 into account. For a pair of colloidal particles
arranged along the compression axis, the perturbed fre-
quency can be written as [19]

] ∼ exp(−𝑈𝐵 − 𝜎𝑉
∗

𝑘
𝐵
𝑇

) , (12)

where the activation volume𝑉∗ is of the order of the free vol-
ume per particle:

𝑉
∗
=
4

3
𝜋𝑎
3Φ𝐶

Φ
. (13)

The critical shear stress at which the frequency becomes a
maximum is determined by

𝜎
𝐶
=
𝑈
𝐵

𝑉∗
= 𝜂 ̇𝛾
𝐶
. (14)
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The critical stress is a function of the repulsive potential
barrier and the free volume. It scales with 𝑎−3 like (4) for hard
spheres. The nucleation rate can be rewritten with (14) as

] ∼ exp(−
𝜎
𝐶
− 𝜎

𝑘
𝐵
𝑇

) . (15)

The critical shear stress 𝜎
𝐶
can be also expressed as the

product of a viscosity 𝜂 and a critical shear rate ̇𝛾
𝐶
. Since

the critical shear stress is nearly independent of the volume
fraction (see below), the corresponding critical shear rate is
governed by the divergence of the viscosity due to lubrication
forces with increasing volume fraction 𝜂(Φ) ∼ 𝜂HS(Φ). The
critical shear rate for soft spheres is therefore determined by

̇𝛾
𝐶 (Φ) =

𝜎
𝐶
(Φ)

𝜂 (Φ)
≈ 𝐶
𝑂
(Φ − Φ

𝐶
)
𝛽
, (16)

where 𝐶
𝑂
is a free parameter.

For volume fractions Φ > Φ
𝑝
(where Φ

𝑝
is the percola-

tion volume fraction), clusters of aggregated colloidal parti-
cles may even span the entire suspension and form jammed
force chains along the compression axis of the sheared sus-
pension. These force chains can cause dilation of the sheared
suspension at 𝜎

𝐶
, often observed in connection with discon-

tinuous shear thickening [2].

2.2.2. Shear Thickening as a Shear Induced Phase Transition.
Differently from the two-particle approach of the activation
model, in this section a continuous model is established. For
this purpose, we first determine the rheological properties of
dense suspensions in a hydrodynamic approach. A colloidal
suspension close to a phase transition can be described by a
Landaumodel and is termed here as near-critical suspension.
Taking advantage from these models, the critical shear
stress for the occurrence of aggregated colloidal particles is
obtained from a subcritical bubble approach.

(1) The Hydrodynamic Model. We want to specify the rheo-
logical properties of a near-critical suspension by applying a
two-fluidmodel.The suspendingmedium of volume fraction
1 − Φ, with density 𝜌

𝑠
and viscosity 𝜂

𝑆
, is treated as the first

fluid.The second fluid is a continuousmedium formed by the
ensemble of colloidal particles of volume fraction Φ, density
𝜌
𝑝
, and viscosity 𝜂

𝑃
. The mass densities of the two fluids, 𝜌

𝑠

and 𝜌
𝑝
, are convected by the velocities v

𝑝
and v
𝑆
governed by

the conservation relations:

𝜕𝜌
𝑆

𝜕𝑡
= −∇ (𝜌

𝑆
v
𝑆
) ;

𝜕𝜌
𝑃

𝜕𝑡
= −∇ (𝜌

𝑝
k
𝑝
) . (17)

The average velocity v is defined by

v = 1

𝜌
(𝜌
𝑆
v
𝑆
+ 𝜌
𝑝
v
𝑝
) , (18)

where total density reads

𝜌 = 𝜌
𝑆
+ 𝜌
𝑃
. (19)

The equations of motion for the two fluids are

(1 − Φ) 𝜌𝑆

𝜕v
𝑆 (r, 𝑡)
𝜕𝑡

= − ∇𝑝
𝑆 (r, 𝑡) + ∇𝜎𝑆 (r, 𝑡) − Ξw,

Φ𝜌
𝑃

𝜕v
𝑃 (r, 𝑡)
𝜕𝑡

= − ∇𝑝
𝑃
(r, 𝑡) + ∇𝜎

𝑃
(r, 𝑡) + Ξw,

(20)

where 𝑝
𝑃
, 𝑝
𝑆
and 𝜎

𝑝
, 𝜎
𝑆
are the pressure and viscous

stress tensor of the colloidal particle and solvent medium,
respectively. The velocity difference between the two fluids is

w = k
𝑆
− k
𝑝
. (21)

The friction coefficient can be approximated for near-critical
suspensions by

Ξ ∼ 6𝜋𝜂
𝑆
𝜉, (22)

where 𝜉 is the correlation length of density fluctuations
formed by colloidal particles. Since 𝜉 is a large quantity for
near-critical suspensions, we confine the discussion here to
the limit of strong couplingw ≈ 0. In this case, the continuity
equation of the suspension has the usual form

𝜕𝜌 (r, 𝑡)
𝜕𝑡

= −∇ (𝜌 (r, 𝑡) v (r, 𝑡)) , (23)

where the mean velocity is given by (18). However, the vis-
cosity of dense suspensions diverges with increasing volume
fraction as suggested by (2). It causes a viscoelastic response
of dense suspensions.This effect can be taken into account by
applying a Maxwell model for the momentum relation with
the constitutive equation [33]

𝜕𝜎 (r, 𝑡)
𝜕𝑡

+
1

𝜏
𝜎 (r, 𝑡) = 𝐺

𝜕𝛾 (r, 𝑡)
𝜕𝑡

(24)

while 𝛾 is a shear deformation and 𝐺 an effective shear
modulus.Themechanical properties of a viscoelasticmedium
depend on the relaxation time 𝜏 given for a dense suspension
by (3). For Φ → 0, the suspension behaves as a viscous
fluid because 𝜏 → 0. For large volume fractions, however,
the relaxation time diverges (𝜏 → ∞) and the suspension
responds as an elastic solid.

(2) The Landau Model. The phase diagram displayed in
Figure 3 suggests that a first order liquid-solid coagulation
transition occurs in concentrated monodisperse soft sphere
suspensions at rest. In order to describe this phase tran-
sition, we take advantage from a Landau model [22]. For
this purpose, an order parameter characterizing the density
difference between the average density of the colloidal liquid
phase 𝜌

0
and the local density can be defined by

Ψ (r, 𝑡) = 𝜌 (r, 𝑡) − 𝜌
0
, (25)

where the vector r indicates the spatial location.The spatially
averaged order parameter ⟨Ψ⟩ has the property to be zero
in the liquid phase and nonzero in the coagulated solid
phase. In thermal equilibrium, the free energy density can
be established as a Taylor expansion of the order parameter



6 Journal of Thermodynamics

around the instability. Expanding the free energy up to the
forth order in Ψ(r, 𝑡), we obtain the standard Ginzburg-
Landau free energy scaled by the thermal energy 𝑘

𝐵
𝑇 [23]:

𝐹 (Ψ) =
1

𝑘
𝐵
𝑇
∫(

𝜄

2
|∇Ψ(r, 𝑡)|2 + 𝛼

2
Ψ(r, 𝑡)2

+
𝜆

3
Ψ (r, 𝑡)3 +

𝜒

4
Ψ (r, 𝑡)4)𝑑3𝑟.

(26)

The first term takes contributions due to spatial variations of
the order parameter into account and 𝜄, 𝛼, 𝜆, and 𝜒 are free
parameters. For simplicity, the first order coagulation transi-
tion is treated as weakly first order such that 𝜄, 𝜒 > 0, 𝜆 < 0,
and |𝜆| ≪ |𝛼|, |𝜒|. It implies that we confine our considera-
tions to near-critical colloidal liquid with small 𝜅 (Figure 3).

The free energy minimum of the spatially averaged order
parameter ⟨Ψ⟩ corresponds to

⟨Ψ⟩ ≅

{{{{

{{{{

{

0 for 𝛼 ≥ 𝜆
2

2𝜒

−
𝜆

2𝜒
± √(

𝜆

2𝜒
)

2

−
𝛼

𝜒
for 𝛼 < 𝜆

2

2𝜒
.

(27)

For 𝛼 ≫ 0, the liquid state is stable, since the free energy
has a minimum at ⟨Ψ⟩ = Ψ

𝐿
= 0. For 𝛼 ≪ 0, the order

parameter becomes nonzero and describes the solid phase
with a higher stationary mean density ⟨Ψ⟩, while Ψ2

𝑆
≈ 𝛼/𝜒.

The coagulation transition into a solid occurs when 𝛼(Φ, 𝜅) ≈
0. Hence, the parameter 𝛼 can be expanded near the liquid-
solid transition as

𝛼 (Φ, 𝜅) ≅ 𝛼

(Φ − Φ

𝐶
) (𝜅
𝐶
− 𝜅) , (28)

where 𝜅
𝐶
indicates a critical Debye screening parameter and

𝛼
 is a free parameter.
Near-critical suspensions are characterized by large order

parameter fluctuations with a characteristic size that can be
estimated by the correlation length 𝜉 ≈ (𝜕2𝐹/𝜕⟨Ψ⟩2)−1/2. (For
a second order transition, the correlation length diverges and
the fluctuations become scale invariant, such that no charac-
teristic length exists. However, for first order transitions, the
correlation length remains finite.) The time evolution of the
order parameter fluctuations is determined by [23]

𝑑Ψ (r, 𝑡)
𝑑𝑡

= −Γ∇
2 𝛿𝐹 (Ψ)

𝛿Ψ (r, 𝑡)
, (29)

where Γ is a kinetic coefficient, 𝛿 indicates a variational der-
ivation of the free energy, and we used that the order param-
eter Ψ is conserved. For the lowest order contribution of the
order parameter, we obtain in the Fourier-space with wave
vector k

𝜕Ψ (k, 𝑡)
𝜕𝑡

≅ −Γ𝑘
2
(𝛼 + 𝑘

2
𝜄) Ψ (k, 𝑡) . (30)

The relaxation time of order parameter fluctuations becomes,
therefore,

𝜏 ∼
1

Γ𝑘2𝛼 (Φ, 𝜅)
. (31)

Obviously the relaxation time of the density fluctuations
becomes large for 𝛼(Φ, 𝜅) → 0. This effect is known as
critical slowing-down.

We have to keep in mind that in a dense suspension
internal deformations relax slowly. This effect can be taken
into account by including a coupling between the order
parameter Ψ(r, 𝑡) and internal deformations of the strain
component 𝛾(r, 𝑡). The free energy equation (26) becomes

𝐹 (Ψ, 𝛾) ≅
1

𝑘
𝐵
𝑇
∫(

𝜄

2
|∇Ψ (r, 𝑡)|2 + 𝛼

2
Ψ (r, 𝑡)2

+
𝜆

3
Ψ(r, 𝑡)3 +

𝜒

4
Ψ(r, 𝑡)4

+
𝐺

2
𝛾 (r, 𝑡)2 − 𝜃𝛾 (r, 𝑡) Ψ (r, 𝑡)2)𝑑3𝑟,

(32)

where the fifths term is the contribution of a shear pertur-
bation to the free energy. The last term expresses the lowest
order coupling between a shear deformation component
𝛾(r, 𝑡) and the order parameterΨ(r, 𝑡), with the coupling con-
stant 𝜃 > 0. The lowest order coupling must be proportional
to Ψ2 [34] (a shear deformation cannot generate a nonzero
mean order parameter). In equilibrium, the magnitude of the
averaged strain component ⟨𝛾⟩ can be obtained from

𝜕𝐹 (Ψ, ⟨𝛾⟩)

𝜕 ⟨𝛾⟩
= 𝐺 ⟨𝛾⟩ + 𝜃 ⟨Ψ⟩

2
= 0. (33)

In the liquid phase, the mean order parameter is ⟨Ψ⟩ = 0.
As expected, the mean deformation disappears in a colloidal
liquid at rest ⟨𝛾⟩ = 0, since 𝐺 ̸= 0.

(3) The Subcritical Bubble Model. We want to study a near-
critical dense soft-sphere suspension in a simple shear geom-
etry perturbed by a uniform shear flow in the 𝑥-direction:
V
𝑥
= 𝑦 ̇𝛾, where internal shear deformations have the form

𝛾
𝑥𝑦

= 𝜕𝑢
𝑥
/𝜕𝑦 (Figure 1). When a continuous shear flow is

imposed to the suspension, the order parameter kinetics can
be described by a convection-diffusion equation of the form
[23]

𝑑Ψ (r, 𝑡)
𝑑𝑡

+ ∇ (Ψ (r, 𝑡) V
𝑥
(r, 𝑡)) = −Γ∇2 𝛿𝐹 (Ψ)

𝛿Ψ (r, 𝑡)
. (34)

It suggests that density fluctuations are convected during
their lifetime by the applied shear stress 𝜎

𝑥𝑦
as displayed in

Figure 1. However, as suggested by the hydrodynamic model,
a sheared dense suspension generates stationary internal
shear deformations:

𝛾
𝑥𝑦 (r, 𝑡) ≅ 𝐺

−1
𝜎
𝑥𝑦 (r, 𝑡) . (35)

That means that a considerable contribution of the applied
shear stress is not immediately dissipated but induces internal
deformations.

Thekey idea of this consideration is to estimate the chance
for the occurrence of fluctuations of the solid (coagulated)
phase within a sheared suspension in the liquid phase. For
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this purpose, we take advantage from a subcritical bubble
approach [34]. The subcritical bubble model is based on the
idea that subcritical bubbles can be approximately described
in equilibrium as symmetric Gaussian-shaped spheres with
radius 𝑅. The bubble can be parameterized as [35]

Ψ (𝑟) = ΨCore exp(−
𝑟
2

𝑅2
) (36)

while the core value of the order parameter isΨCore ≈ Ψ𝑆.The
nucleation rate of subcritical bubbles of coagulated particles
of volume 𝑉(𝑅) generated in a sheared suspension can be
estimated from

] ∼ exp(− 1

𝑘
𝐵
𝑇
∫
𝑉(𝑅)

𝐹 (𝑟, ΨCore, 𝛾𝑥𝑦) 𝑑
3
𝑟) . (37)

Since the initial shape of a subcritical bubble can be approxi-
mately given by (36), we obtain for the lowest order in ΨCore
a nucleation rate:

] ∼ exp(−
(𝛼 − 𝜃 ⟨𝛾

𝑥𝑦
⟩)Ψ
2

Core

𝑘
𝐵
𝑇

) . (38)

Because the mean strain-field in a sheared dense suspension
is not zero but of the order

⟨𝛾
𝑥𝑦
⟩ ≅

𝜎
𝑥𝑦

𝐺
, (39)

the nucleation rate has a maximum at a critical shear stress:

𝜎


𝐶
=
𝐺𝛼

𝜃
. (40)

Therefore, the nucleation rate of subcritical bubbles consist-
ing of a few coagulated particles can be written as

] ∼ exp(−
𝜎


𝐶
− 𝜎
𝑥𝑦

𝑘
𝐵
𝑇

) . (41)

The generation rate of subcritical bubbles is formally equiv-
alent to the nucleation rate equation (15). It suggests that
the critical shear stress related to the occurrence of small
subcritical bubbles can be approximated by the two-particle
critical stress established by the activation model 𝜎

𝐶
≈ 𝜎
𝐶
.

Since subcritical bubbles (coagulated clusters) increase the
viscosity, this transition is accompanied by shear thickening.
For decreasing volume fractionsΦ → 0, the relaxation time
vanishes: 𝜏 → 0. As a consequence the shear thickening
effect disappears in low concentrated suspensions because
internal deformations are very small ⟨𝛾⟩ ∼ ̇𝛾𝜏 ≈ 0. In
this case, the nucleation rate of coagulated particle clusters
equation (38) disappears.

The model gives also an explanation for the occurrence
of reversible and irreversible shear thickening (orthokinetic
coagulation [36]). As displayed in Figure 3, the Landau
free energy of a suspension exhibiting irreversible shear

thickening must have a stable minimum at Ψ
𝑆
(at 𝜎 = 0).

Applying a shear stress, the potential barrier of the free energy
effectively decreases such that at 𝜎

𝐶
the nucleation rate is

sufficiently high to form subcritical bubbles of coagulated
particles. Ceasing the shear stress, the coagulated structure
cannot relax into the liquid state when the potential barrier
increases the thermal energy. In the case of reversible shear
thickening, however, it is known that for any applied shear
stress no coagulated structure is evident after ceasing the
stress [37]. The free energy must have therefore an unstable
minimum at Ψ

𝑆
(at 𝜎 = 0) with a potential barrier that

is much less than the thermal energy. Therefore, thermal
excitations are sufficient to break up the bonded structure.
Colloidal particles have in this case an effective hard sphere
interaction potential (Figure 2).

Though van der Waals attraction diverges for ℎ → 0

such that particles should be always bonded in the primary
minimum ones, they are captured. The explanation for the
thermal breakup of the bonds is given in [20]. The point is
that the potential maximum ℎmax for effective hard spheres
is only a few Angstrom from the bare particle surface. Since
ℎmax is of the order of the diameter of the atomic constituents,
it can be expected that the surface roughness of the particles
prohibits a permanent bond.

Note that, for 𝛼 < 0, the colloidal particles are already
bounded in the primary minimum and (40) suggests that
𝜎
𝐶
< 0. That means that shear thickening disappears for a

coagulated structure and the rheological properties are those
of a coagulated solid. That this is the case has been shown
experimentally by Barnes [1]. Modifying the chemistry of a
stable suspension by adding a large amount of flocculating
agents shear thickening disappears.

Rheological experiments indicate that shear thickening
in concentrated suspensions exhibits a viscosity hysteresis
between increasing and decreasing shear rates. It means that
the critical shear stress related to increasing shear rates is
much higher than the critical stress associated with decreas-
ing shear rates.The presented theory can explain this finding.
If subcritical bubbles of particles with large attraction (high 𝜅)
are formed, their relaxation time is large.Decreasing the shear
rate they remain in the bounded state even at the critical shear
stress related to increasing shear rates. The model suggests
that the hysteresis effect increases with increasing attraction
between the particles, which is known from empirical inves-
tigations of discontinuous shear thickening.

3. Comparison with Experimental Results

Both the activation approach and the presented shear induced
transition model suggest the occurrence of shear thickening
at a critical shear stress 𝜎

𝐶
. In order to show the applicability

of the theory, we want to consider an experimental investiga-
tion performed by Maranzano and Wagner on nonaqueous
electrically stabilized suspensions [38]. They studied silica
particles in THFFA (tetrahydrofurfuryl alcohol), a system
designed to minimize the van der Waals attraction. We want
to focus here only on samples denoted by HS600, because
for these samples the flow curves have been published
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Figure 4: Experimental critical stresses: a function of the volume fraction of the sample HS600 (squares) investigated by Maranzano and
Wagner [38]. The solid line indicates the critical stress obtained from the activation model for a constant charge interaction potential and the
dotted line with constant potential applying the experimental data 𝑎 = 316 nm, 𝜁 = 92.7, 𝜅𝑎 = 87.1, 𝑘

𝐵
= 1.38 ∗ 10

−23 J, 𝑒 = 1.6 ∗ 10−19 As,
𝜀
𝑟
= 8.2, 𝜀

0
= 8.854 ∗ 10

−12 F/m, 𝑧 = 1, 𝑇 = 298K, 𝐴 = 0.41 ∗ 10
−21 J, Φ

𝐶
= 0.6, and 𝜂THFFA = 0.005Pas. Also displayed are the empirical

critical shear rates at the onset of shear thickening (diamonds) of the same sample. The dashed line indicates a fit of (16).

for a large number of volume fractions. The concentrated
suspensions were found to exhibit discontinuous reversible
shear thickening for volume fractions Φ ≥ 0.55 in a constant
stress sweep. Taking advantage from the experimentally
characterized data of the colloidal particles, the critical shear
stresses for constant potential (dotted line) and constant
charge (solid line) obtained from the activation model are
displayed in Figure 4, together with the measured critical
shear stresses (squares).The experimental critical stresses fall
into the predicted range between the two lines, while they are
closer to the constant charge critical stress. (This result can be
interpreted as a consequence of the double layer dynamics of
the electrostatic repulsion. There is obviously not sufficient
time at high critical shear rates to establish a constant
potential double layer differently from low critical shear rates
at high volume fractions.) Note that (4) suggests a critical
shear stress 𝜎HS

𝐶
≈ 0.6Pa which is an order of magnitude

below the experimental data. Also displayed in Figure 4 are
the experimental data of the critical shear rate of the sample
HS600 at the onset of shear thickening (diamonds). The
dashed line indicates a fit of (16) with a volume fractionΦ

𝐶
=

0.6, 𝛽 = 2, and𝐶
𝑂
= 5∗10

4. Note that the activationmodel is
applicable not only to concentrated electrically stabilized but
also to sterically stabilized colloidal suspensions [39].

4. Conclusion

The paper establishes a model that suggests the occurrence
of a shear induced phase transition in dense soft sphere
suspensions accompanied with shear thickening. The theory
is based on the idea that near-critical suspensions contain
large density fluctuations. Because a concentrated suspension
can be treated as a viscoelastic medium, the application of a
continuous shear flow generates internal deformations. The
coupling of these deformations to the order parameter related
to the liquid-solid transition induces subcritical bubbles of
the solid phase in the stable liquid phase if a continuous shear
perturbation is applied. Since subcritical bubbles consist of

coagulated particles, their appearance causes an increase of
the viscosity at a critical stress (shear thickening).

The flow properties of sheared suspensions are governed
by the interaction potential of the particles. This interaction
is related to the location in the equilibrium phase diagram.
Differently from shear thickening in hard sphere suspensions,
the phase diagram of soft spheres depends on many parame-
ters characterizing themutual interaction.Wewant to confine
the discussion here to electrically stabilized monodisperse
suspensions where the volume fraction Φ and the Debye
screening reciprocal length 𝜅 are treated as free parameters.
Displayed schematically in Figure 5 are two paths through
the equilibrium phase diagram of electrically stabilized sus-
pensions and the expected rheological response in terms of
the viscosity 𝜂(Φ, 𝜅). The dashed line indicates a path with
increasing volume fractionΦ and constant 𝜅. In this case, the
colloidal particles are stabilized by the electrostatic repulsion
and the critical stress is nearly independent of the volume
fraction. These suspensions are governed by the divergence
of the viscosity with increasing volume fraction caused by
lubrication forces. As found experimentally, increasing the
volume fraction, the character of the transition turns into
discontinuous shear thickening [40].

The second path in Figure 5 is related to suspensions with
an increasing Debye reciprocal length 𝜅 of the colloidal parti-
cles and constantΦ.This path is absent in a hard sphere phase
diagram. Starting in the liquid phase, the particles are highly
stabilized (effective hard spheres) and continuous shear
thickening occurs at relatively high shear rates. Increasing
𝜅 implies that the particle solvent combination approaches
the coagulation transition. This can be done, for example,
by increasing the salt concentration. As a consequence,
the electrostatic repulsion decreases and the critical stress
declines. The model suggests that reversible shear thickening
turns into irreversible shear thickening with increasing 𝜅.
Finally shear thickening disappears in a stable coagulated
structure as known from empirical investigations [41].

For a quantitative comparison, the presented theory is
applied to experimental data of shear thickening in dense
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Figure 5: Schematically displayed is the equilibrium phase diagram of electrically stabilized monodisperse colloidal suspensions. The model
suggests that shear thickening in soft sphere suspensions depends on the position in the phase diagram. The expected viscosity is displayed
for two different paths as a function of the shear rate (logarithmic scaling).The dashed line in the phase diagram indicates a path with varying
volume fraction and the dotted line a path with changing the Debye screening parameter 𝜅. For comparison with empirical data, see, for
example, [40, 41].

electrically stabilized suspensions [38]. The good coinci-
dence between the model predictions and the experimentally
obtained critical shear stresses confirms this approach.
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