
Submitted 29 November 2017
Accepted 28 February 2018
Published 22 March 2018

Corresponding author
Christopher J. Hart, chrish32@uw.edu

Academic editor
Agus Santoso

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.4519

Copyright
2018 Hart et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Will the California Current lose its
nesting Tufted Puffins?
Christopher J. Hart1, Ryan P. Kelly1 and Scott F. Pearson2

1 School of Marine and Environmental Affairs, University of Washington, Seattle, WA,
United States of America

2Washington Department of Fish and Wildlife, Olympia, WA, United States of America

ABSTRACT
Tufted Puffin (Fratercula cirrhata) populations have experienced dramatic declines
since the mid-19th century along the southern portion of the species range, leading
citizen groups to petition the United States Fish and Wildlife Service (USFWS) to list
the species as endangered in the contiguous US. While there remains no consensus
on the mechanisms driving these trends, population decreases in the California
Current Large Marine Ecosystem suggest climate-related factors, and in particular the
indirect influence of sea-surface temperature on puffin prey. Here, we use three species
distribution models (SDMs) to evaluate projected shifts in habitat suitable for Tufted
Puffin nesting for the year 2050 under two future Intergovernmental Panel on Climate
Change (IPCC) emission scenarios. Ensemble model results indicate warming marine
and terrestrial temperatures play a key role in the loss of suitable Tufted Puffin nesting
conditions in the California Current under both business-as-usual (RCP 8.5) and
moderated (RCP 4.5) carbon emission scenarios, and in particular, that mean summer
sea-surface temperatures greater than 15 ◦C are likely to make habitat unsuitable for
breeding. Under both emission scenarios, ensemble model results suggest that more
than 92% of currently suitable nesting habitat in the California Current is likely to
become unsuitable. Moreover, the models suggest a net loss of greater than 21% of
suitable nesting sites throughout the entire North American range of the Tufted Puffin,
regardless of emission-reduction strategies. These model results highlight continued
Tufted Puffin declines—particularly among southern breeding colonies—and indicate
a significant risk of near-term extirpation in the California Current Large Marine
Ecosystem.

Subjects Conservation Biology, Ecology, Marine Biology, Climate Change Biology,
Environmental Impacts
Keywords Endangered species act, Conservation biology, Climate change, Tufted puffin,
Endangered species management, Habitat loss, Species distribution model

INTRODUCTION
Worldwide, species are facing increasing challenges associated with rising sea- and air
surface temperatures (Thomas et al., 2004). Warming climates have resulted in distribution
and community-abundance changes in species ranges across multiple taxa (Parmesan &
Yohe, 2003), changes to ecological responses including phenological anomalies correlating
with warming seasonal temperatures (Walther et al., 2002), and changes in habitat quality
and distribution (Klausmeyer & Shaw, 2009). Foden et al. (2013) found that 83% of birds,
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66% of amphibians and 70% of corals that were identified as highly vulnerable to the
impacts of climate change are not currently considered threatened with extinction on the
IUCN Red List of Threatened Species, indicating that species’ vulnerabilities are likely to
be much greater than conservation status alone would suggest.

In recent years in the United States, the United States Fish andWildlife Service (USFWS)
and the National Marine Fisheries Service (NMFS) have received several petitions to list
species under the Endangered Species Act due to the impacts of climate change (Siegel
& Cummings, 2005; Wolf, Cummings & Siegel, 2008). However, the link between climate
change and risk to a species can be difficult to assess. One approach to examining these
linkages is to model the interaction between climate and suitable habitat for a given
species, given what is already known about the relationship between the species and its
habitat. This approach has become an integral component of conservation planning in a
world of changing environments (Hagen & Hodges, 2006; Richardson & Whittaker, 2010).
Ultimately, understanding these linkages can help inform conservation assessments and
species and ecosystem management strategies (Carnaval & Moritz, 2008; Ponce-Reyes et al.,
2017), for example, by estimating the likelihood of losing (or gaining) particular suitable
habitats of interest under future climate conditions.

Tufted puffins as a pertinent example
The Tufted Puffin (Fratercula cirrhata) is an iconic species that is experiencing dramatic
population declines across the southern portion of its geographic range (Piatt & Kitaysky,
2002). While Tufted Puffin populations in the Alaska Current have remained relatively
stable (but see Goyert et al., 2017), populations in the California Current large marine
ecosystem (area of the eastern Pacific Ocean spanning nearly 3,000 km from southern
British Columbia, Canada to Baja California, Mexico) have declined by approximately
90% relative to early 20th century estimates, and are currently declining 9% annually
(Hanson & Wiles, 2015). The number of occupied breeding-colony sites in Washington
State has declined by 60% relative to the 1886–1977 average, and 45% relative to the
1978–1984 average (Hanson & Wiles, 2015). Range contractions at the southern edge of
the Tufted Puffin’s habitat in both the eastern and western Pacific Ocean have led to
preliminary conservation measures: the Washington Department of Fish and Wildlife has
listed the Tufted Puffin as endangered at the state level in 2015 with Japan’s Ministry of the
Environment listing the species as endangered in 1993 (Osa & Watanuki, 2002; Hanson &
Wiles, 2015;Washington Fish and Wildlife Commission, 2015).

Tufted puffin biology and ecology
Tufted Puffins are seabirds belonging to the family Alcidae and nest in colonies located
on both sides of the North Pacific, ranging in North America from the Channel Islands in
southern California (34◦N) to coastal northern Alaska (68◦N) (Piatt & Kitaysky, 2002) and
in Asia from Hokkaido, Japan (43◦N) through the Kamchatka Peninsula (63◦N) (Hanson
& Wiles, 2015). They are central-place foragers during the nesting season, when they dig
burrows or use crevices for nesting on nearshore rocks, islands and sea stacks (Piatt &
Kitaysky, 2002). During the nesting season, puffins exhibit large foraging radii around their
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colonies (up to 40 km, e.g., Menza et al., 2016: Fig. 12) and are able to carry more than
twenty fish at a time while flying back to the colony to feed their chicks (Piatt & Kitaysky,
2002; Hanson & Wiles, 2015). While little is known about the wintering distribution
and ecology of Tufted Puffins, summer (May–September) breeding colonies are well
documented and provide the most useful biological data for conservation management
(Piatt & Kitaysky, 2002). Extensive breeding colony surveys dating back to the early 20th
century allow us to examine any potential link between climate and species range extent.

Tufted Puffins are subject to multiple well-documented ecological stressors—such as
increasing eagle predation, habitat degradation, declining prey availability, and fishing
net entanglement (Baird, 1991; DeGange & Day, 1991; Ricca, Keith Miles & Anthony,
2008)—but several mechanisms associated with temperature stress may be important
in driving puffin declines along their southern range boundary. Gjerdrum et al. (2003)
found dramatically reduced growth rates and fledging success (development of fledgling
wings and muscles for flight) in years with high sea surface temperature (SST) anomalies.
Other researchers cite the nutritional demands of puffin chicks and the prey availability
and preferences correlating with fledgling success (Hipfner, Charette & Blackburn, 2007),
suggesting a mechanism for the negative effects of high sea surface temperature on puffin
chicks. These and other studies point to a link between temperature and demographic
trends in the Tufted Puffin and help identify this species as a candidate for distribution
modeling. Modeling outputs may help expose proposed interactions between high ocean
temperatures, prey distribution in the water column and puffin breeding success.

As a result of these potential threats and documented population declines, the USFWS
was petitioned to list the California Current population of the Tufted Puffin (Fratercula
cirrhata) as endangered under the Endangered Species Act (ESA) (Sewell, 2014). In order
to respond to this petition, the USFWS is currently examining Tufted Puffin status and
trends, evaluating threats to its survival, the adequacy of existing regulatory mechanisms to
conserve the species, the loss of its habitat, and other relevant factors. Given that climate—
specifically, increasing sea-surface temperatures—may be a particularly important factor
influencing puffin population dynamics and ultimately reducing puffin breeding range,
and given the vast geographic extent of puffin nesting sites (34◦ of latitude and roughly
70◦ of longitude in North America) and historical data on the occupancy of these sites, the
Tufted Puffin is an excellent candidate for species distribution modeling.

Species distribution models in conservation planning
Species distribution models (SDMs) are a powerful way to examine how climate variables
relate to species geographic distribution and the distribution of suitable habitat (Guisan
& Zimmermann, 2000; Guisan & Thuiller, 2005). By associating species occurrence with
climate variables, these models can: (1) test for associations in space and time between
putative environmental drivers and changes in species range and (2) project changes in
suitable habitat under future climate change scenarios (Bellard et al., 2012). SDMs use a
variety of underlying statistical models to capture the relationship between habitat and
climate and create detailed outputs highly useful for wildlife management (Carvalho et al.,
2011;Guisan et al., 2013). Recent Endangered Species Act listing decisions andmanagement
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plans have drawn on SDM results to provide critical spatial and temporal conservation
information. For example, climate envelope models were used to develop spatially explicit
conservation strategies that account for climate change, notably in the case of the North
America Wolverine (Gulo gulo), where the models were the basis of an ESA listing (United
States Fish and Wildlife Service, 2016).

Here we use 50 years of nesting-habitat distribution information—ranging from
the Bering Sea to California—to map Tufted Puffin nesting habitat. We use this
colony occupancy data to model the relationship between nesting habitat and current
environmental conditions to project future suitable breeding sites in the same geographic
range. We present these results as an example of how this information can be used in both
regulatory (e.g., Endangered Species Act) and conservation planning contexts.

MATERIALS AND METHODS
Environmental data
Environmental data for the current period, which we define here as the years 1950–2000,
was downloaded fromWorldClim, a set of global climate layers derived from interpolation
of monthly climate observations (Hijmans et al., 2005, last accessed January 2017). After
removing WorldClim bioclimatic variables displaying high collinearity, we also considered
factors relevant to Tufted Puffin breeding phenology including isolating seasons during
which puffins breed (spring and summer) and including environmental variables relevant
to their prey species such as temperature. These processes resulted in our selection of
six environmental variables for analysis: annual temperature range (ATR), mean diurnal
temperature range (MDR), mean temperature of the warmest quarter (MTWQ), annual
precipitation (AP), precipitation of the warmest quarter (PWQ) and distance-to-ocean
(DIST), a variable we created to help models discern suitable nesting habitat as occurring
only in rocky, coastal habitats within meters of the sea, a biological requirement of puffins
(Piatt & Kitaysky, 2002); (see Table S1 for measurements and units). Each variable for the
current period was scaled to a 5 arcmin grid cell size (ca 10 km × 10 km). After scaling, all
environmental variables within the relevant geographic range were cropped to only include
locations within 200 kilometers of the ocean. While this cropping distance includes land
not physically suitable for obligate coastal and island breeders, it is important for creating
larger environmental variable gradients during model construction (Van Horn, 2002).

The same six environmental variables above were averaged over the period of 1910-1950
to construct a ‘past’ climate regime used to project past Tufted Puffin range. Past climate
variableswere selected using gridded climate data obtained frommonthly observations from
the Climate Research Unit CRU TS v. 4.01 dataset (Harris et al., 2014 (crudata.uea.ac.uk),
last accessed March 2017). Past environmental data was similarly scaled down to the same
5 arcmin grid cell size as the current data.

Future climate
We selected emissions scenarios Radiative Concentration Pathways (RCP) 4.5 and 8.5
as defined by the IPCC 5th Assessment Report (IPCC, 2014) as future environmental
projections against which to forecast changes in Tufted Puffin breeding distribution.
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Downscaled model output for environmental variables for both future RCP scenarios were
averaged across the following general circulation models: Hadley Centre’s HadGEM2-
AO (Collins et al., 2011), NOAA’s GFDL-CM3 (Griffies et al., 2011), NASA’s GISS-E2-R
(Nazarenko et al., 2015), Institut Pierre-Simon Laplace’s IPSL-CM5A-LR (Dufresne et al.,
2013), Beijing Climate Center’s BCC-CSM1-1 (Xin, Wu & Zhang, 2013), Bjerknes Centre’s
NorESM1-M (Bentsen et al., 2013), National Center for Atmospheric Research’s CCSM4
(Gent et al., 2011) and the Max Planck Institute’s MPI-ESM-LR (Giorgetta et al., 2013),
all for the year 2050 (average of 2041–2060) (Hijmans et al., 2005, last accessed January
2017). Using the average of eight prominent climate model outputs helps incorporate
variance in potential future climate projections within our model. The 2050 timeframe
and these emissions scenarios (roughly speaking, a moderate-reduction scenario and
business-as-usual scenario with no emission reductions) were selected as the most relevant
to the conservation decisions presently surrounding the Tufted Puffin (IPCC, 2014).

Species data
Species distribution data were obtained courtesy of USFWS, Washington Department of
Fish and Wildlife and Environment and Climate Change Canada, and were derived from
expansive US and Canada breeding colony surveys conducted by groups including USFWS,
Washington Department of Fish and Wildlife, Alaska Department of Fish and Game,
Environment and Climate Change Canada, California Department of Fish and Wildlife,
and others (Speich & Wahl, 1989; Hodum et al., see Supplemental Information 4; World
Seabird Union (https://seabirds.net, last accessed March 2017); British Columbia Marine
Conservation Analysis (http://bcmca.ca/datafeatures/eco_birds_tuftedpuffincolonies/),
2017, last accessed May 2017), see Supplemental Information 5). Count data consisted
of estimates of numbers of breeding individuals present at known nesting colonies and
the spatial coordinates of those observations. Biological data for the ‘current’ period
of climate data (see Table S2) represents the most recent survey observation of known
nesting sites from 1950–2009. While the climatological data runs until the year 2000,
biological data from up to 2009 was included to incorporate recent detailed state-wide
surveys in both Oregon and Washington, information critical to examining trends across
the puffin’s southern range. We converted count data to presence/absence values, given
the nature of our analysis, which asked whether breeding habitat was likely to be suitable
(≥1 nesting birds) or not (0) under future conditions. Some observations were adjusted
geographically up to one grid cell (ca 10 km) to fall within gridded terrestrial environmental
variables. Observations further than 15 km from terrestrial grids (e.g., remote islands) were
removed from the analysis. The environmental variables described above were selected
to model potential interactions between climate conditions and puffin range during the
breeding season.

Given the low proportion of absence-to-presence observations for Tufted Puffin surveys
and potential bias in survey locations, we added pseudo-absence (PA) observations
(i.e., generated absence observations existing within the range of the SDM) to all models.
SDMs using both presence and absence have been shown to perform more accurately
than models relying on presence-only observations (Elith et al., 2006; Barbet-Massin et al.,
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2012). PA generation methodology is also important in both model predictive accuracy
and avoiding model over-fitting (Barbet-Massin, Thuiller & Jiguet, 2010; Barbet-Massin et
al., 2012). Adapting these recommendations in Barbet-Massin et al. (2012) 1000 PAs were
randomly generated twice across the SDM a minimum of 30 km from any presence or true
absence point.

Model parameterization
Because Tufted Puffins rely heavily on both terrestrial and marine environments for
reproduction, we initially tested the correlation between sea-surface temperature and
air-temperature data across puffin colony observations. SST data for this comparison
comprised an average of mean monthly temperature for June, July and August, months
aligning with Tufted Puffin breeding season obtained from the Hadley Centre, UK (Rayner
et al., 2003 (metoffice.gov.uk/hadobs) last accessed March 2017) and the corresponding air
temperature readings (MTWQ) (Hijmans et al., 2005). Both sets of environmental variables
were scaled to a 5 arcmin grid cell size and represented means from the years 1950–2000. A
high correlation coefficient (r = 0.96) allowed us to use air temperature—which is available
in higher spatial resolution—rather than SST in the final analysis. This strong relationship
between air- and sea-surface temperature has also been documented across several other
marine and aquatic species distribution studies (Stefan & Preud’homme, 1993; Domisch et
al., 2013). Additionally, within R software (R Core Team, 2013), a principal component
analysis (PCA) (Pearson, 1901) was performed to compare variance in environmental
variables between areas of collapsed colonies (absence) and occupied colonies during the
current period. This technique can help identify differences in environmental niches of
species occurrence data (e.g., Broennimann et al., 2012; Peña Gómez et al., 2014); here, we
use it to create an index of environmental variables to identify likely drivers of Tufted
Puffin declines after accounting for the covariances among variables.

Species distribution modeling
Model algorithms
SDMswere constructed with the R package BIOMOD2 (BIOdiversityMODelling) (Thuiller
et al., 2009; R Core Team, 2013). All SDMs were constructed for a spatial range larger than
the current estimated US Tufted Puffin distribution (180◦W to 120◦W longitude and
33◦N to 69◦N). Using a larger extent both increases the range of environmental gradients
available for model construction and introduces novel climates useful for projecting
potential migration (Thuiller et al., 2004; Fitzpatrick & Hargrove, 2009; Domisch et al.,
2013). Models were also examined under a subset of all biological and environmental data
from 126◦W to 120◦W and 32◦N to 48.5◦N. This portion of the analysis is intended to
account for the spatial variance of puffin distribution and examine the temperature-habitat
relationship in the California Current large marine ecosystem exclusively—the portion of
the range that has experienced the greatest decline and has been petitioned for listing under
the US Endangered Species Act.

To help acknowledge and estimate uncertainty, three different models using different
statistical approaches were selected from the BIOMOD framework; generalized linear
models (GLM) (McCullagh & Nelder, 1989), generalized boosting models (GBM, also
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referred to as boosted regression trees) (Ridgeway, 1999) and random forests (RF)
(Breiman, 2001). The GLM models used a logit link between the response variable mean
and combination of explanatory variables (Guisan, Edwards & Hastie, 2002) (i.e., logistic
regression). GBMs incorporate regression and machine-learning techniques through
boosting many decision-tree models to increase model performance (Elith, Leathwick
& Hastie, 2008). Decision models recursively partition sets of explanatory and outcome
variables in a stagewise manner until subsets of data are explained by trees of bifurcating
decisions (Elith, Leathwick & Hastie, 2008). Boosting then sequentially fits decision trees
to training data, selecting the trees that best fit the data (Elith, Leathwick & Hastie, 2008).
Finally, RF is a machine-learning technique that creates classification trees similar to those
in GBMs, but instead uses random bootstrap samples of data and explanatory variables
upon the construction of each tree (Breiman, 2001).

The differences in statistical and machine learning approaches across GLM, GBM and
RF algorithms provides variance across which to test sensitivity between models as well as
estimations of model uncertainty (Marmion et al., 2009; Rodríguez-Castañeda et al., 2012).
Additionally, usingmodels with relativelymore ensemble (GBMandRF) and parsimonious
(GLM) approaches to habitat selection as well as utilizing both parametric (GLM) and
non-parametric (RF) techniques provides robust analysis of environmental drivers of range
change (Marmion et al., 2009) and led to the selection of these three model algorithms.

Model calibration
Having generated two variants of the dataset by generating distinct pseudo-absences, we
then constructed twenty models for each algorithm (GLM, GBM, RF), for each dataset
variant, for a total of 120 models. All models then used past environmental data as
well as future emission scenarios to project both past and future puffin range changes.
Each model variant performed a random 70:30 split of the biological data using 70%
for model calibration and 30% for model evaluation. This technique addresses spatial
autocorrelation and is frequently utilized when faced with dependent biological sampling
(surveying of species around only areas of known occurrence) (Araújo et al., 2005).
Model selection and calibration parameters were kept constant between past and current
models to maintain consistency and repeatability. For all models across all algorithms, the
default model construction options and parameters of the BIOMOD package were used
(Thuiller et al., 2009).

Hindcasting
Hindcast models were created to examine the past relationship between temperature
and patterns of puffin colony occupancy. Hindcasts can increase confidence in future
projections and help shed light on ecological interactions over time (Raxworthy et al., 2003;
Labay et al., 2011). These ‘hindcast’ models use current puffin distribution projections and
the past environmental data detailed above to project past puffin colony distribution. A
limited amount of historical survey data along the California Current, especially in southern
Oregon and California, makes scoring the hindcast projections against past survey data
difficult for this analysis. However, examining past model projections at specific known
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historical locations (such those in Hanson & Wiles, 2015) in a past, cooler climate helps
interpret the influence of a warming climate in the future (Labay et al., 2011).

Ensemble modeling and evaluation
The area under the receiver operating characteristic curve (AUC) and the True Skill
Statistic (TSS) were the two model metrics used to evaluate model performance. AUC
maps sensitivity rate (true positive) against (1-specificity) values (=false-positive rate) and
is a popular metric for species distribution model evaluations because it evaluates across
all thresholds of probability conversion to binary presence or absence (Fielding & Bell,
1997; Guo et al., 2015). Higher AUC scores represent better model performance, with AUC
scores between 0.7–0.8 classified as ‘fair’, 0.8–0.9 as ‘good’ and 0.9–1.0 as ‘excellent’ (Guo
et al., 2015). TSS scores display (sensitivity + specificity −1) with sensitivity quantifying
omission errors and specificity quantifying commission errors (Allouche, Tsoar & Kadmon,
2006; Guo et al., 2015; Shabani, Kumar & Ahmadi, 2016). TSS scores of zero or less indicate
model performance nobetter than randomand scores of 1.0 indicating perfect performance.
Both scores were emphasized in this analysis to provide strong measures of ordinal model
performance and to predict accuracy in threshold-dependent conservation planning
(Allouche, Tsoar & Kadmon, 2006; Shabani, Kumar & Ahmadi, 2016).

Ensemble models were created using weighted averages of TSS scores both within and
across algorithms while AUC scores were not used in constructing ensemble models but
served as another evaluation metric. This technique captures uncertainty stemming from
random sampling of the dataset as well as variance across modeling techniques (Gallardo &
Aldridge, 2013), thereby providing the user with a robust sense of model fit and sensitivity
to particular parameters. TSS scores below 0.7 were excluded from the ensemble to remove
influence from poor predictive models (Araújo et al., 2011). A proportional weight decay
was used averaging model weights, resulting in weights proportional to TSS evaluation
scores. Additionally, binary conversions, which maximized model TSS performance, were
used in some range-change analyses. Range-change analyses were performed allowing
future migration to potential suitable future habitat as well as with no potential migration.
Ensemble binary thresholds and their impact on projections are noted below.

RESULTS
Model performance
Models from all three algorithms, and especially the ensemble model, scored very high
in both model performance metrics (Table 1). GLM, GBM and RF algorithms displayed
mean TSS scores and standard deviations of 0.842 ± 0.020, 0.898 ± 0.017 and 0.905
± 0.017, respectively. Similarly, GLM, GBM and RF mean AUC scores were very high,
indicating good model accuracy (Table 1). Techniques using machine learning methods
(RF and GBM) consistently displayed the highest performance by both AUC and TSS
scores (Table 1), perhaps due to these machine-learning (GBM and RF) models relying
on boosting and ensemble learning, respectively, compared to a single regression model
approach within GLM algorithms. Despite the different statistical and learning approaches
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Table 1 Evaluationmetrics and range change analysis for ensemble model and bymodel algorithm
(N = 40). (A) Model area under the receiver operating characteristic curve (AUC) and true skill statis-
tic (TSS) for ensemble model and by algorithm. AUC represents sensitivity rate (true positive) against 1-
specificity values (false positive) and TSS represents (sensitivity+ specificity−1). Scores presented are
mean plus or minus standard deviation (B) Percent of projected change in range by model algorithm.
North America-wide and US California Current (32◦N–48.5◦N) independent analyses. Both RCP 4.5 (4.5
also italicized) and RCP 8.5 (8.5 also bolded) represented. Scores presented are mean plus or minus stan-
dard deviation.

Ensemble GLM GBM RF

(A) Model evaluation
TSS .920 .842± .020 .898± .017 .905± .017
AUC .994 .976± .004 .985± .004 .986± .004

(B) % Range change
4.5 Species-wide −21.80 −22.59± 11.69 −13.88± 11.72 −17.99± 20.33

California current −92.68 −96.69± 14.61 −16.95± 20.12 −21.26± 26.10
8.5 Species-wide −26.14 −31.37± 14.70 −14.09± 13.74 −19.23± 23.79

California current −97.56 −97.13± 12.96 −22.71± 20.27 −27.26± 26.80

of the selected modeling approaches, TSS and AUC scores were high across all techniques
and displayed low variance (Table 1).

Variable contribution
Response plots
After initial variable winnowing, both model response plots and PCA analysis indicate
that temperature variables ATR and MTWQ are strongly associated with Tufted Puffin
breeding habitat (Figs. 1, 2). Importantly,MTWQdisplayed a thermalmaximumof suitable
nesting habitat (i.e., a threshold) around 15 ◦C, and the MTWQ variable also displayed the
most consensus across model members among all selected variables (Fig. 1). This result
highlights consensus among GLM ensemble members surrounding the 15 ◦C threshold.
ATR andMTWQ are related to extreme summer temperatures and consensus among GLM
ensemble members across these variable response plots is consistent with the hypothesis
that summer temperature anomalies influence Tufted Puffin colonies.

Conversely, MDR and PWQ were not effective in predicting suitable habitat among
all models. In fact, the probability of Tufted Puffin occurrence remains high across the
range of MDR and PWQ values indicating that these variables are not helpful in predicting
puffin occupancy. GLMmodels do show a response to increased annual precipitation (AP)
values, but there remains a lack of consensus among model members around a particular
response cutoff.

Principal component analysis
Principal component analysis provided further support to the hypothesis identifying
summer temperature as a primary driver of variance in Tufted Puffin breeding habitat
(Fig. 2). PCA components 1 (51%) and 2 (27%) together explained 78% of the variability
in the data. Component 2, with a strong loading of MTWQ of −0.732 and MDR loading
of −0.497, indicates that MTWQ and MDR explain the difference between presence
and absence points as evidenced by the separation of the 95% confidence ellipse along
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Figure 1 General LinearizedModel (GLM)model algorithm variable response plots. Response
curves across GLM algorithms for all environmental variables. (A) Annual Temperature Range (ATR)
response curves (B) Mean Diurnal Temperature Range (MDR) response curves (C) Mean Temperature
of the Warmest Quarter (MTWQ) response curves (D) Annual Precipitation (AP) response curves (E)
Precipitation of the Warmest Quarter (PWQ) response curves (F) Distance from Coast (DIST) response
curves. Each colored line represents one GLMmodel run (N = 40). Y -axis displays predicted probability
of habitat suitability across each variable given other variables are held fixed at their mean value. X-axis
displays environmental variable values (see Table S1 for specific units). Results display distinct cutoffs
between ATR, MTWQ and occurrence probability.

Full-size DOI: 10.7717/peerj.4519/fig-1

this component (Fig. 2). The other four variables loaded more strongly onto principal
component 1 which does not help separate presence and absence points. This result
combined with the MTWQ response curves (Fig. 2) indicate the importance of MTWQ in
predicting what habitat is suitable for Tufted Puffins (Figs. 1 and 2).

Range forecasts
North American projections—2050
After binary transformation of the future probabilistic projection maps, ensemble models,
again representative of the weighted mean of all model algorithms and variants, project a
range loss of approximately 22%of currently occupied range under RCP 4.5 and a range loss
of approximately 26% under RCP 8.5 by 2050 (Table 1). GLMmodels projected the greatest
percent habitat loss across North America under both emission scenarios (Table 1). There
was uniform agreement across ensemble algorithms in projecting habitat loss, even with the
possibility of colonizing new habitat, with variability among algorithms as to themagnitude
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Figure 2 Principal component analysis loadings 1 and 2 (95% confidence ellipses) for occupied
(present) and unoccupied (absent) nesting colonies.

Full-size DOI: 10.7717/peerj.4519/fig-2

of that loss (Table 1). Spatially, losses were uniformly projected along the California Current
up to southeastern Alaska (Fig. 3), although ensemble projections suggested continued
suitability of the Aleutian Islands under both emission scenarios (Fig. 3). Ensemble model
results also reflected agreement on the opportunity for northward range expansion (Fig. 3).
Both the projected southern range contraction and northward range expansion are further
consistent with the hypothesized relationship between puffin habitat and temperature.

California current—2050
Analysis of the California Current region within the overall ensemble models shows near
complete loss of suitable habitat between emission scenarios with both RCP 4.5 and 8.5
(Fig. 4), although the individual component models showed variable amounts of habitat
loss. GLM models projected the most dramatic loss along the California Current with a
predicted loss of greater than 96% of suitable habitat under both scenarios (SD = 14.61%
for projections under RCP 4.5, SD = 12.96% for projections under RCP 8.5) (Table 1).
GLMmodels also projected no habitat as likely to become newly habitable in the California
Current under either emission scenario. Both GBM and RF models predicted less range
change with GBM models projecting a mean loss of approximately 23% across algorithm
variants and RF models projecting a mean loss of approximately 27% across algorithm

Hart et al. (2018), PeerJ, DOI 10.7717/peerj.4519 11/26

https://peerj.com
https://doi.org/10.7717/peerj.4519/fig-2
http://dx.doi.org/10.7717/peerj.4519


Figure 3 North-America-wide habitat projection maps. Tufted Puffin breeding habitat range projection
maps. Probabilistic maps, color bins display percent probability of grid cell representing suitable habitat.
(A) Current projections. (B) 2050 projections under RCP 4.5. (C) 2050 projections under RCP 8.5. Map
data c©2017 Google.

Full-size DOI: 10.7717/peerj.4519/fig-3

variants under RCP 8.5 (SD = 20.27%, SD = 26.80%, respectively). Under both RCP 4.5
and 8.5, ensemble projections display complete loss of likely suitable habitat in Oregon
and virtually complete loss in California (Fig. 4). GBM and RF models projected small
portions of northwestern Washington would become slightly more likely than not to
become environmentally habitable by 2050 under both emission scenarios, though those
locations may not exhibit other puffin habitat requirements.

Hindcast
As stated above, limitations on biological survey for the Tufted Puffin make interpretation
of hindcast results difficult, though past projections further supported the hypothesis
of higher temperature limiting suitable nesting habitat. See supplementary material for
further discussion and presentation of hindcast model results.

DISCUSSION
Ensemble models uniformly support summer temperature as a predictor of Tufted Puffin
breeding habitat. Highmodel evaluationmetrics (Table 1) coupled with strong correlations
between temperature variables and Tufted Puffin range change (Figs. 1 and 2) provide
confidence that projected warmer summer temperatures are likely to be associated with
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Figure 4 California Current habitat projection maps. Tufted Puffin breeding habitat range projection
maps exclusive to the California Current (32◦N–48.5◦N). Probabilistic maps, color bins display percent
probability of grid cell representing suitable habitat. (A) Current projections. (B) 2050 projections un-
der RCP 4.5. (C) 2050 projections under RCP 8.5. Note: Probability bin ‘‘61–78%’’ absent in B and C as
projections do not reflect any habitat within that bin. Map tiles c©Stamen Design, underCC BY 3.0. Data
c©OpenStreetMap, underODbL.

Full-size DOI: 10.7717/peerj.4519/fig-4

the loss of greater than 92% of Tufted Puffin breeding habitat in the California Current
under the examined emission scenarios (Fig. 4). North America-wide, ensemble models
project an overall loss across model algorithms and variants of approximately 22% and
approximately 26% of suitable habitat, respectively, under moderate emission reductions
and business as usual carbon emissions by 2050 (Table 1). Figure 3 highlights that most
nesting habitat will be lost along the southern portion of current Tufted Puffin range as
well as the opportunity for northward range expansion.

Within the California Current, ensemble projections show little variance in the
projected range loss under RCP 4.5 versus RCP 8.5. However, the model algorithms
varied considerably with respect to the percent of future habitat likely to be suitable in
more northerly latitudes (Table 1). This variance is likely due to the differences in modeling
techniques across algorithms described above and variance in initial estimation of suitable
habitat (Table 1, Fig. 4). Both ensemble models project minimal suitable habitat remaining
along the California Current, therefore under the hypothesized relationship between
temperature and suitable habitat, there is little left to become unsuitable with increased
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warming (Fig. 4). Another factor which may contribute to the lack of variance in projected
habitat loss, range-wide, under different RCP scenarios in the California Current is the
relatively short timeframe of 2050 projections. Divergence in the temperature projections
of RCPs 4.5 and 8.5 are amplified after 2050 with less divergence in temperature in the
short term (IPCC, 2014).

Important to the interpretation of ensemble projections is the binary transformation
of model outputs into suitable and unsuitable categories. For range-change analyses,
projections of unsuitable habitat represent a weighted average of <50% probability of
suitability, a cutoff defined by ensemble calibration. In some cases we observed a majority
of ensemble members projecting a particular cell as marginally suitable while a minority of
members strongly project that cell as unsuitable. The subsequent result is unsuitable habitat
despite being marginally suitable in some models. This process of binary transformation
can then reflect an aggregate of probabilistic scores instead of the average of a binary
projection. Binary transformations are thus a useful tool to discuss and represent how
changes in climate may affect the likelihood of suitable breeding conditions throughout
Tufted Puffin range, but are necessarily imprecise in that they mask underlying variability.
Additionally, many sites in the ensemble projections (Fig. 4) become unsuitable after
binary transformations while falling in to the 27%–44% probability bin. Though these
are projected as likely to become environmentally unsuitable, they represent marginally
suitable environmental habitat and further research may help determine the suitability
of other requisite habitat conditions at these sites to provide a broader picture of nesting
habitat suitability at these locations.

Examining the variance among model results and the spatial variance in projections is
integral to the interpretation of model results from a conservation perspective (Guisan et
al., 2013; Porfirio et al., 2014). Tufted Puffins are a relatively rare species in the southern
portion of their range, are hard to survey, and occupy small areas of land (Hanson & Wiles,
2015). These biological factors contribute to the difficulty of surveying (and therefore
modeling) puffins and can increase variance among model algorithms, making ensemble
models more valuable for interpretation of results Segurado & Araujo, 2004; Hernandez
et al., 2006. However, here we use colony occupancy information rather than counts.
Preliminary occupancy analysis suggest that colony occupancy can be assessed with a high
probability with a single relatively rapid visit by boat even to a very small colony with few
birds (Pearson et al., see Supplemental File). Thus, our colony occupancy approach likely
reflects actual changes in colony occupancy throughout the range. In addition, trends
were consistent across algorithms in depicting significant losses of suitability for habitat
across the California Current (specifically California and Oregon), British Columbia and
eastern Alaska (Fig. 3). All algorithms also projected the opportunity for northward range
expansion in the face of accelerating northern latitude warming (Fig. 3).

If suitable habitat expands northward as projected by our ensemble models, biological
and ecological factors unrelated to climate such as eagle predation, requisite nesting
substrate, etc., are predicted to continue and likely to influence the probability of
colonization (Hipfner et al., 2012; Hanson & Wiles, 2015). Because colonization is
uncertain, we depict in Fig. 5 the loss of currently suitable habitat in the California
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Figure 5 Histogram of habitat loss in the California Current with nomigration.Histogram displaying
the amount of current California Current Extent suitable habitat projected to become unsuitable by 2050
under RCP 8.5 (N = 120). Colors represent model algorithms. In this analysis, there is an assumption of
no migration or dispersal to potentially suitable new habitat.

Full-size DOI: 10.7717/peerj.4519/fig-5

Current without the possibility of new colonization throughout the extent—a worst case
scenario but an important component of analysis when examining the threat of climate
change. Variance amongmodels as evidenced in Table 1 along the California Current failed
to result in more than a handful of consensus areas of suitability (Fig. 4). Ensemble models
did depict some areas of marginally suitable habitat along central California (Fig. 4). This
result was likely influenced by a few outlying colonies such as the one in the Farallon
Islands, California. These outlying colonies persist in opposition to the trends seen in other
colonies throughout the southern portion of puffin range. Further examination of the
mechanisms driving puffin declines in their southern range may shed light on either the
viability of these outlying suitable habitat projections as potential climate refugia or other
mechanisms supporting these outlying colonies.

The discussed hard-to-model specific requirements of puffin nesting habitat and other
ecological population drivers make fine scale colony-by-colony analysis of extirpation
risk difficult. Additionally, analysis of regional trends in puffin success can serve to guide
research examining the specific causal mechanisms driving documented declines which
would aid in further analysis of colony-by-colony extirpation risk. Importantly, all models
and especially ensemble results support the trend of southern range contraction associated
with warm summer temperatures (Figs. 1–4). Additionally, while limitations on historical
survey data make interpretation of hindcasts difficult, preliminary hindcasting resulted
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in expansion across the southern portion of current puffin habitat (see Supplemental
File). This result is further consistent with the hypothesized relationship between high
temperature and puffin success.

Our results are especially salient in light of the ongoing US Fish and Wildlife Service’s
analysis of puffin status following Natural Resources Defense Council’s petition to list the
California Current population as endangered. When responding to the petition to list the
puffin, the Service can list the species throughout its range or can list a distinct population
segment (DPS) such as the breeding population south of the Canadian border or that in the
California Current. While determining which segments comprise a DPS as outlined by the
ESA requires more analysis, our results provide the spatial information to inform the threat
that both of these breeding range segments or ‘‘populations’’ will likely face. Our results
suggest all potential distinct populations segments from British Columbia, southward, face
a significant chance of near extirpation or very significant habitat loss under a wide range
of climate projections by 2050.

Conservation planning for species can greatly benefit from defining the portion(s) of
their range representing habitat critical to their survival (Hagen & Hodges, 2006). This
designation is essential for conservation planning both under the ESA as well as Canadian
Species at Risk Act, in which it is required for listed species, as well as for more localized
conservation efforts (Taylor, Suckling & Rachlinski, 2005). Figures 3 and 4 highlight areas
where Tufted Puffins are currently at the highest risk of colony loss (low habitat suitability).
Many puffin nesting sites are already managed by the US Fish and Wildlife Service refuge
system and many of these sites are also designated as ‘‘wilderness’’ (Speich & Wahl, 1989
and United States Fish and Wildlife Service, 2017). Habitat projections made for the year
2050 permit analysis of critical habitat in terms of species survival as well as proposed
conservation efficacy (Suckling & Taylor, 2006; Stein et al., 2013). Land acquisition has
proven to be an effective strategy for the management of endangered species and is
a strategy that has been utilized for the Tufted Puffin (Lawler, White & Master, 2003;
WDFW, 2016) and could be used in the future. With limited resources to conserve species
at the federal level, ranking the conservation priorities and temporally analyzing threats
can allow for prudent investment in conservation lands (Lawler, White & Master, 2003).
Nesting colony sites throughout the Gulf of Alaska are projected to remain suitable and
results indicate the Aleutian Islands are the most likely habitat to both continue to support
large populations of Tufted Puffins as well as potentially becoming suitable as new breeding
sites (Fig. 3). As these results suggest, we can use this information to predict areas of future
Tufted Puffin habitat to help outline areas for long-term conservation action while also
mapping areas where long-term conservation efforts may prove ineffective. Such proactive
conservation steps often result in greater conservation outcomes and are critical for species
struggling to adapt to changing climates (Morrison et al., 2011).

Mechanisms driving decline
Using the results reflected in Figs. 3 and 4, wildlife managers can continue to explore
the causal mechanisms driving the discussed Tufted Puffin population declines and
range contraction. Currently numerous pathways are proposed to help determine puffin
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breeding success and adult survival such as prey availability, SST, predation and habitat
degradation (Morrison et al., 2011; Hanson & Wiles, 2015). While many prey species do
not show significant population trends (MacCall, 1996), our results can provide spatial
details to explore a potential mechanistic explanation, vertical prey distribution (Gjerdrum
et al., 2003). Exact measurements are unknown but based on body size, Tufted Puffins
exhibit the deepest maximum forage depths across alcids, at approximately 110 m, but
typically forage at 60 m or less (Piatt & Kitaysky, 2002). Tufted Puffins also forage much
further offshore than most other alcids and in deeper waters along continental shelf breaks
(Ostrand et al., 1998; Menza et al., 2016). Foraging in deeper waters may leave Tufted
Puffins susceptible to downward movement of prey species in the water column during
high temperatures (Ostrand et al., 1998; Gjerdrum et al., 2003). Further research around
these biological and ecological factors can be combined with our model results to further
explore the mechanisms behind the temperature-range relationship for Tufted Puffins
(Ostrand et al., 1998; Piatt & Kitaysky, 2002).

In addition to uncovering causal mechanisms, current conservation efforts are beginning
to examine diverging population patterns among related birds, Rhinoceros Auklets
(Cerorhinca monocerata), Cassin’s Auklets (Ptychoramphus aleuticus) as well as Tufted
Puffins along the California Current (Grémillet & Boulinier, 2009; Morrison et al., 2011).
While these three alcids fill similar ecological roles, recent years have seen dramatic
population swings varying among species (e.g., El-Niño of 1997–98) (Morrison et al., 2011).
Cassin’s Auklets have displayed similar ecological sensitivity to changing environmental
conditions and have experienced recent large scale mortality events as recently as 2015
(Sydeman et al., 2006;Wolf et al., 2010;Hanson & Wiles, 2015). Physiological and ecological
differences between these related seabird species such as forage radius, foraging depth,
and diet composition may provide insights into the mechanisms responsible for these
differences in population trends among species (Sydeman et al., 2001; Wolf et al., 2009;
Wolf et al., 2010; Morrison et al., 2011). For example, using SDMs to model multiple
species may provide insights into the relative influence of climate change on populations
trends (Johnson et al., 2017).

CONCLUSION
Our analysis shows a strong negative correlation between warm summer temperatures and
Tufted Puffin nesting range, particularly along the California Current. Construction of
SDMs utilizing two different emissions scenarios for the year 2050 show southern range
contraction and suggest a high risk of Tufted Puffin extirpation in the California Current
large marine ecosystem. Ensemble projections support preliminary analyses suggesting
that temperature is driving the current puffin population declines and colony loss. SDM
model results can provide valuable input for conservation decision processes. Specifically,
our work provides the foundation for evaluating the threat of climate change and increased
summer temperatures on Tufted Puffin breeding range.
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