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A new autopilot system for unmanned underwater vehicle (UUV) using multi-single-beam sonars is proposed for environmental
exploration. The proposed autopilot system is known as simultaneous detection and patrolling (SDAP), which addresses two
fundamental challenges: autonomous guidance and control. Autonomous guidance, autonomous path planning, and target tracking
are based on the desired reference path which is reconstructed from the sonar data collected from the environmental contour with
the predefined safety distance. The reference path is first estimated by using a support vector clustering inertia method and then
refined by Bézier curves in order to satisfy the inertia property of the UUV. Differential geometry feedback linearization method is
used to guide the vehicle entering into the predefined path while finite predictive stable inversion control algorithm is employed for
autonomous target approaching.The experimental results from sea trials have demonstrated that the proposed system can provide
satisfactory performance implying its great potential for future underwater exploration tasks.

1. Introduction

Underwater exploration often encounters environment that
is difficult or even impossible for humans to access due to
their physical constraints such as deep depth, narrow spaces,
and severe working conditions. Unmanned underwater vehi-
cle has a number of advantages for exploring underwater
environments, such as autonomous control ability and self-
sufficient energy supply. Autopilot of UUV often relies on the
information or characteristics (e.g., geometrical information)
of the surrounding environment, reflected by data collected
from sensors such as sonars.

When in operation, sonar sends out an acoustic beam and
the returned (usually the fastest) beam from the environment
is collected to determine the distance and location of the
environment. This means that it can detect the point on the
contour that has the shortest distance from the sonar. There-
fore, sonar data can be used to plan the desired path of the
UUV and control it by changing thruster forces and rudder
angles of the UUV to approach the target. An important
issue for designing UUV control systems is the strength of

the signal observed from sonar. It is weak primarily due to
the random effect caused by complicatedmarine disturbance;
other interferences between received beams can be due to
delay and scattering effect.

In this paper a new autopilot system, known as simul-
taneous detection and patrolling (SDAP), is proposed to
address this challenge. Autonomous guidance and control
are implemented synchronously where the reconstructed
environment contour is used as the guidance path for UUV
navigation. For the environment contour reconstruction, the
major focus of research is on simultaneous localization and
mapping (SLAM) [1], where navigation is the key issue to be
addressed.With the advances in control theory, UUV control
systems have rapidly evolved from classic control theory to
modern control models, including PID [2, 3], backstepping
[4–7], fuzzy theory [8, 9], neutral network [10–13], sliding
model [14, 15],model prediction control [16, 17], and feedback
linearization [18–23]. In particular, Zou has proposed an
optimal inversion-based output tracking approach for the
guidance of a vertical takeoff and landing (VTOL) aircraft
problem [21]. Song has further improved this approach
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Figure 1: Illustration of the proposed SDAP system for different environments.

with better convergence property such that a second order
convergence can be achieved evenwith aggressive trajectories
and strong nonlinearities [20]. Given that stable inversion
technique has shown excellent performance for achieving
stable control inputs, it is chosen to be implemented in the
controllers for accuracy, efficiency, and cost effectiveness.

In this paper autopilot of UUV for both closed and
open environments is considered, as shown in Figure 1. In
the closed port (Figure 1(a)), there is only one entrance
and the UUV has to be able to navigate to the only ready
point from any launch and recovery position (L&R). For
the open island (Figure 1(b)), there are theoretically infinite
numbers of possible entrance points around the island. With
consideration of the disturbances such as current direction,
an appropriate ready point has to be chosen to guide theUUV
to enter into the manned-unknown area. In the manned-
known areas, accurate predefined path is applied for theUUV
to follow in order to reduce the cost and risks.Themain issue
addressed in the paper is the navigation using autonomous
guidance and control is implemented in manned-unknown
areas or area inaccessible for humans where the contour
has to be reconstructed in real time. Although in reality,
the environment is semiclosed where there is more than
one entrance, it is not discussed explicitly here as it can be
addressed by applying the strategy for closed environment in
an iterative manner.

The main novelties of this paper are as follows.
(1) To address the weak sonar data, a wavelet transform

is applied to preprocess the original data so as to
eliminate possible outliers in the original sonar data.
To reduce the information loss in the preprocessing,
the wavelet coefficient values of the current time
are estimated using those coefficients estimated in
the past times and the original sonar data. All the
estimated wavelet coefficients are then regarded as
the data resource for the contour reconstruction
processes.

(2) A support vector clustering (SVC) inertia algorithm
is proposed to cluster the data into different classes so
as to determine the property of the original sonar data
and obtain the boundaries of the classes (also known
as contour). The resulting contour after this step is
composed of successively connected lines.

(3) To satisfy the inertia property of the UUV path,
the initial contour is smoothed using different order
Bézier curves which are automatically determined by
the local properties of the structural environments.

(4) With the information of the smoothed contour as the
reference path and a predefined safety distance, an
improved inversion algorithm, finite predictive stable
inversion is proposed to control vehicle navigation.

The remainder of this paper is organized as follows:
in Section 2, weak observable sonar data is preprocessed
using the wavelet transform and represented as a collection
of wavelet coefficients. In Section 3, the wavelet coefficients
together with the data confidence limit andDVL information
are used to estimate the contour of the environment structure
by a support vector clustering inertia method. Addressing
the inertia requirement of the vehicle, in Section 4 different
order Bézier curves are introduced to smooth the initial
contour and automatic decision strategy is made to generate
the reference path according to the local properties of the
structural environment. In Section 5 details on the controller
design methods are presented, and employed for predictive
trading during detection mission. The validation experiment
design and results are presented in Section 6. Section 7
concludes this paper with some insightful discussions.

2. Preprocessing of Sonar Data Using
Wavelet Transform

2.1. Collection of Sonar Data. In this paper five single-beam
sonars are configured on the vehicle in order to automatically
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Table 1: Metrics to categorize obstacles.

𝐸
𝑡

𝐸
Δ𝑡

𝐿
𝑡
change Class

1 1 No TO
1 1 Yes GLTO
1 0 No contour Noise or SLTO

detect the underwater environment: three sonars in the front
to detect local environment characteristics and two on the left
and the right side for contour reconstruction.The three front
sonars are deployed in a way where the middle one is located
on the axis of the vehicle surge direction and the other two
are installed on the left and right of the middle one with an
angle of 7.5 degree, respectively.

Data collected from sonars often include useful data
describing obstacles and noise from random outliers. To
address the “false alarm” problem in vehicle navigation,
those outliers have to be detected and eliminated as much
as possible. Outliers can be divided into noise patches and
objects (e.g., fish swarm) that have less or no threats to the
vehicle. Therefore, three different types of objects are defined
as follows.

(a) Threaten Obstacle (TO).They are obstacles existing in
the environment that can be detected by sonar and
have threats to the vehicle, including wreck, reef, and
iceberg.

(b) Low Threaten Obstacle (LTO). They are obstacles
existing in the environment that can be detected by
sonar but have low level of threat to the vehicle, such
as suspensions, and fish swarms. LTO can be further
fractionized to single LTO (SLTO) distributing as
single isolated objects and group LTO (GLTO) with
unfixed contour.

(c) Noise. Data is collected from sonar that denotes non-
obstacles.

With the above definitions, data describing TO is consid-
ered to be useful while LTO and noise are regarded as outliers
in this paper. Let 𝐸

𝑡
and 𝐸

Δ𝑡
be data distribution at instants 𝑡

and (𝑡 + Δ𝑡), respectively, and the values of 1 and 0 describe
data existence and nonexistence, respectively; 𝐿

𝑡
express the

contour of data class at time 𝑡, and the sonar data can be
classified as Table 1.

2.2. Preprocessing of Weak Observable Data Using Wavelet
Transform Modulus Maxima. Outliers mixed in the dataset
can be described as singularities by estimating local Lipchitz
exponent using wavelet transforms. Defined either at a
certain time instant or in an interval, Lipschitz exponent can
be calculated by numerical methods. A wavelet transform
modulus maximum (WTMM) is introduced to preprocess
the sonar data.

Let 𝑥(𝑡) and 𝜓(𝑡) be the sonar data and a certain function
(introduced next) at instant 𝑡, respectively; the wavelet
transform can be defined as 𝑊𝑥(𝑏, 𝑎) = (1/√𝑎) ∫∞

−∞
𝑥(𝑡) ⋅

𝜓((𝑡 − 𝑏)/𝑎)𝑑𝑡, where − is complex conjugation and 𝑎 and
𝑏 describe scale element and shift coefficient, respectively.

Mathematically the local regularity indicated by Lipschitz
exponent is the precondition for data reconstruction using
wavelet transform. Owing to the relationship between the
WTMM and Lipschitz exponent, the pattern of change
in WTMM at different scales is of great importance for
the preprocessing of weak data. At a certain scale, if the
maximum modulus exists at some time point, search along
the scale decrease direction within the cone of influence will
find a singular point or a peak point close to the zero scale,
which can be determined by the Lipschitz exponent.

2.2.1. Estimation of Wavelet Coefficients and Compensation of
Lost Data. In order to remedy the eliminated sonar data and
to guarantee the continuity of the reconstructed contour, the
wavelet coefficient estimation method proposed by Liu and
Mao [24] is used. More specifically, the original sonar data
in previous five instants and the wavelet coefficients in the
previous six instants are used for the estimation as follows:

𝑊𝑥(𝑘𝑇, 𝑓) = √𝑓𝑇 {𝛿
1
𝑥 [(𝑘 − 1) 𝑇, 𝑓]

+ 𝛿
2
𝑥 [(𝑘 − 2) 𝑇, 𝑓]

+ 𝛿
3
𝑥 [(𝑘 − 3) 𝑇, 𝑓]

+ 𝛿
4
𝑥 [(𝑘 − 4) 𝑇, 𝑓]

+ 𝛿
5
𝑥 [(𝑘 − 5) 𝑇, 𝑓]

− 𝜆
1
𝑊𝑥[(𝑘 − 1) 𝑇, 𝑓]

− 𝜆
2
𝑊𝑥[(𝑘 − 2) 𝑇, 𝑓]

− 𝜆
3
𝑊𝑥[(𝑘 − 3) 𝑇, 𝑓]

− 𝜆
4
𝑊𝑥[(𝑘 − 4) 𝑇, 𝑓]

− 𝜆
5
𝑊𝑥[(𝑘 − 5) 𝑇, 𝑓]

− 𝜆
6
𝑊𝑥[(𝑘 − 6) 𝑇, 𝑓]} ,

(1)

where
𝜀 = 𝑒

−𝑓𝑇(𝜎−𝑖𝑤0),

𝜆
1
= −6𝜀,

𝛿
1
= [
(𝜎𝑓𝑇)

3

3

−
(𝜎𝑓𝑇)

4

4
+
(𝜎𝑓𝑇)

5

5
] 𝜀,

𝛿
2
= [
2(𝜎𝑓𝑇)

3

3
−
5(𝜎𝑓𝑇)

4

3

+
26(𝜎𝑓𝑇)

5

15
] 𝜀

2
,

𝜆
2
= 15𝜀

2
,

𝜆
3
= −20𝜀

3
,
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𝛿
3
= [
22 ⋅ (𝜎𝑓𝑇)

5

5
− 2(𝜎𝑓𝑇)

3

] 𝜀
3
,

𝛿
4
= [
2 ⋅ (𝜎𝑓𝑇)

3

3
+
5 ⋅ (𝜎𝑓𝑇)

4

3

+
26 ⋅ (𝜎𝑓𝑇)

5

15
] 𝜀

4
,

𝜆
4
= 15𝜀

4
,

𝜆
5
= −6𝜀

5
,

𝜆
6
= 𝜀

6
,

𝛿
5
= [
(𝜎𝑓𝑇)

3

3
+
(𝜎𝑓𝑇)

4

6

+
(𝜎𝑓𝑇)

5

15
] 𝜀

5
.

(2)

2.2.2. Confidence Limit of a Single-Beam Sonar Data. Confi-
dence limit is introduced to assess the degree of match bet-
ween the wavelet coefficients and the model calculated using
the data. Hypothesis test is used to estimate this confidence
limit.

Assume that 𝑀 is the calculated model built using
Hidden Markov Model [24]; the null hypothesis 𝐻

0
and

alternative hypothesis𝐻
1
are as the follows.

𝐻
0
:𝑊𝑇 is valid data and equals the data calculated using

the model. This means the original sonar data are the true
signal from threatening obstacles.
𝐻

1
:𝑊𝑇 is an outlier and its corresponding original sonar

data are from either low threatening obstacles or noise.
The tracking evaluation function is introduced to esti-

mate the confidence limit,

𝐸V (𝑊𝑇,𝐻
0
, 𝐻

1
) =
𝑃 {𝑊𝑇 | 𝐻

0
}

𝑃 {𝑊𝑇 | 𝐻
1
}
, (3)

where 𝑃{𝑊𝑇 | ⋅} is the probability to obtain the same model
data with𝑊𝑇 in corresponding hypothesis.

If 𝑇min is defined as the acceptable minimum threshold,
the ratio between the evaluation function value and 𝑇min is
used to determine the class property of the data; see Table 2.

3. Initial Contour Reconstruction

Thepreprocess sonar data by using the wavelet transform can
locally amplify abnormal signals or outliers.This observation
helps detect and eliminate potential outliers in order to
reconstruct the contour of environmental structure. Support
vector clustering (SVC) inertial algorithmwas used to achieve
the initial contour reconstruction.

Table 2: Determination of class types.

Ratio Class type
≥1 Outliers
<1 Valid data

Table 3: Criterion of clustering.

Class Condition Conclusion
Nonbounded
support vector 𝜗

𝑖
= 0, 0 < 𝛼

𝑖
< 𝑃 Class contour

Bounded support
vector 𝜗

𝑖
> 0, 𝛼

𝑖
= 𝑃 Outliers

Data class 𝛼
𝑖
= 0 Class data

3.1. Structural Environment Construction Using SVC Algo-
rithm. The main idea of SVC is to project sonar data
{𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
} into high-dimension hypersphere space with

a minimum radius using nonlinear mapping 𝐻 = {Φ(𝑥
𝑖
) |

1 ≤ 𝑖 ≤ 𝑁}. For the mapping data in hypersphere, it holds
that ‖Φ(𝑥

𝑖
) − 𝑎‖

2
≤ 𝑅

2 where 𝑎 and 𝑅 denote the center and
radius of the sphere. The objective function is described as
[25],

max
{

{

{

𝑁

∑

𝑖=1

𝐾(𝑥
𝑖
, 𝑥

𝑖
) 𝛼

𝑖
−

𝑁

∑

𝑖=1,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝐾(𝑥

𝑖
, 𝑥

𝑗
)

}

}

}

. (4)

In high dimension space, the distance from 𝑥 to the
sphere center 𝑎, 𝑅2 = ‖Φ(𝑥) − 𝑎‖2 is adapted as

𝑅
2
= 𝐾 (𝑥, 𝑥) − 2

𝑁

∑

𝑖=1

𝛼
𝑖
𝐾(𝑥

𝑖
, 𝑥) +

𝑁

∑

𝑖=1,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝐾(𝑥

𝑖
, 𝑥

𝑗
) , (5)

where hypersphere radius 𝑅 = ∑
𝑖
𝑅(𝛼

∗

𝑖
)/𝑁, a support vector

𝛼
∗

𝑖
, and the number of support vector𝑁. Class bound of data-

set will be collected

{𝑥 | 𝑅 (𝑥) = 𝑅} . (6)

Outliers are defined as

{𝑥 | 𝑅 (𝑥) > 𝑅} . (7)

After the clustering, the sonar data are separated into
three classes according to the positionwith respect to the class
bound, shown in Table 3. 𝜗 and𝑃 are the relaxation factor and
penalty coefficient to balance the performance.

Adjacency matrix𝐴 = (𝐴
𝑖𝑗
)
𝑁×𝑁

is included to determine
type of classes with the distance as its elements:

𝐴
𝑖𝑗
= {
1 ∀𝑡 ∈ seg (𝑥

𝑖
, 𝑥

𝑗
) , 𝑅 (𝑡) ≤ 𝑅

0 other,
(8)

where seg(𝑥
𝑖
, 𝑥

𝑗
) expresses the line segment between 𝑥

𝑖
and

𝑥
𝑗
. If the line is either inside or outside the hypersphere, 𝑥

𝑖

and 𝑥
𝑗
are then attributed to the same class. A three-step

implementation is as follows.
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Figure 2: Flow chart of outlier inertia detection for preprocessed data.

Step 1. 𝑘-average interpolation is applied on the line between
𝑥
𝑖
and 𝑥

𝑗
.

Step 2. Compute 𝑥 = ‖𝑥
𝑖
− 𝑥

𝑗
‖ ⋅ 𝑙/𝑘, and let Δ𝑥 be regarded as

the determinant distance and 𝑙 is the number of lines inside
or on the hypersphere.
Step 3. If 𝑥 ≥ Δ𝑥, 𝑥

𝑖
and 𝑥

𝑗
are attributed to the same class;

otherwise they are from different classes and will have to be
further differentiated in the next subsection.

3.2. Inertia Algorithm for Improving Construction. Inertia
algorithm is a common action delay method proposed to
avoid unnecessary actions of theUUV in order to escape from
potentially threatening obstacles [25]. This idea is adopted
here to determine the classes of those data that has not
been successfully classified. Outliers determined by the SVC
algorithm are regarded as candidate outliers. Inertia method
is used to determine the class label of those data that have

not been explicitly classified. After this step the sonar data are
separated into three classes: data class, class bound data, and
outliers by using inertia algorithm. The flowchart of inertia
algorithm is illustrated in Figure 2.

Let 𝑘 and 𝜌
𝑇
, respectively, denote the number of classes

and a preset minimum constant threshold. ∀𝑖 ≥ 1, if it is
satisfied that

∃⋃

𝑘

{𝑥
𝑘
| 𝑘 > 𝜌

𝑇
} ⊆ 𝐶

𝑖
. (9)

𝐶
𝑖
is regard as a known class. An alternative set is introduced

to temporarily place preoutliers, denoted as 𝐴𝑙𝑆.
The conditions for classifying the sonar data into the

alternative set can be described as follows.

(1) There is not any known class.

At the beginning of path planning, there is not enough
sonar data to be clustered and to clearly indicate any obstacles.
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The data 𝑥 is placed into alternative set 𝐴𝑙𝑆. If there is more
sonar data in the visible range of 𝑥 and the density increases
to 𝜌

𝑇
, it means that the dataset constitutes the first class 𝐶

1
.

If the density is still lower than 𝜌
𝑇
with time evolution of Δ𝑡,

𝑥 will be determined as LTO or noise and will not be used to
reconstruct the contour of the environment.

(2) If any 𝐶
𝑖
exists with 𝑖 ≥ 1, 𝑖 ∈ N+, the class may

include class data, class bound data, and/or outliers
and thus cannot be directly determined. Let 𝑋 be an
arbitrary dataset and described as

𝑋 =

{

{

{

𝑚

⋃

𝑗=1

𝑥
𝑗
| 𝑚 < 𝜌

𝑇
, 𝑥

𝑗
∉ 𝐶any

}

}

}

, (10)

where 𝐶any denotes any known class. It implies that once the
destiny of sonar data is less than 𝜌

𝑇
, it will be placed into 𝐴𝑙𝑆

for further assessment.
Assume that𝑁

𝑐
is the number of known classes, andClass

set 𝐶 is defined as

𝐶 = ⋃

𝑖∈𝑀

𝐶
𝑖
= {𝑥 : ∃𝑖 ∈ 𝑁

𝑐
,with 𝑥 ∈ 𝐶

𝑖
} . (11)

Outlier set is symbol by 𝑂, including the outliers and the
data with density less than the preset threshold 𝜌

𝑇
.

Criterion 1. For any sonar data 𝑥, if it is satisfied that 𝑥 ∈ 𝐿
𝑖
,

1 ≤ 𝑖 ≤ 𝑀, where 𝐿
𝑖
is the bound of known class 𝐶

𝑖
, we will

have 𝑥 ∈ 𝐶
𝑖
.

For arbitrary data 𝑥, Criterion 1 is utilized to identify
whether it belongs to any known class. If it just falls into
bound 𝐿

𝑖
, 𝑥 is assigned to 𝐶

𝑖
directly and 𝑥 ∈ 𝐶

𝑖
; otherwise,

go to the next criterion. In order to determine the properties
of the data, visible space is defined as follows.

Visible space is an artificial sphere space centered at 𝑥
with a radius of 𝑟. It is used to estimate distribution density
near𝑥. In the visible space, if the density of sonar data is larger
than a predefined threshold, we can determine that it is a valid
class.
Criterion 2. ∀𝑥, 𝑥 ∉ 𝐶

𝑖
, 𝑥 does not belong to any known class.

Assume that 𝑉 = {𝑥 | |𝑥 − 𝑥
𝑎
| < 𝑟}, with 𝑥

𝑎
as a point in

the visible range of 𝑥. If the number of data satisfying the
condition 𝑥

𝑎
∈ 𝐶

𝑖
is not less than 𝜌

𝑇
, then 𝐶

𝑖
is a known class

in 𝑥’s visible range.
Criterion 3. If the number of data in 𝐶

𝑖
is larger than 𝜌

𝑇
, and

𝐶
𝑖
is the unique known class of 𝑥, it can be ascertained that

𝑥 ∈ 𝐶
𝑖
directly.

To determine the property of any 𝑥 that has not been
successfully classified by using Criterion 1, Criterion 3 is
important to ensure whether it can be assigned to a unique
known class. If it fails, reclustering has to be performed.

It is observed that the objects for reclustering 𝐶Re only
contain the classes including the data point and those in its
visible range, and therefore the effectiveness of algorithm can
be increased:

𝐶Re = {𝑥 | 𝑥 ∉ 𝐶𝑖⋂
𝑥 − 𝑥𝑎

 < 𝑟}⋃{𝑥𝑎 | 𝑥𝑎 ∈ 𝐶𝑖} . (12)

Sonar data 𝑥 with unknown class in its visible range will
be located in the alternative set𝐴𝑙𝑆. Similarly, those data that
can still not be classified by reclustering are also placed into
𝐴𝑙𝑆 for further analysis.
Criterion 4. ∀1 ≤ 𝑖 ≤ 𝑀, ∃𝑥

𝑖
∈ 𝐴𝑙𝑆, SVC algorithm is applied

to cluster and class 𝐶
𝑟
is obtained. If the density 𝜌

𝑅
of 𝐶

𝑟
is

larger than 𝜌
𝑇
, it is considered that 𝐶

𝑟
⊆ 𝐶. The total number

of 𝑀 increases by 1. Otherwise, data 𝑥 (or dataset 𝑋) exist
which satisfies the following condition:

{𝑥 | 𝑡 > 𝑡
𝑇
} ⊆ 𝑂

{𝑋 | Total number of 𝑋 < 𝜌
𝑇
, 𝑡 > 𝑡

𝑇
} ⊆ 𝑂,

(13)

where 𝑡 shows the time related to the data 𝑥 (or set𝑋).
In environmental structure detection, data gradually

accumulates.Through preprocessing usingwavelet transform
and clustering by SVC inertia algorithm, an initial contour
can be reconstructed with data class bound as reference.
The initial contour consists of several successively connected
lines.

4. Smoothing Initial Contour Based on Local
Environment Characters

4.1. Extraction of Local Environmental Characteristics. Based
on the assumption that the data collected from the 5 sonars
are accurate, three different local environmental characteris-
tics can be determined, and they are described as follows.

4.1.1. Line Path. Figure 3 shows two scenarios where the
vehicle is located on the right (Figure 3(a)) and left side
(Figure 3(b)) of a local linear environment, respectively. 𝑙

1
, 𝑙
2
,

and 𝑙
3
denote the data collected from the left, middle, and

right sonars in the front of the vehicle, respectively, while
𝑙
𝑙
and 𝑙

𝑟
are the data collected from the left and right side

sonars.
If the left (resp., right) side sonar data is valid and the right

(resp., left) one shows maximum effective distance, then the
vehicle is on a line path and on the right (resp., left) side of
the contour. Remark: energy carried with an UUV is often
limited. When there is no obstacle on one side of the vehicle,
the sonar on that side can be turned off in order to conserve
energy and extend the working time for the mission.

4.1.2. Narrow Path. If the distance between the environment
contours on both sides of the path is not wide enough for the
vehicle to turn safely, the vehicle is in a narrow path. Figure 4
illustrates this scenario where the distances 𝑙

12
and 𝑙

23
are

calculated by using the data from the three front sonars. If
the sonar data from the left and right side are effective and
𝑙
12
+ 𝑙

23
< 2𝑑

𝑐
where 𝑑

𝑐
is the predefined minimum turning

radius, the vehicle is in a narrow turning path.

Proof. Thetriangle inequality theorem states that any one side
of a triangle is always shorter than the sum of the other two
sides. For the triangle with 𝑙

12
, 𝑙
23
, and 𝑙

13
as its sides, it holds

that
𝑙
12
+ 𝑙

23
> 𝑙

13
. (14)
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l2
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Figure 3: Diagram illustrating line path.

Let 𝑙
0
be the line connecting the two sides of the contours;

it also holds that

𝑙
13
≥ 𝑙

0
. (15)

Then we have

𝑙
0
≤ 𝑙

13
< 𝑙

12
+ 𝑙

23
. (16)

If 𝑙
12
+ 𝑙

23
< 2𝑑

𝑐
is satisfied, it holds that 𝑙

0
< 2𝑑

𝑐
. That is, the

line is smaller than the turning radius, and the vehicle cannot
steer out of this narrow turning environment by normal
turning motion. Theorem holds.

4.1.3. Regular Turning Path. The determination of regular
turning path is similar to the narrow turning path. If the left
side sonar data is effective, the vehicle in regular turning path
can be separated into two situations according to the data
from the 3 sonars at the front; see Figure 5.The left front sonar
beam is located on the previous path, with the middle and
right ones being located on the rear path in Figure 5(a). The
difference between (b) and (a) is the left and middle sonar
beam located on the previous path, with the right sonar beam
being on the rear path.The stage of UUV turning is reflected.
If the sonar data on one side is effective and the other side
is ineffective or has the maximum value (this is different to
narrow turning path), it can be determined that the vehicle is
in a regular turning path.

4.2. Smoothness of the Local Environmental Contour. The ini-
tial contour reconstructed by using the SVC inertia algorithm
comprises lines that are successively connected. Due to the
inertia property of the underwater vehicle, this cannot be
used as the reference path for tracking. In this paper, Bézier
curve is introduced to smooth the initial contour in order to
extract a reference path that can be used for navigation.

Given a set of control points 𝑃
0
, 𝑃

1
, . . . , 𝑃

𝑛
, ∀𝑡 ∈ [0, 1],

𝑛th-order Bézier curve can be defined as 𝐵(𝑡) = ∑𝑛

𝑖=0
𝑃
𝑖
𝑏
𝑖,𝑛
(𝑡),

with Bernstein Polynomial 𝑏
𝑖,𝑛
(𝑡) = [𝑛 𝑖]

𝑇

𝑡
𝑖
(1 − 𝑡)

𝑛−𝑖, 𝑖 =
0, 1, . . . , 𝑛. Different order Bézier curves are chosen to smooth
the initial contour. To determine the curve orders, control
points are located first. Considering navigation requirement
and the contour characteristics, it is intrinsic that the starting

l13

l12 l23

l1

ll

l2 l3

y

x

lr

𝛼 𝛼

Figure 4: Diagram illustrating narrow turn path.

l12

l23

l1

ll

l2 l3

y

x

lr

𝛼𝛼

(a)

l12

l23

l1

ll

l2 l3

y

x
lr

𝛼𝛼

(b)

Figure 5: Diagram illustrating normal turn paths.

point, end point, and intersection point between turning
paths should be the control points. Moreover, the width
of the local environment is another significant issue to be
considered for the order of Bézier curve.

Based on Section 4.1, the local environmental character-
istics are separated into line and turning paths, and then the
orders of different characteristics are classified. It has been
proved that 2nd-order Bézier curve is sufficient for turning
path restriction [26], and as such Bézier curves used here
must satisfy 𝐶2 continuity condition.
𝐶
𝑘 continuity condition: Bézier curves 𝑃(𝑡) and 𝑄(𝑡) in 𝐶𝑘

continuous at 𝑡
0
are,

𝑃 (𝑡
0
) = 𝑄 (𝑡

0
)

�̇� (𝑡
0
) = �̇� (𝑡

0
)

...

𝑃
(𝑘)
(𝑡

0
) = 𝑄

(𝑘)
(𝑡

0
) .

(17)
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𝜓d

Ω

Ωt

𝜓
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(a)
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Ωt

𝜓
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(b)

Figure 6: Rolling path with different orientations to find initial
points on reference path.

Based on the definition of 𝐶𝑘 continuity condition,
smoothness conditions for 𝑛 segments can be shown as

𝑖−1

𝑃
𝑛𝑖−1
=

𝑖

𝑃
0

𝑛
𝑖−1
(
𝑖−1

𝑃
𝑛𝑖−1
−

𝑖−1

𝑃
𝑛𝑖−1−1
) = 𝑛

𝑖
(
𝑖

𝑃
1
−

𝑖

𝑃
0
)

𝑛
𝑖−1
(𝑛

𝑖−1
− 1) (

𝑖−1

𝑃
𝑛𝑖−1
− 2 ⋅

𝑖−1

𝑃
𝑛𝑖−1−1

+
𝑖−1

𝑃
𝑛𝑖−1−2
)

= 𝑛
𝑖
(𝑛

𝑖
− 1) (

𝑖

𝑃
2
− 2 ⋅

𝑖

𝑃
1
+

𝑖

𝑃
0
) ,

(18)

where 𝑖 = 2, 3, . . . , 2𝑁 − 3, and 𝑛
𝑖
is the number of control

points for the 𝑖th Bézier subcurves.The first and last segments
are special cases and their orders are discussed first and
followed by those ones in the middle.

4.2.1. First and Last Segments. For the first and last segments,
1

𝐵(𝑡) and 2𝑁−3

𝐵(𝑡), with the known control points𝑊1
=

1

𝑃
0

and 𝑊
𝑁
=

2𝑁−3

𝑃
4
. To find the orders of these curves, the

following must hold.

Condition 1. The heading 𝜓
0
and 𝜓

𝑓
at control points𝑊

1
and

𝑊
𝑁
must be guaranteed as follows:

1
𝑝
1
= 𝑊

1
+ 𝑐

0
[cos𝜓

0
sin𝜓

0
]
𝑇

, 𝑐
0
∈ R+
,

2𝑁−3
𝑝
3
= 𝑊

𝑁
− 𝑐

𝑓
[cos𝜓

𝑓
sin𝜓

𝑓
]
𝑇

, 𝑐
𝑓
∈ R+
,

(19)

where 𝑐
0
and 𝑐

𝑓
are constant parameters. To satisfy Condition

1, 1

𝑃
0
and 1

𝑃
1
of the first segment, as well as 2𝑁−3

𝑃
3
and

2𝑁−3

𝑃
4
of the final segment must be known.

Condition 2. 𝐶2 continuity condition with contiguous sub-
curves must be guaranteed. Therefore, the points 𝑖−1

𝑃
𝑛𝑖−1

,
𝑖−1

𝑃
𝑛𝑖−1−1

, and 𝑖−1

𝑃
𝑛𝑖−1−2

should be known in (18).
Given all the above conditions, the total number of the

control points required to be known is 5 for the first and
last segment, respectively. This implies that 4th-order Bézier
curves are needed for both of them.

4.2.2. Middle Segments. To guarantee 𝐶2 continuity condi-
tion, for each middle segment it has 6 control points in total:
three control points, respectively, from the previous segment
(including 𝑖

𝑃
2
, 𝑖

𝑃
1
and 𝑖

𝑃
0
) and the segment after (including

𝑖−1

𝑃
𝑛𝑖−1

, 𝑃
𝑛𝑖−1−1

, and 𝑃
𝑛𝑖−1−2

) are known (see (30)). Therefore,
the order of Bézier subcurves is 5 for the middle segments,

Table 4: Orders of Bézier curve.

Local environment character Order of Bézier curve
Turning 2nd-order
Start and final segments 4th-order
Middle segments 5th-order

𝑖
𝐵(𝑡), 𝑖 = 3, 5, . . . , 2𝑁 − 5. Table 4 summarizes the order

selection for different local environment characters.

5. Path Tracking Control

Two types of feedback linearizationmethods are used for path
tracking control: differential geometry feedback linearization
and stable inversion, which can be used for exactly automatic
target approaching in known region and contour reconstruc-
tion in unknown region, two stages of the navigating process.
This will be detailed in this section.

The path tracking control model for a UUV can be
described with state vectors as follows:

�̇� (𝑡) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝜇 (𝑡) ,

𝑦 (𝑡) = [𝑦
1
𝑦
2
𝑦
3
]
𝑇

= ℎ (𝑥 (𝑡)) ,
(20)

where 𝑥(𝑡) = [𝑥 𝑦 𝜓 𝑢 V 𝑟 ]
𝑇

∈ R6 denotes states, 𝜇(𝑡) =
[𝜏

𝑢
𝜏
𝑟
]
𝑇

∈ R2 denotes input variable matrix, mapping 𝑓(⋅) :
R6
→ R6, 𝑔(⋅) : R6

→ R6×2, and ℎ(⋅) : R6
→ R3 is smooth

enough. 𝑓 and 𝑔 are nonlinear items and input coefficient
items given in the following:

𝑓 =

[
[
[
[
[
[
[

[

𝑢 cos𝜓 − V sin𝜓 + 𝜏
𝑑𝑢

𝑢 sin𝜓 + V cos𝜓 + 𝜏
𝑑V

𝑟 + 𝜏
𝑑𝑟

𝑝
1
V𝑟 + 𝑝

2
𝑢

𝑝
4
𝑢𝑟 + 𝑝

5
V

𝑝
7
𝑢V + 𝑝

8
𝑟

]
]
]
]
]
]
]

]

,

𝑔 =

[
[
[
[
[
[
[

[

0 0

0 0

0 0

𝑝
3
0

0 0

0 𝑝
9

]
]
]
]
]
]
]

]

,

(21)

where 𝑝
1
= 𝑚

22
/𝑚

11
, 𝑝

2
= (−𝑋

𝑢
−𝑋

𝑢|𝑢|
|𝑢|)/𝑚

11
, 𝑝

3
= 1/𝑚

11
,

𝑝
4
= 𝑚

11
/𝑚

22
, 𝑝

5
= (−𝑌V − 𝑌V|V||V|)/𝑚22

, 𝑝
6
= 1/𝑚

22
, 𝑝

7
=

(𝑚
11
− 𝑚

22
)/𝑚

33
, 𝑝

8
= (−𝑁

𝑟
− 𝑁

𝑟|𝑟|
|𝑟|)/𝑚

33
, 𝑝

9
= 1/𝑚

33
,

𝑚
11
= 𝑚 − 𝑋

�̇�
, 𝑚

22
= 𝑚 − 𝑌V̇, and 𝑚33

= 𝐼
𝑧
− 𝑁

̇𝑟
. 𝑚 is

the mass of the UVV; 𝑋(⋅), 𝑌(⋅), and𝑁(⋅) are the derivatives
of the hydrodynamic coefficients related to the added mass;
𝐼
𝑧
denotes the initial moment of the UUV under body

coordinate system, 𝜏
𝑢
and 𝜏

𝑟
are the input force, and moment

𝜏
𝑑𝑢
, 𝜏

𝑑V, and 𝜏𝑑𝑟 are the disturbance at those corresponding
directions.

5.1. Autonomous Arriving Based on Differential Geometry
Feedback Linearization. TheUUV is diving underwater with
arbitrary states (including heading and position) at any point
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Figure 7: Rolling path generation for three different situations. (a) UUV is outside circle path. (b) UUV is outside circle path. (c) UUV is
outside line path.

and has to be able to navigate towards a preset target near the
structural environment.This is known as Autonomous Arriv-
ing. A differential geometry feedback linearization control
algorithm with rolling path guidance is proposed to achieve
accurate tracking. Figure 6 illustrates how to find the initial
points: circle arc is used to represent rolling path according
to the initial heading and orientation of the vehicle, Ω and
Ω

𝑡
represent the desired path and rolling path, respectively,𝜓

and𝜓
𝑑
are the current heading direction and desired heading

direction, respectively, and 𝑇 denotes the tangent point of
Ω and Ω

𝑡
, which is the initial point on Ω for the vehicle.

Note, the UUVs in Figure 6 have the same initial positions
but different headings (upward and downward in Figures
6(a) and 6(b), resp.). Given the desired orientation and the
inertia of the vehicle, the vehicle is unable to turn at 𝑇 in the
scenario as shown in Figure 6(b). Further analysis is required
and detailed as follows.

Let model output be 𝜂 = [𝜂
1
𝜂
2
]
𝑇, 𝜂

1
is the distance of

the chosen path, and 𝜂
2
= 𝜓.

It has been proved that any nonlinear path can be
reconstructed by circular arcs and lines [27]. Therefore, with
circle and line as example, rolling paths are generated as the
desired path for the guidance of the UUV.

(1) Circle Path. Assume that 𝑝
𝑓
(𝑥

𝑓
, 𝑦

𝑓
) is the center of

a circle path and the radius of the circle path 𝑅
𝑓
is a

constant; then the output can be given as

𝜂
1
= √(𝑥 − 𝑥

𝑓
)
2

+ (𝑦 − 𝑦
𝑓
)
2

− 𝑅, (22)

where 𝑝
𝐿
(𝑥, 𝑦) is the actual initial position of the vehicle.

From the equation above, |𝜂
1
| is the minimum distance

between 𝑝
𝐿
and the circle path.

According to the position between the desired path and
the current position of the vehicle, radius of a rolling path
can be derived as follows:

(a) when the initial position of the UUV is outside of the
circular path (see Figure 7(a)) and 𝜛 is a constant

𝑅
𝑡
=

{

{

{

𝜂
1
+ 𝜛𝑅 𝜂

1
>
𝑅

2

𝑅 others,
(23)

(b) when the initial position of the UUV is inside of the
circular path (see Figure 7(b))

𝑅
𝑡
=

{{

{{

{

𝜂
1
+ 2𝑅

2
− 𝜛𝑅 𝑝

𝐿
̸= 𝑝

𝑓

𝑅

2
others.

(24)

(2) Line Path. With line path𝐴𝑥+𝐵𝑦+𝐶 = 0, the output
𝜂
1
is given as follows,

𝜂
1
=
(𝐴𝑥 + 𝐵𝑦 + 𝐶)

√𝐴2 + 𝐵2
, (25)

where 𝐴2
+ 𝐵

2
̸= 0. In this case 𝑅

𝑡
= 𝜛𝜂

1
+ 𝑅

0
and 𝑅

0
is a

constant.

Assumption 1. UUV tracking system satisfies 𝑚
11
< 𝑚

22
and

the surge and yaw velocity are nonobservable.

Figure 7 illustrates how the rolling path is generated in
three different cases as discussed above.The solid and dashed
circles are tangent to the rolling circular path across the
vehicle position 𝑝

𝐿
. According to the consistency between

the heading direction of the vehicle and the desired path,
the solid arc 𝑝

𝐿
𝑝 will be chosen as the rolling path while

the orientation of the vehicle becomes close to the direction
of the desired path. Once a rolling path is generated as
above, a feedback linearization controller can be designed for
automatic arriving.

Theorem 1. Assume (i) the mass, added mass, and damping
coefficients are diagonal matrixes; (ii) Assumption 1 is satisfied.
For the nonlinear tracking model (20), according to the relative
position between the vehicle and the originally desired path, if
a circular arc rolling path with radius 𝑅

𝑡
is chosen in real time

with suitable parameters (𝑘
11
,𝑘

12
) and (𝑘

21
,𝑘

22
), the controller

can be designed.
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Proof. The lines and circular arcs can be combined to form
any nonlinear path; therefore, the proof is established from
the following two aspects.

(1) Desired path is a circle path.

Obtaining a direct relationship between the output 𝜂 and
the input vector,

̇𝜂
1
=

1

√(𝑥 − 𝑥
𝑓
)
2

+ (𝑦 − 𝑦
𝑓
)
2

⋅ [(𝑥 − 𝑥
𝑓
) (�̇� − �̇�

𝑓
) + (𝑦 − 𝑦

𝑓
) ( ̇𝑦 − ̇𝑦

𝑓
)]

̇𝜂
2
= �̇�

̈𝜂
1
= −0.5𝑒

3

𝑘

× [(𝑥 − 𝑥
𝑓
) (�̇� − �̇�

𝑓
) + (𝑦 − 𝑦

𝑓
) ( ̇𝑦 − ̇𝑦

𝑓
)]

2

+ 𝑒
𝑘
[(�̇� − �̇�

𝑓
)
2

+ (𝑥 − 𝑥
𝑓
) (�̈� − �̈�

𝑓
)]

+ 𝑒
𝑘
[( ̇𝑦 − ̇𝑦

𝑓
)
2

+ (𝑦 − 𝑦
𝑓
) ( ̈𝑦 − ̈𝑦

𝑓
)]

̈𝜂
2
= ̇𝑟,

(26)

where

𝑒
𝑘
=

1

√(𝑥 − 𝑥
𝑓
)
2

+ (𝑦 − 𝑦
𝑓
)
2

.
(27)

Define state function ℎ = [ℎ
1
ℎ
2
]
𝑇, and

𝑢
1
= 𝑝

1
V𝑟 + 𝑝

2
𝑢 + 𝑝

3
𝜏
𝑑𝑢

V
1
= 𝑝

4
𝑢𝑟 + 𝑝

5
V + 𝑝

6
𝜏
𝑑V

ℎ
1
= −0.5𝑒

𝑘

3

× [(�̇� − �̇�
𝑓
) (𝑥 − 𝑥

𝑓
) + ( ̇𝑦 − ̇𝑦

𝑓
) (𝑦 − 𝑦

𝑓
)]

2

+ (𝑥 − 𝑥
𝑓
) (𝑢

1
cos𝜓 − 𝑢𝑟 sin𝜓

−V
1
sin𝜓 − V𝑟 cos𝜓 − �̈�

𝑓
)

+ 𝑒
𝑘
⋅ {(�̇� − �̇�

𝑓
)
2

+ ( ̇𝑦 − ̇𝑦
𝑓
)
2

+ (𝑦 − 𝑦
𝑓
) (𝑢

1
sin𝜓 + 𝑢𝑟 cos𝜓

+V
1
cos𝜓 − V𝑟 sin𝜓 − ̈𝑦

𝑓
) }

ℎ
2
= 𝑝

7
𝑢V + 𝑝

8
𝑟 + 𝑝

9
𝜏
𝑑𝑟

̈𝜂 = ℎ + [
𝑒
𝑘
⋅ (𝑝

3
𝜏
𝑢
((𝑥 − 𝑥

𝑓
) cos𝜓 + (𝑦 − 𝑦

𝑓
) sin𝜓))

𝑝
9
𝜏
𝑟

] .

(28)

Choose a new input 𝜇 = []
1
]
2
]
𝑇 and neglect nonlinear

portion; let 𝑒 = √(𝑥 − 𝑥
𝑓
)
2
+ (𝑥 − 𝑥

𝑓
)
2
− 𝑅 be the tracking

error, and the input vector can be derived as follows:
]
1
= −𝑘

11
𝑒
1
− 𝑘

12
̇𝑒
1
= −𝑘

11

× (√(𝑥 − 𝑥
𝑓
)
2

+ (𝑦 − 𝑦
𝑓
)
2

− 𝑅)

− 𝑘
12

[
[
[

[

1

√(𝑥 − 𝑥
𝑓
)
2

+ (𝑦 − 𝑦
𝑓
)
2

]
]
]

]

⋅ [(𝑥 − 𝑥
𝑓
) (�̇� − �̇�

𝑓
) + (𝑦 − 𝑦

𝑓
) ( ̇𝑦 − ̇𝑦

𝑓
)]

]
2
= ̈𝜂

2𝑑
− 𝑘

21
𝑒
2
− 𝑘

22
̇𝑒
2

= �̈�
𝑑
− 𝑘

21
(𝜓 − 𝜓

𝑑
) − 𝑘

22
(�̇� − �̇�

𝑑
) ,

(29)

where 𝑘
11
, 𝑘

12
, 𝑘

21
, and 𝑘

22
are constants, 𝜂

2𝑑
= 𝜓

𝑑
.

The input vector can be shown as

𝜏
𝑢
=

(]
1
− ℎ

1
)

𝑝
3
𝑒
𝑘
[(𝑥 − 𝑥

𝑓
) cos𝜓 + (𝑦 − 𝑦

𝑓
) sin𝜓]

𝜏
𝑟
=
(]

2
− ℎ

2
)

𝑝
9

.

(30)

(2) Desired path is line path.
The proving process is similar to the above:

̇𝜂
1
=
(𝐴�̇� + 𝐵 ̇𝑦 + 𝐶)

√𝐴2 + 𝐵2

̇𝜂
2
= �̇�

̈𝜂
1
=
�̇� (𝐴 cos𝜓 + 𝐵 sin𝜓) + V̇ (𝐵 cos𝜓 − 𝐴 sin𝜓)

√𝐴2 + 𝐵2

+
𝐴 (−𝑢𝑟 sin𝜓 − V𝑟 cos𝜓)

√𝐴2 + 𝐵2

+
𝐵 (𝑢𝑟 cos𝜓 − V𝑟 sin𝜓) + 𝐶

√𝐴2 + 𝐵2

̈𝜂
2
= ̇𝑟

ℎ
1
= 𝑡

𝑘
[𝐴 (−𝑢𝑟 sin𝜓 − V𝑟 cos𝜓)

+ 𝐵 (𝑢𝑟 cos𝜓 − V𝑟 sin𝜓) + 𝐶

+ 𝑢
1
(𝐴 cos𝜓 + 𝐵 sin𝜓)

+ V
1
(𝐵 cos𝜓 − 𝐴 sin𝜓)]

ℎ
2
= 𝑝

7
𝑢V + 𝑝

8
𝑟 + 𝑝

9
𝜏
𝑑𝑟

̈𝜂 = ℎ + [
𝑡
𝑘
𝑝
3
(𝐴 cos𝜓 + 𝐵 sin𝜓) 𝜏

𝑢

𝑝
9
𝜏
𝑟

]

(31)

with 𝑡
𝑘
= 1/√𝐴2 + 𝐵2.
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Let 𝑒
1
= 𝑡

𝑘
(𝐴𝑥 + 𝐵𝑦 + 𝐶) be the tracking error and 𝑒

2
=

𝜂
2𝑑
− 𝜂

2
the heading error; the new inputs are described as

]
1
= −𝑘

11
𝑒
1
− 𝑘

21
̇𝑒
1

= −𝑘
11
𝑡
𝑘
(𝐴𝑥 + 𝐵𝑦 + 𝐶)

− 𝑘
21
𝑡
𝑘
(𝐴�̇� + 𝐵 ̇𝑦)

]
2
= ̇𝜂

𝑑2
− 𝑘

12
𝑒
2
− 𝑘

22
̇𝑒
2

= �̈�
𝑑
− 𝑘

12
(𝜓 − 𝜓

𝑑
) − 𝑘

22
(�̇� − �̇�

𝑑
) .

(32)

The control output can be shown as

𝜏
𝑢
=

(]
1
− ℎ

1
)

[𝑝
3
𝑡
𝑘
(𝐴 cos𝜓 + 𝐵 sin𝜓)]

𝜏
𝑟
=
(]

2
− ℎ

2
)

𝑝
9

(33)

5.2. Contour Reconstruction Based on Finite Predictive Stable
Inversion. For ∀𝜀 > 0, a predictive time instant 𝑇

𝑝
can be

found to obtain stable input 𝜇
𝑑
(𝑡
𝑐
) using future output 𝑦

𝑑
(𝑡),

𝑡 ∈ [𝑡
𝑐
, 𝑡

𝑐
+ 𝑇

𝑝
]. It satisfies


𝜇
𝑑
(𝑡

𝑐
) − 𝜇

𝑝
(𝑡

𝑐
)

≤ 𝜀, (34)

where 𝜇
𝑝
(𝑡
𝑐
) is the desired input. The inner dynamic condi-

tion is given as

𝐿 ≜ [

𝐿
𝑠
(𝑡

𝑐
)

𝐿
𝑢
(𝑡

𝑓
)
] ≜ [

𝜎
𝑠
(𝑡

𝑐
)

𝜎
𝑢
(𝑡

𝑓
)
] , 𝑡

𝑓
= 𝑡

𝑐
+ 𝑇

𝑝
. (35)

A finite predictive path is regarded as known variables
in the time window [𝑡

𝑐
, 𝑡

𝑐
+ 𝑇

𝑝
]. The desired output in this

time window is utilized to describe the stable and unstable
part of the inner dynamics. Picard iteration method [10] is
introduced to solve the bounded solution of both parts.

Given the nonlinear tracking model (20), the linearity
item of inner dynamics 𝜎(𝑡) is extracted to obtain a bounded
solution.

Let 𝐴
𝜎
= 𝜕𝑠(𝜎, 𝑌

𝑑
)/𝜕𝜎|

𝑌𝑑=0,𝜎=0
, and the linearity part �̇�

can be resolved from 𝜎(𝑡) as �̇� = 𝐴
𝜎
𝜎. The inner dynamics

can be described as

�̇� (𝑡) = 𝐴
𝜎
𝜎 (𝑡) + [𝑠 (𝜎 (𝑡) , 𝑌

𝑑
(𝑡)) − 𝐴

𝜎
𝜎 (𝑡)]

≜ 𝐴
𝜎
𝜎 (𝑡) + Ψ (𝜎 (𝑡) , 𝑌

𝑑
(𝑡)) .

(36)

𝐴
𝜎
can be further separated into a stable part 𝐴

𝑠
and an

unstable part𝐴
𝑢
, which, respectively, denote the characteris-

tic values in the left and right planes of the imaginary axis of
the complex plane. Thus, the inner dynamics equations can
be rewritten as

�̇�
𝑠
= 𝐴

𝑠
𝜎
𝑠
+ 𝐼

𝑠
Ψ
𝑠
([𝜎

𝑠
𝜎
𝑢
]
𝑇

, 𝑌
𝑑
)

≜ 𝐴
𝑠
𝜎
𝑠
+ Ψ

𝑠
(𝜎

𝑠
, 𝜎

𝑢
, 𝑌

𝑑
)

�̇�
𝑢
= 𝐴

𝑢
𝜎
𝑢
+ 𝐼

𝑢
Ψ
𝑢
([𝜎

𝑢
𝜎
𝑢
]
𝑇

, 𝑌
𝑑
)

≜ 𝐴
𝑢
𝜎
𝑢
+ Ψ

𝑢
(𝜎

𝑠
, 𝜎

𝑢
, 𝑌

𝑑
) .

(37)

With Picard iteration method, the bounded solution for
both parts of the inner dynamic can be derived as

�̇�
𝑠,𝑘
(𝑡) = 𝐴

𝑠
𝜎
𝑠,𝑘
(𝑡)

+ Ψ
𝑠
(𝜎

𝑠,𝑘−1
(𝑡) , 𝜎

𝑢,𝑘−1
(𝑡) , 𝑌

𝑑
(𝑡))

�̇�
𝑢,𝑘
(𝑡) = 𝐴

𝑢
𝜎
𝑢,𝑘
(𝑡)

+ Ψ
𝑢
(𝜎

𝑠,𝑘−1
(𝑡) , 𝜎

𝑢,𝑘−1
(𝑡) , 𝑌

𝑑
(𝑡)) .

(38)

For any 𝑡 ∈ [𝑡
𝑐
, 𝑡

𝑓
], the bounded solution can be described

as follows:

(1) Initial solution is shown with 𝑘 = 0,

𝜎
0
(𝑡) = [

[

𝑒
𝐴𝑠(𝑡−𝑡𝑐)𝐿

𝑠
(𝑡

𝑐
)

𝑒
−𝐴𝑢(𝑡𝑓−𝑡)𝐿

𝑢
(𝑡

𝑓
)

]

]

. (39)

(2) With 𝑘 ≥ 1,

𝜎
𝑘
(𝑡)

= [

𝜎
𝑠,𝑘
(𝑡)

𝜎
𝑢,𝑘
(𝑡)
]

=

[
[
[

[

𝑒
𝐴𝑠(𝑡−𝑡𝑐)𝐿

𝑠
(𝑡

𝑐
) + ∫

𝑡

𝑡𝑐

𝑒
𝐴𝑠(𝑡−𝜏)Ψ

𝑠
(𝜎

𝑠,𝑘−1
(𝜏) , 𝜎

𝑢,𝑘−1
(𝜏) , 𝑌

𝑑
(𝜏)) 𝑑𝜏

𝑒
−𝐴𝑢(𝑡𝑓−𝑡)𝐿

𝑢
(𝑡

𝑓
) − ∫

𝑡𝑓

𝑡

𝑒
−𝐴𝑢(𝜏−𝑡)Ψ

𝑢
(𝜎

𝑠,𝑘−1
(𝜏) , 𝜎

𝑢,𝑘−1
(𝜏) , 𝑌

𝑑
(𝜏)) 𝑑𝜏

]
]
]

]

≜ 𝑆
𝑀
(𝜎

𝑘−1
(⋅) , 𝑌

𝑑
(⋅) , 𝐿) (𝑡) .

(40)
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It is clear that the integration operation for the stable and
unstable inner dynamics are from current time instant 𝑡

𝑐
to 𝑡

forward and backward, respectively.

Assumption 2. Inner dynamics characterΨ(⋅, ⋅) is a nonlinear
item, and it is satisfied that local Lipschitz condition at origin
with any constants (𝐾

1
, 𝐾

2
) and any small positive constant

𝜎
0
hold that, for any 𝑡 ∈ R, a bounded function exists


Ψ (𝜎 (𝑡) , 𝑌 (𝑡)) − Ψ (𝜎 (𝑡) , 𝑌 (𝑡))

∞

≤ 𝐾
1
‖𝜎 (𝑡) − 𝜎 (𝑡)‖

∞
+ 𝐾

2


𝑌 (𝑡) − 𝑌 (𝑡)

∞
,

(41)

where

‖𝑌 (⋅)‖
∞
< 𝜎

0
,


𝑌 (⋅)
∞
< 𝜎

0
,

‖𝜎 (⋅)‖
∞
< 𝜎

0
,

‖𝜎 (⋅)‖
∞
< 𝜎

0
.

(42)

Remark. Nonlinearity for inner dynamics will decrease with
the decrease of Lipchitz constants𝐾

1
and𝐾

2
. IfΨ(⋅, ⋅) is con-

tinuous and differentiable, the locally Lipchitz condition is
satisfied.

Assumption 3. A positive constant𝐾 exists to hold that

Φ𝑠
(𝑡, 𝑡

0
)
∞
≤ 𝐾𝑒

−𝛼(𝑡−𝑡0) ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑓


Φ

𝑢
(𝑡

𝑓
, 𝑡)
∞
≤ 𝐾𝑒

−𝛽(𝑡𝑓−𝑡) ∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑓
,

(43)

where 𝛼 and 𝛽 are minimum character values of 𝐴
𝑠
and 𝐴

𝑢
,

respectively,

𝛼 < inf
𝑖

Re (𝜆𝑖 (𝐴 𝑠
))


𝛽 < inf
𝑖

Re (𝜆𝑖 (𝐴𝑢
))
 ,

(44)

where “inf” denotes the lower bound, “Re” means the real
part, and 𝜆

𝑖
(𝐴

𝑠
) and 𝜆

𝑖
(𝐴

𝑢
) are characteristic values of 𝐴

𝑠

and 𝐴
𝑢
, respectively.

Remark. The large 𝛼 and 𝛽 are, the further is the distance
from dynamics poles to the imaginary axis implying stronger
hyperbolic properties.

Theorem2. If Assumptions 1 and 2 are satisfied and there exist
positive constants 𝐾

𝑦
and 𝐾

𝜎
, it holds that


𝜇
𝑑
(𝜎 (𝑡) , 𝑌 (𝑡)) − 𝜇

𝑑
(𝜎 (𝑡) , 𝑌 (𝑡))

∞

≤ 𝐾
𝑦


𝑌 (𝑡) − 𝑌 (𝑡)

∞

+ 𝐾
𝜎
‖𝜎 (𝑡) − 𝜎 (𝑡)‖

∞
.

(45)

If Lipchitz constants 𝐾
1
and 𝐾

2
in (41) satisfy (𝐾

1
+

𝐾
2
)/2 < 1, there is only one fixed point 𝜎∗(⋅) to hold that

𝜎
∗
(𝑡) = 𝑠[𝜎

∗
(⋅), 𝑌

𝑑
(⋅)](𝑡) for any ∀𝑡 ∈ [𝑡

𝑐
, 𝑡

𝑐
+ 𝑇

𝑝
]. The

error between the desired input 𝜇
𝑒,𝑑
(𝑡
𝑐
) and the input 𝜇

𝑑,𝑚
(𝑡
𝑐
)

derived from finite predictive inversion can be quantitated as
𝑒
𝑑,𝑚
(𝑡

𝑐
) ≜
𝜇𝑒,𝑑 (𝑡𝑐) − 𝜇𝑑,𝑚 (𝑡𝑐)

∞

≤ 𝐾
𝜎
𝐾𝐾

𝛼𝛽
[

2𝐾𝐾
𝛼𝛽

𝐾
2

+
𝑒
−𝛽𝑇𝑝

1 − 𝛿
𝛽

]
𝑌𝑑 (⋅)

∞
,

(46)

where

𝐾
𝛼𝛽
=

𝐾
𝛼𝛽,2

(1 − 𝐾
𝛼𝛽,1
)

𝐾
𝛼𝛽,1
= 𝐾𝐾

1
max {(1/𝛼) , (1/𝛽)}

𝐾
𝛼𝛽,2
= 𝐾𝐾

2
max {(1/𝛼) , (1/𝛽)} .

(47)

The proof is not included here due to space limit. The
reader is referred to the original paper for details [21]. Accord-
ing to Theorem 2, the parameter 𝑇

𝑝
can be optimized and

thus the time window.

6. Evaluations and Results

6.1. Evaluation Criteria. Evaluation criteria are set out for
assessing the contour accuracy and predictive controlperfor-
mance towards detectionmission using theUUVunder weak
observable conditions, respectively.

6.1.1. Evaluation Criterion for Contour Accuracy. Errors
between the reconstructed contour and the environment
model are computed in order to evaluate the accuracy of the
contour reconstruction (only the contours estimated using
the SVC inertia algorithm are evaluated here). Considering
the characteristics of the environment, “accumulate error”
and “overall error” are proposed. Figure 8 illustrates how
these errors are computed where the solid lines express the
actual contours of the environment model while the dashed
lines indicate the contour reconstructed by using the SVC
inertia algorithm.

(1) Accumulative Error Δ𝑑
𝑎
. The error between the contour

of the environment model and the reconstructed one can
accumulate over time, and the accumulative error is used to
evaluate this trend.

As shown in Figure 8, 𝑑
1
, 𝑑

3
, and 𝑑

5
are the deflections

between the environment contours and the reconstructed
smooth path at the starting point of each segment. 𝑑

2
, 𝑑

4
,

and 𝑑
6
are the deflections at the end point of each segment.

Assume that 𝑑
𝑠
is the safe distance, and the errors of each

segment Δ𝑑
𝑎1
, Δ𝑑

𝑎2
, and Δ𝑑

𝑎3
are described as follows:

Δ𝑑
𝑎1
= (𝑑

2
− 𝑑

𝑠
) − (𝑑

1
− 𝑑

𝑠
) = 𝑑

2
− 𝑑

1

Δ𝑑
𝑎2
= (𝑑

4
− 𝑑

𝑠
) − (𝑑

3
− 𝑑

𝑠
) = 𝑑

4
− 𝑑

3

Δ𝑑
𝑎3
= (𝑑

6
− 𝑑

𝑠
) − (𝑑

5
− 𝑑

𝑠
) = 𝑑

6
− 𝑑

5
.

(48)

The accumulative error can be defined as follows:

Δ𝑑
𝑎
=

𝑁

∑

𝑖=1

Δ𝑑
𝑎𝑖
/𝑁 𝑖 = 1, 2, 3. (49)
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d1
d2

d3

d4

d5
d6

Figure 8: Illustration of the accumulate error and overall error.

Port
contour

Figure 9: Deployment of the sonars.

(2) Overall Error Δ𝑑
𝑤
. The entire environment contour is

reconstructed and the overall error Δ𝑑
𝑤
at the end point is

defined as

Δ𝑑
𝑤
= 𝑑

6
− 𝑑

𝑠
. (50)

Remark. Both Δ𝑑
𝑎
and Δ𝑑

𝑤
have signed values. A positive

value means the deflection is larger than the safe distance
while a negative value means the deflection is smaller than
the safe distance implying a threat to the vehicle navigation.

6.1.2. Evaluation Criteria for Autonomous Tracking Control.
To estimate the performance of autonomous tracking control,
the error is defined as 𝑒

𝑘
= 𝑦(𝑘) − 𝑦(𝑘) where 𝑦(𝑘) is the

navigating path of the vehicle and 𝑦(𝑘) the smoothed contour
from reconstruction. More specifically, the error at the 𝑘
instant is the minimum distance from the vehicle position to
the contour, that is, the tangent point on the contour. Three
measures are proposed to analyze the errors.

(1)ZeroMeanValue. Define 𝑒 = (1/𝑛)∑𝑛

𝑘=1
𝑒
𝑘
as the estimated

value of error serial {𝑒
𝑘
}. To guarantee the zero mean value,

for any 𝑛 ∈ Z+, it is satisfied that 𝑒 → 0. From the definition
of error, it will be affected by the estimatedmean values of the
output 𝑦; therefore, reestimation of the mean value 𝑒 = 𝑒/𝑦 <
𝑒
𝑇
is needed. 𝑒

𝑇
is preset on the basis of accuracy requirement.

(2) Validity. It is defined as the degree of deflection between
the error serial {𝑒

𝑘
} and the zero mean value. Standard

deviation 𝜎 = √(1/(𝑛 − 1))∑𝑛

𝑘=1
(𝑒

𝑘
− 𝑒)

2 is introduced to
estimate the data validity.
(3) Independence.The error serial describes the error between
the real navigating path and the smoothed contour after
subtracting the safe distance. Error variables are regarded
as random variables and thus the independence describes

(a) (b)

Figure 10: Sonar data collection in sea trial.

Figure 11: Sea trial in islands environment.

the randomness. Autocorrelation coefficient 𝑟
𝑝
is used to

describe the independence as follows:

𝑟
𝑝
=

1

(𝑛 − 𝑝 − 1)

𝑛−𝑝

∑

𝑘=1

(Δ𝑒
𝑘
Δ𝑒

𝑝+𝑘
) , (51)

where Δ𝑒
𝑘
= 𝑒

𝑘
− 𝑒

𝑘
. In this paper the autocorrelation coef-

ficient is rewritten as 𝜌
𝑝
= 𝑟

𝑝
/𝑟

0
, and the relation between

𝜌
𝑝
− 𝑘 will be plotted for demonstration. If autocorrelation

coefficients are in the Independence Confidence Limit Inter-
val (−𝜎, 𝜎), the error serial is not correlated and vice versa.

6.2. Validation Using Sea Trial Data. The performance of the
proposed model is verified with the data collected from a sea
trial operated at Xiaoping Island in Dalian, China, in August
2009. We choose sonar data collected from two different
environments, respectively, a port and two islands. The
single-beam sonars were assembled on one side of a fishing
boat to simulate UUV sonars. To guarantee the number of
sonar data satisfying the clustering requirement, 3 single
beam sonars were fixed in the boat side; see Figure 9. The
sonars used in the sea trial are manufactured by Kongsberg,
Norway.The boat was steered along the contour with acoustic
beam vertically acting on environment. The sonars were
deployed below the bottomof the boat to avoid acoustic beam
to project onto the boat. The boat sails at a velocity of 2m/s.

Sonar data are collected during the boat navigating along
islands horizontally in real time. To verify the effectiveness
of the proposed control algorithm in disturbance situation,
synthetic disturbance noise is added: 𝑡

𝑑𝑢
= 40× (1+ rand(⋅)),
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Figure 12: Islands contour construction and patrolling.

𝜏
𝑑V = 35 × (1 + rand(⋅)), 𝜏𝑑𝑟 = 40 × (1 + rand(⋅)), with rand(⋅)
denoting zero-mean Gaussian random noise. From Figure 10
the sonar assembly in the sea can be seen, with diving in the
water as Figure 10(a) and navigating as Figure 10(b).

6.2.1. Path Following Validation Using Data from Islands. In
the first experiment, the boat navigates between two small
islands in order to move close to them (see Figure 11). We
record the data from initial point A (−30, −245) with heading
of 60 degree. The effective distance of sonars is 200m.

Figure 12 shows the process of data clustering. At the begin-
ning, the number of data is too small to construct accurate
data class; therefore, data are placed into alternative set; see
Figure 12(a). With the number of sonar data increasing, data
with the same property, including data in alternative set,
are clustered in corresponding class contours with support
vectors distributed on. Sonar data determined by the rules
in Section 3 are eliminated as outliers (see Figures 12(b) and
12(c)).The contours close toUUV, determined by normal line
and distance, connected with lines successively, are regarded
as preliminary contour, waiting for postprocessing.
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Figure 13: Patrolling errors at 𝑥- and 𝑦-axis in islands contour.
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Figure 14: Error autocorrelation coefficients of error serials.

On the basis of initial contour (see solid green line in
Figures 12(b) and 12(c)), the smoothing method described in
Section 4.2 is applied and a reasonable desired reference path
(dash black curves) for vehicle navigation can be achieved.
When the vehicle is close to the island on the right less
than 200m, sonar data returned is collected to construct the
contour in real time which is regarded as the guidance for
the vehicle to navigate, keeping a fixed distance (set to 10m
in this paper) as the safe distance. The optimal time window
parameter is 𝑇

𝑝
≥ 3 s. Considering the control period 0.5 s,

𝑇
𝑝
= 3 s satisfies the requirement (5 original sonar data

and 6 wavelet coefficients) to estimate wavelet coefficients at
any time. According to Section 6.1, the error series denoting
the deflection between the actual navigation path and the
reconstructed contour is computed; see Figure 13.

The mean (standard deviation) value along 𝑥- and 𝑦-axis
is 0.15 (0.37)m and 0.98 (0.30)m, respectively. According to
evaluation criterion for contour accuracy in Section 6.1.1, the
accumulated error for island contour is 1.45m, and overall

error is 1.74m. The negative deflection values are much
smaller than the safe distance; this means that the UUV
can safely complete the detection mission as designed. The
maximum absolute value of the autocorrelation coefficients
at 𝑥-axis and 𝑦-axis is 0.14 and 0.16, respectively, while
the respective standard deviations are 0.37 and 0.30 (see
Figure 14). This confirms that the error series is independent
without influence from the designed controller. This means
that the designed controller using finite predictive stable
inversion algorithm can control the vehicle to follow a path
predicted in real time.

6.2.2. Path Tracking Validation Using Data from Port. With
the same deployment and trial methods as above, sonar data
was collected in a port as Figure 15 with its environment pic-
tures at the right. The initial position of the boat was (−1605,
−688). Owing to the port area is wide and safe distance is
set to 30m. Figure 16 demonstrates the autonomous tracking
of the boat in the port. From Figure 16, it can be seen that
the smoothed path illustrated by black solid is reconstructed
using data from 3 sonars and guides the vehicle to approach
the target. The noise in the data is detected and eliminated to
guarantee the accuracy of the contour.

Figure 17 illustrates the error of the smoothed path recon-
structed and the actual path without consideration of the safe
distance. Figure 18 shows the autocorrelation coefficients of
the tracking error series to assess whether the errors are from
the control method or stochastic disturbance. The maximum
absolute value of autocorrelation coefficients at 𝑥-axis and 𝑦-
axis are 0.20 and 0.20,within the range of standard deviations,
respectively, (−0.26, 0.26) and (−0.38, 0.38) (see Figure 17).
Therefore, it is true that error series are caused stochastically.
Moreover, the accumulated error for island contour tracking
is 1.50m, and overall error is 1.20m, respectively.

7. Conclusions

A new autopilot system, known as SDAP, is proposed for
the exploration of underwater environments using UUV
equipped with multiple single-beam sonars. The main issue
studied is the control problem in detection process which is
separated into two stages according to different requirements
of the mission, accurate tracking and autonomous tracking.
A rolling path generation method is present to guide the
vehicle to follow a preset path accurately. For autonomous
tracking stage, wavelet transform is introduced to preprocess
weak observable data and the wavelet coefficients obtained
are used to reconstruct the contour of the environment using
the SVC inertia algorithm. To satisfy the inertia property of
the UUV which requires a smooth reference path, different
order Bézier curves are included to fit the initial contours
for the desired reference path by considering a fixed safety
distance. Finite predictive stable inversion method is applied
to control the vehicle in order to follow the predictive path in
real time. Data collected from a sea trial is used to validate the
proposed technique, and the results have demonstrated that
the algorithms are able to control vehicle navigating along the
desired paths that are either preset or predicted automatically.
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Figure 15: Sea trial in port environment.
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Figure 16: Port contour construction and tracking.
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Figure 17: Path error serials at 𝑥- and 𝑦-axis for patrolling port
contour.
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Figure 18: Error autocorrelation coefficients of error serials.

It has laid a solid foundation for usingUUV to perform SDAP
mission.

During environment detection, the accuracy of environ-
ment information obtained is vital to guide UUV steering
safely. With the insight, the navigation error will affect the
environment outline constructed. In this paper, it is assumed
that the navigation error is not considered in the UUV steer-
ing. In the future study, it is necessary to include navigation
error into the SDAP issue for completeness. Otherwise, the
further verification should be implemented through inserting
the algorithms into UUV and executing mission in the real
environment underwater.
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