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ABSTRACT
Background. The chloroplast (cp) genome is useful in plant systematics, genetic
diversity analysis, molecular identification and divergence dating. The genus Gentiana
contains 362 species, but there are only two valuable complete cp genomes. The purpose
of this study is to report the characterization of complete cp genome of G. lawrencei
var. farreri, which is endemic to the Qinghai-Tibetan Plateau (QTP).
Methods. Using high throughput sequencing technology, we got the complete nu-
cleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis
including genome difference and gene divergence was performed with its congeneric
species G. straminea. The simple sequence repeats (SSRs) and phylogenetics were
studied as well.
Results. The cp genome of G. lawrencei var. farreri is a circular molecule of 138,750
bp, containing a pair of 24,653 bp inverted repeats which are separated by small
and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome
contains 130 known genes, including 85 protein coding genes (PCGs), eight ribosomal
RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var.
farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps
were detected that are responsible for 85% of the total sequence loss. Further detailed
analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH
dehydrogenase subunits. The cp gene content, order and orientation are similar to those
of its congeneric species, but with some variation among the PCGs. Three genes, ndhB,
ndhF and clpP, have high nonsynonymous to synonymous values. There are 34 SSRs
in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats:
no dinucleotide repeats were detected. Comparison with the G. straminea cp genome
indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific.
The phylogenetic analysis of 48 PCGs from 12 Gentianales taxa cp genomes clearly
identified three clades, which indicated the potential of cp genomes in phylogenetics.
Discussion. The ‘‘missing’’ sequence of G. lawrencei var. farreri mainly consistent of
ndh genes which could be dispensable under chilling-stressed conditions in the QTP.
The complete cp genome sequence ofG. lawrencei var. farreri provides intragenic infor-
mation that will contribute to genetic and phylogenetic research in the Gentianaceae.
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INTRODUCTION
The chloroplast (cp) is the photosynthetic organelle that provides essential energy for
plants, and is hypothesized to have arisen from ancient endosymbiotic cyanobacteria
(Neuhaus & Emes, 2000). In angiosperms, most cp genomes are circular DNA molecules,
containing one large single-copy region (LSC), one small single-copy region (SSC) and a
pair of inverted repeats (IRs) (Palmer, 1985; Jansen et al., 2005). The sizes of cp genomes
in most angiosperms range from 120 kb to 160 kb caused by expansion of the IR regions
and evolutionary contractions (Palmer, 1985; Wang et al., 2008).

Recently, the number of completely sequenced cp genomes from higher plants has
increased significantly. The cp genome is useful in plant systematics research because
of its maternal inheritance, haploid nature and highly conserved structures. It is widely
used in the study of genetic diversity, molecular identification, phylogenetic classification
and divergence dating (Shaw et al., 2007; Nikiforova et al., 2013; Carbonell-Caballero et al.,
2015; Williams et al., 2016). The comparative analysis of cp genomes reveal insights into
the cp genome evolution such as sequence inversion (Cho et al., 2015), gene loss (Wakasugi
et al., 1994; Millen et al., 2001) and variation in borders of LSC, SSC and IR regions
(Ni et al., 2016).

The family Gentianaceae has approximately 700 species (He, 1988) and is the third
largest family of the Gentianales order in the Asterids clade. However, only one complete
chloroplast genomes has been reported in this family so far (Ni et al., 2016). Gentiana is
the largest genus in the Gentianaceae, containing 15 sections and about 362 species (Ho
& Liu, 2001). Gentiana plants have been widely used as traditional Chinese and Tibetan
medicines (Ho & Liu, 2001) and are edificators in the Qinghai-Tibetan Plateau (QTP)
alpine meadow. Although some studies have been carried out on the phylogenetics of
Gentiana, they have all been based on one or several gene fragments (Yuan & Küpfer,
1997; Yuan, Kupfer & Doyle, 1996; Zhang et al., 2009). Together with their complicated
evolutionary history (Yuan & Küpfer, 1997), the phylogenetic relationships of Gentiana,
especially intrasectional classification, remain controversial (Ho & Liu, 2001; Favre et al.,
2010). At present, there are only two complete cp genomes have been sequenced in the
Gentiana: G. straminea and G. crassicaulis, which both belong to the same section, Cruciata
Gaudin, and only G. straminea was reported (Ni et al., 2016). Therefore, it is necessary to
develop genomic resources for Gentiana to provide valuable information to study their
phylogenetic relationships and the evolutionary history of the genus.

Gentiana lawrencei var. farreri T. N. Ho is endemic to the QTP and belongs to sect.
Kudoa (Masamune) Satake & Toyokuni ex Toyokuni. It has very beautiful flowers and has
been used in traditional Chinese and Tibetan medicine (Yang et al., 2012). Here, we report
the cp genome sequence of G. lawrencei var. farreri and present a comparative analysis with
its congeneric species G. straminea The genome structure, insertions and deletions, repeat
sequences and phylogenetics of Gentianaceae were analyzed. This study provided large
amounts of sequence information for phylogenetic and evolutionary studies of Gentiana
and the Gentianaceae.
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MATERIALS AND METHODS
Sample collection, genome sequencing, and assembly
Gentiana lawrencei var. farreri was sampled in Qilian Mountain (101◦22′33′′E, 37◦29′53′′N,
Qinghai, China) from a single plant. Total genomic DNA was isolated from young leaves
using a Dzup plant genomic DNA extraction kit (Sangon, Shanghai, China) following
the manufacturer’s instructions. After DNA isolation, the procedure was performed
in accordance with the standard Illumina protocol, including sample preparation and
sequencing. Approximately 5–10 µg of genomic DNA was fragmented using ultrasound,
which was purified using the CASpure PCR Purification Kit (ChaoShi-Bio, Shanghai,
China), followed end repair with poly-A on the 3′ ends. The DNA were then linked to
adapters, extracted at specific size after agarose gel electrophoresis and amplified by PCR to
yield a sequencing library. Then, a quarter of one flow-cell lane containing the fragmented
genomic DNA of G. lawrencei var. farreri was sequenced using the Illumina HiSeq 4000
platform (Biomarker, Beijing, China), yielding 36.08 million 150-bp paired-end reads from
a library of approximately 350-bp DNA fragments. Reads corresponding to plastid DNA
were identified using a BLASTN (E-value: 10−6) search against the plastome sequences of
two Gentiana taxa: G. straminea (GenBank accession no. NC_027441) and G. crassicaulis
(NC_027442). A total of 2,517,802 reads (6.97%) were recovered and assembled using
Velvet 1.2.10 (Zerbino & Birney, 2008). Eight contigs, ranging in size from 926 to 47,806
bp, were obtained. All the genomic regions located at the junction between the two contigs
were verified by Sanger sequencing. The primers used were designed using PRIMER V5.0
and are provided in Table S1. TheG. lawrencei var. farreri plastome sequence was deposited
in GenBank (accession no. KX096882).

Genome annotation
The protein coding genes (PCGs), tRNAs and rRNAs in the cp genome were predicted and
annotated using Dual Organellar GenoMe Annotator (DOGMA) using default parameters
(Wyman, Jansen & Boore, 2004). The positions of questionable start and stop codons, or
intron junctions of the PCGs, were verified using BLAST search against cp genomes of
other closely related species. The cp gene map was drawn using OGDraw v1.2 (Lohse,
Drechsel & Bock, 2007). Simple sequence repeats (SSRs) were detected using MSDB 2.4
(https://code.google.com/archive/p/msdb/downloads) with minimal repeat numbers of
10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively.

Comparative analysis with G. straminea
The cp genome sequence from G. straminea (NC_027441) was obtained from the National
Center for Biotechnology Information (NCBI). Genome comparison to identify the
differences betweenG. lawrencei var. farreri andG. stramineawas performed usingmVISTA
(Frazer et al., 2004) and Geneious Basic 5.6.4 (Kearse et al., 2012). Nonsynonymous (Ka)
to synonymous (Ks) (Ka/Ks) ratios were calculated using DnaSP v5.10 (Librado &
Rozas, 2009).
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Phylogenetic analysis
To illustrate the phylogenetic relationships of Gentiana with other major Gentianales
clades with our cp genome sequence, the other 12 available complete cp genomes in
the order were downloaded from GenBank (Table S2). Lactuca sativa from Asteraceae
was used as outgroup. Forty-eight PCGs (atpA, atpB, atpE, atpH, atpI, cemA, matK,
ndhD, ndhE, petA, petB, petD, petG, petL, petN, psaA, psaB, psaI, psaJ, psbA, psbC, psbD,
psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, rbcL, rpl14, rpl16, rpl20, rpl22,
rpl33, rpl36, rpoA, rps2, rps3, rps4, rps8, rps11, rps14, rps15 and rps18) found in all of the
species were extracted from the selected cp genomes. The amino acid sequences of each
of the 48 cp PCGs were aligned using MSWAT (http://mswat.ccbb.utexas.edu/) with
default settings, and back translated to nucleotide sequences. Phylogenetic analyses were
performed using the concatenated nucleotide sequences and PhyML3.1 software (Guindon
& Gascuel, 2003) using the maximum likelihood (ML) method. PhyML searches relied
on the subtree pruning and regrafting (SPR) method with the GTR+I+G model (p-inv
= 0.404, gamma shape = 0.808), as determined using the Akaike information criterion
implemented in jModelTest 2.1.7 (Guindon & Gascuel, 2003; Posada, 2008). A bootstrap
analysis was performed with 100 replications.

RESULTS
The overall structure and general features of the G. lawrencei var.
farreri cp genome
The cp genome of G. lawrencei var. farreri is a closed circular molecule of 138,750 bp
(Fig. 1), comprising a pair of IR regions (IRa and IRb) of 24,653 bp, one LSC region of
78,082 bp and one SSC region of 11,365 bp. It has an overall typical quadripartite structure
that resembles the majority of land plant cp genomes (Shinozaki et al., 1986). The GC
contents of the LSC, SSC, and IR regions and the whole cp genome are 35.7, 30.0, 43.6 and
38.0%, respectively, which are similar to the other reported Gentiana cp genomes (Ni et al.,
2016). The cp genome of G. lawrencei var. farreri contains 130 genes, including 85 PCGs
accounting for 66,215 bp, and 37 tRNA and eight rRNA genes accounting for 11,781 bp.
Among the 130 genes, 18 are located in the IR region. Most genes are present as a single
copy, while all the rRNA genes and some of the tRNA and PCGs in the IR occur as double
copies. A total of 84 unigenes were detected in the cp genome and this category is detailed
in Table S3. Four genes each have one intron (atpF, rpoC1, ndhB and rpl2) and two PCGs
(clpP and ndhF) and 1 ycf (ycf3) have two introns. Like most other land plants, rps12 is
trans-spliced, with its two 3′end residues separated by an intron in the IR region, and the
5′end exon is in the LSC region (Fig. 1). The 37 tRNAs contained 30 different tRNA genes
and the eight rRNA genes contained four different tRNA genes. Both the number and
types of the tRNAs are consistent with those presented in other species of vascular plants
(Shinozaki et al., 1986).

Comparison of G. lawrencei var. farreri and G. straminea cp genomes
A comparative analysis between the cp genomes in Gentiana revealed that G. lawrencei
var. farreri is 10,241 bp shorter than that of G. straminea. As for the four parts of the cp
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Figure 1 Map ofthechloroplast genome ofG. lawrencei var. farreri. Genes drawn inside the circle are transcribed clockwise, and those outside are
transcribed counterclockwise. Genes belonging to different functional groups are shown in different colors.
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Table 1 Comparison of genome contents ofG. lawrencei var. farreri andG. straminea.

G. lawrencei var. farreri G. straminea
Total sequence length (bp) 138,750 148,991
Large single copy (bp) 78,082 81,240
Inverted repeat region (bp) 24,653 25,333
Small single copy (bp) 11,365 17,085
GC content (%) 38 37.7
Total CDS bases (bp) 66,215 75,780
Average CDS length (bp) 779 758
Total RNA bases (bp) 11,781 11,861
Average intergenic distance (bp) 467 403

genome, the LSC, SSC and IR of G. lawrencei var. farreri are 3185 bp, 5720 bp and 680
bp shorter than those of G. straminea, respectively (Table 1). Four big gaps (GapA–D)
were detected: GapA (2241 bp) in the LSC, GapB (958 bp) in IRb, GapC (4582 bp) in the
SSC and GapD (958 bp) in IRa. The four gaps represent 85% of the ‘‘missing’’ genome.
All the gaps were verified by Sanger sequencing with primers designed using PRIMER V5
(Table S1). Compared with G. straminea, GapA contains three PCGs (ndhJ, ndhK and
ndhC), GapB and GapD contain exon 2 of ndhB and GapC contains five PCGs (ndhG,
ndhI, ndhA and parts of ndhE and ndhH ). A comparative analysis betweenG. lawrencei var.
farreri and G. straminea cp genomes revealed that the sequence similarities between the
trnH-GUG-psbA, trnK-UUU -italictrnQ-UUG, trnS-GCU -trnG-GCC, atpH -atpI, rpoB-
trnC-GCA, psbC-trnS-UGA, trnT-UGU -trnL-UAA, atpB-rbcL, ycf1-ndhF, rpl32-trnL-UAG
and trnL-CAA-ycf15 intergenic regions are very low.

Divergence hotspot
The complete cp genomes of G. lawrencei var. farreri and G. straminea were compared
using the mVISTA program to determine the level of sequence divergence. The comparison
showed that the coding regions of both cp genomes are highly conserved compared with
the noncoding regions. In particular, the intergenic regions showed the greatest divergence
between the two cp genomes. More divergence was found in the sequences of clpP, ndhB,
ndhD, ndhE, ndhF and ndhH, which are distributed mainly in the SSC regions, compared
with other PCGs. The nucleotide and amino acid sequences of the PCGs of G. lawrencei
var. farreri and G. straminea are highly similar, with average sequence similarities of 95.0
and 93.0%, respectively. Between the two species, the nucleotide sequence identities of the
LSC, SSC, and IR are 88.7, 61.0, and 92.9%, respectively. The most conserved genes include
all the rRNA genes, the genes from photosystem I, the cytochrome b/f complex genes and
the ATP synthesis genes (Tables S3 and S4).

Divergence of coding gene sequence
Seventy-four PCGs are shared between the two species. Compared with G. straminea, 14
out of the 74 shared PCGs had deletions and six had insertions (Table S4). The average Ks
values between the two Gentiana species were 0.0551, 0.1133, and 0.0243 in the LSC, SSC,
and IR regions, respectively, with a total average Ks of 0.0642 across all regions (Table S4).
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Figure 2 Gene-specific Ka/Ks ratios between the chloroplast genomes of twoGentiana species (G.
lawrencei var. farreri andG. straminea). Three genes (clpP, ndhB and ndhF) returned Ka/Ks ratios
greater than 1.0, whereas the Ka/Ks ratios of the other genes were less than 1.0.

Although the coding region is highly conserved, we did observe slight variations. Based on
the comparison of Ka/Ks values among the regions, higher Ks values were observed for
some genes, including rps8, rpl14, rpl36, rpl32, ndhD, rpl36 and ndhH. The distribution
of Ks values indicated that on average more of genes in the SSC region have experienced
higher selection pressures than the rest regions of the cp genome. The Ka/Ks ratio was also
calculated, which was >1 for ndhB in the IR region, ndhF in SSC region and clpP from the
LSC region (Fig. 2).

SSR analysis
Thirty-four SSR loci, 394 bp in length, were detected in the G. lawrencei var. farreri cp
genome, and there were 25, three, five, and two mono-, tri-, tetra-, and penta-nucleotide
repeats, respectively (Table S5). No dinucleotide repeats were detected in the cp genome.
Most of the SSRs are mononucleotide repeats, which is consistent with the study of George
et al. (2015). Thirty of the 34 SSRs comprised A and T nucleotides, with a higher AT content
(95.9%) in these sequences compared with the rest of the genome. Among the SSRs, 23
were located in intergenic regions and 11 were found in coding genes, including those in
the ccsA, rpoC1, ndhF, atpF, rpl32, matK, rpoA, atpB and psaB genes. Compared with G.
straminea, six loci were identical, five were polymorphic, 28 were lost and 23 were specific
to G. lawrencei var. farreri (Table S5).

Phylogenetic relationship
An ML phylogenetic tree constructed using 48 PCGs from 12 Gentianales taxa clearly
identified the three families (Gentianaceae, Rubiaceae and Apocynaceae) in the analysis as
being monophyletic with high bootstrap value (Fig. 3). The tree revealed thatG. crassicaulis
and G. straminea are more closely related to one another than either is to G. lawrencei var.
farreri. All the nodes in the tree have high (>95%) bootstrap support.
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Figure 3 Phylogenetic analysis of 12 Gentianales species using 48 CDS regions of the chloroplast genomes.Data sources: Gentiana straminea
(NC_027441); Gentiana crassicaulis (NC_027442); Catharanthus roseus (NC_021423); Rhazya stricta (NC_024292); Nerium oleander (NC_025656);
Pentalinon luteum (NC_025658); Oncinotis tenuiloba (NC_025657); Cynanchum auriculatum (NC_029460); Asclepias syriaca (NC_022432); Coffea
arabica (NC_008535);Morinda officinalis (NC_028009) and Lactuca sativa (NC_007578).

DISCUSSION
Evolution of G. lawrencei var. farreri
Much of the variation in the sequence complexity of angiosperm cp genomes appears to be
the result of rather small length mutations. However, our comparative analysis showed that
G. lawrencei var. farreri is 10,241 bp shorter than G. straminea. Although the cp genome
size is variable, ranging from 120 kb to 160 kb, huge genome losses in congeneric taxa
are rarely reported. In general, most of the size changes in angiosperm cp genomes can
be accounted for by rare deletions and duplications leading to massive changes in the size
of the IR region (Palmer, 1985). This is not the case for G. lawrencei var. farreri and G.
straminea. The total length variationmainly occurred in the SSC (5720 bp, 55.85%) and LSC
(3158 bp, 30.84%) regions rather than the two IR regions (1360 bp, 13.28%). More than
half (50.33%) of the sequence length in the SSC region was lost. Therefore, the cp genome
size variation in the two Gentiana taxa was not caused by deletions in the IR regions, but
by deletions in the SSC and LSC regions. Although the IR region can vary from 10 to 76
kb among angiosperms, in the great majority of species it is a rather constant 22–26 kb
in size (Palmer, 1985). The junction between the IR and LSC region is located within the
rps19 gene in G. lawrencei var. farreri, similar to majority of dicots and some monocots
(Wang et al., 2008; Ni et al., 2016). The more or less fixed position of IR-LSC junction
within a coding gene suggests some selection is operating to constrain the boundaries of
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the IR (Palmer, 1985). It contributes to the more constant size of the IRs than the LSC and
SSC region in the great majority of angiosperms.

The SSC region ofG. lawrencei var. farreri has experienced drastic variation as compared
to its congeneric species. Compared with G. straminea, the SSC region contributes 55.85%
of the cp genome sequence length variation and only showed 61.0% nucleotide identity.
The SSC region also has a much higher Ks (0.1133) value than the LSC (0.0551) and
IR (0.0243) regions. Two possible explanations about variation in the SSC region were
proposed in previous studies. Firstly, the higher rate of molecular evolution in the SSC
than other regions was also observed inWalker, Zanis & Emery (2014) who attributed it to
low proportion of coding vs. noncoding regions in the sequence. However, this does not
appear to be true in our study. Secondly, the SSC region is a ‘‘hotspot’’ for recombination
(Palmer, 1983; Liu et al., 2013; Walker et al., 2015). We did not yet detect inversion in the
SSC region of G. lawrencei var. farreri. Therefore, the drastic variation may be result of
other reasons. The functional genes associated with the variation in the SSC region of G.
lawrencei var. farreri, mainly focus on the ndh genes, might provide an insight into the
reasons for the drastic variation.

In chloroplasts, gene loss is an ongoing process (Martin et al., 1998). The huge genome
loss in G. lawrencei var. farreri was mainly accounted for by four big gaps, which caused
the loss of the entire ndhJ, ndhK, ndhC, ndhE, ndhG, ndhI, and ndhA genes and partial loss
of ndhH and ndhB. The protein products of all the lost genes are NADH dehydrogenase
(NDH) subunits. The cp DNA of most of the higher plants contains 11 ndh genes, which
encode protein subunits of the thylakoid NDH complex. The complex is analogous to
mitochondrial complex I (EC 1.6.5.3), which catalyzes the transfer of electrons fromNADH
to plastoquinone (Sazanov, Burrows & Nixon, 1998). The cp ndh genes have been retained
in most higher plants (Martín & Sabater, 2010), but appear to have been lost frequently in
parasitic and epiphytic plants (e.g., Stefanovi & Olmstead, 2005) along with other cp genes
apparently associated with a loss of or reduction in photosynthetic capability (Iles, Smith
& Graham, 2013). Although the ndh genes could be dispensable under mild non-stressing
environments, transgenic plants defective in ndh genes showed that the NDH complex is
required to optimize photophosphorylation rates and showed impaired photosynthesis
rates under stress conditions (Martín & Sabater, 2010). Cyclic photophosphorylation via
the NDH pathway might play an important role in regulating CO2 assimilation under
heat-stress conditions, but is less important under chilling-stressed conditions (Wang et
al., 2006). Therefore, the absence of NDH in G. lawrencei var. farreri is understandable
when considering the cool conditions in the QTP, which is the natural habitat of Gentiana
(Ho & Liu, 2001). Meanwhile, the ndh loss between two congeneric species might offer a
clue to the divergence and evolution of Gentiana.

Variation in the divergence of the coding region was observed between the two Gentiana
species. Although the coding region was generally highly conserved, the rps8, rpl14, and
rpl36 genes of the LSC region and the rpl32, ndhD, ndhF, and ndhH genes of the SSC region
ofG. lawrencei var. farreri showed a higher evolution rate compared with other genes. Based
on the sequence identity among the three regions, the IR region is more conserved than the
LSC and SSC regions. This agrees with previous studies that hypothesized that the frequent
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recombinant events occurring in the IR region result in selective constraints on sequence
homogeneity, causing them to diverge at a slower rate than the LSC and SSC regions (Qian
et al., 2013; Cho et al., 2015). Our data confirm a positive selection pressure at the protein
coding genes. The ndhB gene of the IR region, ndhF of the SSC region and clpP from the
LSC region of G. lawrencei var. farreri presented higher Ka/Ks ratios (>1.0), indicating
that they had evolved under positive selection. The clpP gene also showed a high Ka/Ks
ratio in Fagopyrum tataricum (Cho et al., 2015). Interestingly, the ndhB and ndhF genes
experienced positive selection pressure. In the absence of nine ndh genes in G. lawrencei
var. farreri, the remaining ndhB and ndhF genes might play an important role in cyclic
photophosphorylation, although the functions of ndhB and ndhF genes are unknown. The
ndhB and ndhF genes are probably transcribed independently as monocistronic mRNAs
(Martín & Sabater, 2010). Favory et al. (2005) proposed that the transcription of the ndhF
gene requires the nuclear-encoded sigma4 factor; the ndhF product in turn would stimulate
the transcription of the other plastid ndh genes. Therefore, the selection pressure on the
ndhF gene may play an important role in evolution of ndh genes.

Phylogenetic value
The ML phylogenetic tree of Gentianales constructed using 48 PCGs clearly grouped the
taxa from the three families into three clades. The phylogenetic relationshipswere consistent
with previous studies that classified the three families as three monophyletic clades and
identified the Rubiaceae as the base group in theGentianales (Backlund, Oxelman & Bremer,
2000). The cp genome has also been used successfully for phylogenetic reconstruction in
several studies (Carbonell-Caballero et al., 2015; Williams et al., 2016). In Gentiana, several
phylogeny studies have been carried out (Yuan & Küpfer, 1997;Mishiba et al., 2009; Zhang
et al., 2009). However, these studies were all based on one or several DNA fragments,
which, together with their complicated evolutionary history, have led to the phylogenetic
relationships of Gentiana being controversial due to inconsonant sectional classification
and the low support for relationships (Ho & Liu, 2001; Favre et al., 2010). For example,
the sect. Chondrophyllae, which has 10 series and 163 species, derived within a very short
period of time followed by subsequent rapid radiation (Yuan & Küpfer, 1997), making the
infrasectional phylogenetic relationships of this section difficult to determine. In addition,
previous phylogenetic analyses based on internal transcribed spacer regions reclassified five
clades in sect. Cruciata but failed to find corresponding morphological circumscriptions to
support them (Zhang et al., 2009). Our analysis also identified substantial length variation
and amount of base substitutions in the cp genome between two species of Gentiana;
therefore, to realize the full potential of the cp genome in phylogenetic analysis, more taxa
of different secttions should be included in the cp genome comparison analysis.

Chloroplast SSRs are good tools for studies in plant ecology and evolution (Provan,
Powell & Hollingsworth, 2001). Microsatellites often show high levels of polymorphism
and are thus used widely in studies of genetics and evolution. However, SSRs in the
nuclear genome are usually species-specific and are thus used mainly for intraspecific
genetic studies rather than phylogenetic studies of related species. Unlike nuclear SSRs,
chloroplast SSRs are frequently cross-amplified in related species and thus could be used for
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phylogenetic studies (Provan, Powell & Hollingsworth, 2001).We detected five polymorphic
SSRs between G. lawrencei var. farreri and G. straminea, which belong to different sections.
SSRs are more polymorphic than cp loci that are amplified by universal primers; therefore,
the polymorphic SSRs could offer higher resolution for phylogenetic tree construction in
Gentiana.

CONCLUSION
We present the first report of the complete cp genome sequence of G. lawrencei var. farreri
and describe its evolutionary characteristics in comparison with G. straminea. About 10kb
sequence which mainly consistent of nine ndh genes were lost in G. lawrencei var. farreri.
The divergence hotspots and SSRs clarified here could be used as molecular markers and
will be useful for further studies on population genetics, phylogenetics and evolution of
the genus Gentiana.
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