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Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental
management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections.
This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical
soilmaps using limited survey data provided that qualified legacymaps are available. A case study using synthetic data demonstrates
that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited
sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has
been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil
type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type
has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty.
We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data.

1. Introduction

Soil is an important natural resource and is also an essential
component of ecosystems.The spatial distribution of different
soils represents a special kind of natural landscapes (called
soilscape). Soils are traditionally classified into a number of
types and delineated as categorical maps based on multiple
attributes observed at sample profiles, tacit knowledge of
experienced surveyors, remotely sensed landscape features,
and a specific classification system. Categorical soil maps are
widely used in ecological and agricultural studies and provide
crucial information for natural resource and environmental
management. Because existing soil maps may be of low
quality or too outdated to reflect current soil distributions,
mapupdate is necessary for providing current,more accurate,
or more detailed information to meet the requirements of
applications. For example, most soil series maps in United
States (e.g., theUSDASoil SurveyGeographicDatabase)were
made on the basis of field surveys carried out in the 1950s, and

they may not have been effectively updated to reflect recent
soil changes. However, large-scale detailed soil survey is too
costly to be carried out frequently for generating new high-
qualitymaps. If an existing soilmap is of sufficient quality and
appropriately scaled, updating may not require a new full-
coverage soil survey for a revised soilmap because the types of
soils at most places in the legacy map may not have changed.
Consequently, we may be able to update a legacy soil map
with only limited new survey data on soil distribution.When
qualified legacy soil maps are available, we may only need
to address areas where the previously determined soil types
have a large possibility of type change due to some reasons
(e.g., internal or environmental changes, incorrect mapping,
or taxonomy change), identified by careful map examination
with ancillary information. Changes can be found through
a limited soil update survey or simply map examination by
experts. Other reasons of using legacy soil maps and survey
data together to create current categorical soil maps include
that: (1) historical field survey data were not well kept or
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were kept without accurate coordinates and (2) legacy soil
maps were based on drawings of experienced soil surveyors
during field surveys, but most observed soil profiles were not
sampled for laboratory analysis or recorded into a database.
In general, wemay incorporate information from a legacy soil
map into the current soil map based on limited survey data if
the legacy soil map contains valuable information that cannot
be replaced by a limited survey.

A variety of quantitative modeling methods have been
used or developed to predict spatially explicit soil categorical
characteristics. These methods may have their own merits in
different contexts. One group of methods is soil-landscape
models, which use environmental soil-forming factors to
predict soil patterns over unvisited areas. These methods
include multinomial logistic regressions (MLRS), classifica-
tion and regression tree analysis, and fuzzy methods; see
applications in predictive categorical soil mapping [1–9].This
group of methods generally does not incorporate spatial
autocorrelations.The other group considers spatial statistical
models, mainly including indicator geostatistics, maximum
entropy models, and Markov chain random fields (MCRF);
see related studies [10–12] in mapping categorical soil vari-
ables. These methods are based on spatial autocorrelations
of categories, but legacy data and remotely sensed landscape
datamay also be incorporated as auxiliary information.Other
spatial statistical methods that were suggested for mapping
categorical variablesmay also be used or adapted formapping
soil categories [13, 14]. In addition, some qualitative methods
such as the rule-based method [15] and the pure remote
sensing method [16] were introduced recently for mapping
soil types, but only for special soil types such as peat lands or
gypsic soils.

Recently, Markov chains were extended into a new spa-
tial statistical approach, that is, the MCRF approach, for
simulating categorical spatial variables [17]. This approach
uses transiograms [18] to measure class spatial auto- and
cross-correlations and usesMCRFmodels (usually simplified
models) to estimate the local conditional probability dis-
tribution of a categorical spatial variable at an unobserved
location. MCRFs may be regarded as an extension of Markov
mesh random fields [19] toward conditional simulation on
sample data or as a special kind of causal Markov random
fields in accordance with the Bayesian inference principle.
MCRF-based sequential simulation algorithms can be used
to generate simulated realizations in single sweeps, similar
to other geostatistical sequential simulation algorithms. This
approach may incorporate various interclass relationships,
thus effectively reducing the uncertainty associated with
prediction and generating more accurate simulated realiza-
tions that strictly obey class neighboring relationships [20].
Nonetheless, currently implemented MCRF algorithms do
not incorporate auxiliary or legacy data by cosimulations,
thus requiring further extensions.

It is easy to understand that legacy soil data, whether
they are map data or observed point data, contain valuable
information that is relevant to present soil patterns. Legacy
soil maps also contain the tacit knowledge of experienced
surveyors, who were intensively trained for soil survey but
may not be available at the time of soil map updating [21].

Therefore, proper use of legacy soil data may appreciably
improve the prediction of soil spatial distributions. In fact, the
use of legacy soil data in digital soil modeling has become a
commonplace [22]. If densely distributed survey data are not
available, a legacy soil map available at a similar scale may
be used as auxiliary data to create the current soil map with
limited survey data.

In this study, we assume that the legacy soil maps from
the last update or made from last extensive soil surveys
need limited corrections related to natural or anthropogenic
soil changes or other reasons. Consequently, update is only
necessary in altered areas or erroneously mapped locations.
As such, we assume that the legacy soil maps are mainly
outdated rather than being of low quality, and that update is
necessary for a variety of reasons. This is reasonable because
(1) many high-quality soil maps were made by extensive
soil surveys, usually commissioned by government agencies,
and (2) many soil types only change slowly as a result of
natural processes, except for some special soil groups (e.g.,
hydric soils). Such an assumption may be applicable to many
situations in the United States, where detailed large-scale
categorical soil maps exist for each county in many states.
To incorporate legacy soil maps through cosimulations for
categorical soil map creation with limited survey data, the
MCRF sequential simulation (MCSS) algorithm proposed
in [20] was extended into a MCRF sequential cosimulation
(Co-MCSS) algorithm and its workability was demonstrated
by a case study on synthetic data in this study. The main
objective is to suggest a suitable cost-efficient method for
updating legacy categorical soil maps that only requires
limited new survey data, mainly in the changed areas. It
should be noted that although limited map changes in
categorical soil map update may be carried out using a
conventional hand-delineating method, a spatial statistical
method would be appreciated due to many reasons, such as
efficiency, objectivity in soil type boundary determination,
and availability of uncertainty information associated with
the updating.

2. Methods

2.1. Markov Chain Random Fields. The chief obstacle to
extending one-dimensional Markov chains to multidimen-
sional causal random field models such as Markov mesh
models [19] is the lack of a natural ordering for amultidimen-
sional grid and hence the lack of a natural notion of causality
in the spatial data. As a result, an artificial ordering for
spatial data must be assumed, which often yields directional
artifacts in simulated images [23, 24]. The MCRF theory
solved this problem and other related issues that hindered
conditional Markov chain simulations on sparse sample
data. The initial ideas of MCRFs aimed to correct the flaws
of a two-dimensional Markov chain model for subsurface
characterization [17, 24]. The ideas were generalized into a
theoretical framework for a new geostatistical approach for
simulating categorical fields [17]. Wide applications of this
approach lie within further extensions of MCRF models and
the development of simulation algorithms that can effectively
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deal with data clustering (or redundancy), ancillary informa-
tion, and multiple-point statistics.

A MCRF refers to a random field defined by a single spa-
tial Markov chain that moves or jumps in space and decides
its state at any uninformed (i.e., unobserved and unvisited in
a simulation process) location by interactions with its nearest
neighbors in different directions and its last stay (i.e., visited)
location [17]. The interactions within a neighborhood are
performed through a sequential Bayesian updating process
[25]. Therefore, a MCRF is a spatial Markov chain with local
Bayesian updating. Here, a “state” means a category (or class)
for a categorical spatial variable. For a MCRF 𝑍(u), if we
assume that 𝑖

1
to 𝑖
𝑚
are the states of the nearest neighbors in

different directions around an uninformed location u
0
plus

the state of the last visited location of the spatial Markov
chain, the local conditional probability distribution of 𝑍(u)
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where 𝐴 = 𝑝[𝑖
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), . . . , 𝑖
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)]/𝑝[𝑖

1
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)] is a normalizing

constant and u
1
indicates the last visited location or the loca-

tion that the spatialMarkov chain goes through to the current
location u

0
[17]. This explicit full general solution of MCRFs

is essentially a multiple-point geostatistical model, composed
of a series of two- to 𝑚 + 1-point statistics (or cliques)
involving the current uninformed locationu

0
.These two- and

multiple-point statistics are also functions of directional lag
distances because these points are usually not immediately
adjacent in a space of sample data. They may be estimated
from training images but the computation is much complex.
Note that the local joint probability distribution of 𝑍(u); that
is, 𝑝[𝑖

0
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), 𝑖
1
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If we consider (1) in the Bayesian inference formulation,
𝑝[𝑖
0
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)] is the posterior probability
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)] (i.e., a transition probability,

or a transiogram if regarded as a function of the lag distance)
is the prior probability distribution, and the other part of
the right-hand side excluding the constant is the likelihood
component.The prior probability indicates the singleMarkov
chain nature of a MCRF. The likelihood component is
composed of multiple terms (one for each nearest neighbor),
which update the prior probability using nearest neighbors in
different directions by a manner of recursion as follows:

posterior
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where 𝐿
𝑘
refers to the likelihood term for the 𝑘th nearest

neighbor, that is, 𝑝[𝑖
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)]. Thus,

when no nearest neighbor other than the last visited location
is available, we get a posterior probability equal to the prior
probability (the likelihood term 𝐿

1
is 1). But when there

are nearest neighbors other than the last visited location
available, update begins on each datum in turn, and in each
time of update the posterior of last update serves as the
new prior. Therefore, a MCRF model can be explained from
the viewpoint of Bayesian inference. The generation of a
MCRF may be regarded as a dynamic Bayesian inference
process. Because the above Bayesian updating process is
conducted simultaneously within a neighborhood rather
than an iterative updating algorithm, it can be simply written
as [25]
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This sequential Bayesian updating process on nearest
neighbors starts from nearest neighbor 𝑖

2
(u
2
) and ends at

nearest neighbor 𝑖
𝑚
(u
𝑚
) in a Markov-type neighborhood

around the uninformed location u
0
being estimated (see

Figure 1(a) as an example). This updating process may not
need to follow a fixed sequence of nearest neighbors because
earlier considered nearest neighbors within the neighbor-
hood become the conditioning data of later updates, and all
updates are conditioned on the datum 𝑖

0
(u
0
) being estimated.

Such a spatial estimation method is different from existing
spatial estimation methods such as kriging and conventional
Markov random field models.

If the spatialMarkov chain is stationary and its last visited
location is far away from the current uninformed location,
the influence of the last visited location may be ignored (i.e.,
the transition probabilities from the last visited location to
the current location decay to corresponding marginal prob-
abilities). Thus, the local conditional probability distribution
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where 𝐴 = 𝑝[𝑖
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)] is a normalizing constant

and u
1
is not the last visited location but just a nearest

neighbor. Equation (4) is a special case of (1). If we con-
sider this equation in the Bayesian inference formulation,
𝑝[𝑖
0
(u
0
) | 𝑖
1
(u
1
), . . . , 𝑖

𝑚
(u
𝑚
)] is still the posterior, 𝑝[𝑖

0
(u
0
)]

(i.e., a marginal probability) becomes the prior, and the other
part of the right-hand side excluding the constant is the
likelihood component. For this special case, the sequential
Bayesian updating process on nearest neighbors starts from
nearest neighbor 𝑖

1
(u
1
) and ends at nearest neighbor 𝑖

𝑚
(u
𝑚
)

in aMarkov-type neighborhood around the location u
0
being

estimated (see Figure 1(b) as an example).
Because (1) involves complexmultiple-point statistics that

are difficult to estimate from sparse sample data, simplifica-
tion is necessary. If we invoke the conditional independence
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Figure 1: Neighborhood structures with six nearest neighbors and the sequential Bayesian updating process in basic Markov chain random
fields: (a) assuming u

1
to be the last visited location; (b) assuming the last visited location is far away (outside the neighborhood). Data

interactions across the uninformed location u
0
being estimated are ignored according to the Markov property.

assumption, a simplified general solution for MCRFs can be
obtained from (1) as follows:
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(5)

where 𝑝
𝑖
0
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(h
0𝑔
) represents a transiogram (i.e., transition

probability function) from class 𝑖
0
at location u
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to class 𝑖

𝑔

at location u
𝑔
with the lag distance h

0𝑔
; 𝑖
1
(u
1
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nearest neighbor from or across which the spatial Markov
chain moves to the current location u

0
; 𝑚 represents the

number of nearest neighbors plus the last visited location;
𝑖 and 𝑓 all represent states (i.e., classes) in the state space
𝑆 = (1, . . . , 𝑛) of the categorical field under study. This
simplified general solution is still in accordance with the
Bayesian inference formulation. Because this simplified solu-
tion involves only two-point statistics—transiograms, which
can be estimated from sample data, it is computable directly
using sample data. In addition, because class proportions
are not involved in this solution, no assumption is required
concerning their stationarity. This simplified solution did
not consider the data clustering issue and left it to model
extension and specific algorithm design. Data clustering
apparently impacts the contributions of nearest neighbors to
the local conditional probability distribution at the current
location being estimated, thus accounting for this effect
is preferable when it is possible. For example, one may
consider applying a set of power parameters to the transition
probability terms based on the neighborhood configuration,
but the computation load will inevitably largely increase.

If the spatial Markov chain is stationary and its last
visited location is far from the current location u
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(i.e.,
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still assume that there are 𝑚 nearest neighbors, (5) may be
rewritten as
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where 𝑝
𝑖
0

refers to the marginal probability of class 𝑖
0
, which

is approximately equal to the mean value of the class pro-
portion for omni- and bi-directional transition probabilities
or a large study area. Equation (6) also can be obtained
by simplifying (4) based on the conditional independence
assumption or by transforming (5) using the relationship
of 𝑝
𝑖
0
𝑖
1

(h
01
)𝑝
𝑖
0

/𝑝
𝑖
1

= 𝑝
𝑖
1
𝑖
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(h
10
). However, for spatial data,

this relationship only holds in stationary situations and does
not hold for nonstationary situations and unidirectional
transiograms.Therefore, (6) is a special stationary case of (5)
and is included in (5).

2.2. MCRF Cosimulation Model. To incorporate auxiliary
variables, we need to expand (5) into a Co-MCRF model.
The contributions of auxiliary variables may be incorporated
by using the formulation of addition (to some extent similar
to cokriging), that is, by including one contribution term
for each auxiliary variable. Such a formulation must be
renormalized or allocate weights to its contribution terms
to ensure the total probability of occurrences of all states
(i.e., classes) at location u

0
sums to unity. Alternatively, the

formulation of multiplication can be used to incorporate
auxiliary variables. In this scenario, we regard the data of
auxiliary variables as nearest neighbors of the uninformed
location u

0
in different variable spaces. Here, we use the mul-

tiplication formulation to construct the Co-MCRF model.
We consider only the colocated cosimulation case because
it is what we need for revising categorical soil maps while
the involved auxiliary variables, for example, the legacy
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categorical soil map, provide exhaustive data. The colocated
Co-MCRF model with 𝑘 auxiliary variables can be written as
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where 𝑟(𝑘)
0

represents the state of the 𝑘th auxiliary variable at
the colocation u

0
. The cross-transiograms from the primary

variable to auxiliary variables reduce to cross transition
probabilities 𝑏

𝑖
0
𝑟
0

due to the colocation property. We may call
this kind of cross-transition probabilities (and transiograms)
between classes of two different categorical fields cross-field
transition probabilities (and transiograms). The cross-field
transition probabilities, however, have to be estimated sepa-
rately. In this equation, we do not deal with cross-correlations
between auxiliary variables and practically consider them to
be independent of each other.

In this study, we consider only one auxiliary variable in
the form of a legacy soil map. Hence, (7) further reduces to
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(8)

If an auxiliary variable has no correlation with the
primary variable, the cross-field transition probabilities will
equal the corresponding class mean proportions of the aux-
iliary variable, and the corresponding cross-field transition
probability terms in (8) will be canceled from the numerator
and denominator.

2.3. MCRF Sequential Cosimulation Algorithm. The condi-
tional independence assumption was assumed for nearest
neighbors in different directions to derive the simplified
general solution of MCRFs. Such an assumption is practical,
often used in nonlinear probabilitymodels [26]. However, the
conditional independence of adjacent neighbors in cardinal
directions for a rectangular lattice is a property of Pickard
random fields, a kind of unilateral Markov models [27–
29]. For the situation of the four (or less) nearest neighbors
found in cardinal directions, the conditional independence
property of Pickard random fields may be applied to the
sparse data situation [17, 24].This supports the neighborhood
choice of using four nearest neighbors in four cardinal
directions or quadrants in MCRF algorithm design to reduce
data clustering effects [20].

In fact, it is also unnecessary and difficult to consider
many nearest neighbors in different directions in applica-
tions. Nearest neighbors outside correlation ranges can be
eliminated from consideration. The influence of remotely
located data on the current uninformed location is typically
screened by closer data within a certain angle. In addition,
the conditional independence assumption apparently does

Primary
variable

space

Auxiliary
variable space

Visited
location

Sampled
location

Colocated
location

Figure 2: Illustration of the Markov chain random field colocated
cosimulationmodel with quadrant search and one auxiliary variable
for random-path sequential simulation. Double arrows represent
the moving directions of the spatial Markov chain. Dashed arrows
represent the interactions of the spatial Markov chain with nearest
neighbors and auxiliary data.

not hold for clustered sample data. Therefore, it is proper
for MCRF-based Markov chain models to consider only
the nearest neighbors in several cardinal directions within
a search range to both approximately meet the conditional
independence assumption and increase the computation
efficiency.

The four nearest neighbors in four cardinal directions can
be regarded as conditionally independent given the state of
the surrounded central location in a sparse data space [17].
Consequently, the neighborhood choice for the Co-MCRF
model needs only to use the four nearest neighbors in four
cardinal directions, allowing (8) to be further simplified to
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(9)

Here, we assume that the last visited location of the spatial
Markov chain is always within the four nearest neighbors; if
it is not so, we assume that the spatial Markov chain comes
through one of them (Figure 2). Such a simplified Co-MCRF
model provides the MCRF approach the capability of dealing
with large data sets.

A tolerance angle is required because nearest neighbors
in a neighborhood may not be located exactly along cardinal
directions. To cover the whole space of a search area, sectors
can be substituted for cardinal directions, and we can seek
one nearest neighbor from each sector to represent the neigh-
borhood (Figure 2). If we consider four cardinal directions,
the sectors representing cardinal directions are quadrants.
There may be no data to occur in some quadrants within a
search range at the boundary strips or at the beginning of a
simulation when sample data are very sparse. Consequently,
the size of a neighborhoodmay be less than four. Equation (9)
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can always be adapted to the situation. In case no data can
be found in the whole search area, we assume the spatial
Markov chain comes froma location outside the search range.
By choosing a suitable search radius based on the density of
sample data, this situation rarely occurs.

The MCSS algorithm was developed based on the above
quadrant search method and was effective in simulating
multinomial classes in two horizontal dimensions [20]. The
colocated Co-MCSS algorithm used in this paper is an
extension of the random-path MCSS algorithm; therefore,
their computation processes are similar.

2.4. Transiogram Modeling and Cross-Field Transition Proba-
bility Matrix. To perform simulations using Co-MCSS, tran-
siogram models are needed to provide transition probability
values at any needed lag distances. The transiogram was
formally established in recent years to meet the needs of
related Markov chain models [18]. The initial purpose of
proposing such a spatial correlation measure was to provide
a practical way to estimate multistep transition probabilities
from sparse point sample data [30]. Later, it was found
that the transiogram could also be an excellent independent
spatial measure to characterize the spatial variability of cate-
gorical spatial variables [18].This spatial measure is related to
some pioneer studies [31–35], which used or explored tran-
sition probability curves in some special conditions. There
are different ways to get continuous transiogram models
[36]. One is using nonparametric methods such as linear
interpolation to interpolate experimental transiograms into
continuous models. The second is using parametric methods
(i.e., mathematical models) to fit experimental transiograms.
Because the latter is relatively tedious and the sample data for
soil map updating are usually sufficient for estimating reliable
experimental transiograms, the first approach was chosen in
this study.

For a colocated cosimulation conditioned on one aux-
iliary variable, one cross-field transition probability matrix
(CTPM) is sufficient. Transition probabilities in a CTPM
can be estimated by counting point-to-point frequencies of
different class pairs from the sample data of the primary
variable to the colocated data of the auxiliary variable using
the following equation:

𝑏
𝑖𝑘
=
𝑓
𝑖𝑘

∑
𝑛

𝑗=1
𝑓
𝑖𝑗

, (10)

where 𝑓
𝑖𝑘
represents the frequency of transitions from class 𝑖

of the primary variable to class 𝑘 of the auxiliary variable and
𝑛 is the number of classes of the auxiliary variable.

3. Case Study for Method Testing

3.1. Data, Parameters, and Outputs. The major purpose of
this case study was to test the method proposed in this paper,
rather than a real application. Because a real field soil survey
was unavailable to us, synthetic data extracted from a piece of
a real soil series map (9 km2 area) [20] was used in this case
study. However, the spatial pattern and spatial relationships
among the soil series can mimic some real-world situation,

thus still providing an effective test to the proposed spatial
statistical method.

The area was discretized into a 175 × 128 grid of 22,400
pixels, with a square pixel area of 400m2. The soil map has
seven soil types. Here, the exact soil series names are not our
concern. For convenience, we denote them as S1, S2, S3, S4,
S5, S6, and S7. This soil series map (Figure 3(a)) served as the
legacy soil map for this study. The soil survey for delineating
the legacy soil map was mainly done in the 1950s [37]. After
five decades, such a soil map is likely outdated and would be
improved by revision. We assumed that the legacy soil map
from USDA was made with high-quality data at the mapping
time, but that is now inaccurate. We further assumed that
only a few of small areas in the legacy soil mapwere subject to
soil type changes. For testing the suggested soil map update
method, we designed the following soil series changes in the
study area: S5 is joined to S3; S1 is joined to S7; part of S6
became S7 at the bottom middle east; and part of S7 became
S6 at the top-right corner. As a result, we have five new soil
series: SU2 (i.e., S2), SU3 (i.e., S3 + S5), SU4 (i.e., S4), SU6
(i.e., S6 + part of S7), and SU7 (i.e., S7 + S1 + part of S6).
Soil series of S2, S3, and S4 were assumed to have no changes
confirmed in the updated survey.The resulting new soil series
distribution map (Figure 3(b)) was used as the reference soil
map for checking simulated results.

Becausewe assumed only a fewof small areaswere subject
to soil type changes, our limited field surveywas also confined
to these small areas.Thus, the survey data are insufficient and
also biased for estimating the parameters (e.g., transiogram
models) used in the cosimulation. Our suggestion is to use
pseudosample data, that is, sample data directly extracted
from unchanged areas in the legacy soil map. Therefore, we
sampled a sparse data set of 646 points (Figure 3(c)) from
the reference soil map, which cover both the changed and
unchanged areas. These samples are randomly distributed,
not purposively arranged with respect to soil type changes.
Using this data set, we examined simulated results for other
points to see how well our suggested method predicted soil
type characteristics, both those that were unchanged and
changed compared to the legacymap.The rationalities behind
the sample data are that (1) for areas where soil types have
changed, a field survey or visual observation through remote
sensing is necessary to identify the changes on the map,
and both methods may produce survey sample data for the
update; and (2) for areas where soil types did not change,
no matter how the judgment is made (from a field survey,
remote sensing, or expertise), pseudosample data may be
simply extracted from the legacy soilmap. Pseudosample data
extraction from a legacy map or from the combination of
a legacy map and remotely sensed imagery can be carried
out through human-computer interactions. Thus, it is not
difficult to obtain sufficient sample data with a limited soil
survey (i.e., a small set of real soil survey data).

Experimental transiograms were estimated from the
sample data to generate transiogram models for conditional
simulations. Two subsets of omnidirectional transiogram
models interpolated from the experimental transiograms are
provided in Figure 4 and show that cross-transiogrammodels
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Figure 3: The data for categorical soil map update by Markov chain cosimulation: (a) the legacy soil map; (b) the reference soil map,
representing the current distribution of soil series; (c) the sample data set (646 points), including field survey data and pseudosample data
directly extracted from the unchanged areas in the legacy soil map. Previous soil series: S1, S2, S3, S4, S5, S6, and S7. Updated soil series: SU2,
SU3, SU4, SU6, and SU7. SU2 = S2, SU3 = S3 + S5, SU4 = S4, SU6 = S6 + part of S7, and SU7 = S7 + S1 + part of S6.

have very different sills, related to their tail class propor-
tions. Anisotropy was not considered because no identifiable
anisotropic direction can characterize all soil types in the
whole area while partial anisotropy is difficult to account for.
The CTPM from the sample data set to the legacy soil map
data is provided in Table 1.The numbers of columns and rows
in the CTPM can be different and the classes in columns
and rows need not have the same physical meanings, as they
represent two different categorical variables, respectively.
But for each row the transition probability values still sum
to unity. Such a CTPM was used to express the cross-
correlations between sample data and the legacy map. The
sample data set has five soil types while the legacy soil map
has seven soil types; thus, they have five types in common.
These five soil types show strong cross-field autocorrelations,
and two of them have no changes (i.e., cross-field transition
probabilities are 1.0).

The search radius chosen is 30 pixels (i.e., 600m). One
hundred realizations were generated for the cosimulation
conditioned on both the sample data and the legacy soil
map using Co-MCSS, and occurrence probability maps were
estimated from those realizations. The optimal prediction
map was obtained from maximum occurrence probabilities.
For the purpose of comparison, the same was done without
conditioning on the legacy soil map using MCSS. The PCC
(percentage of correctly classified locations) values were
estimated for the optimal prediction map and realization

maps against the reference soil map (sample data being
excluded) to verify the simulation accuracies.

3.2. Results of Cosimulation. The updated categorical soil
maps include the optimal prediction map, a series of sim-
ulated realization maps, and occurrence probability maps.
But the most important should be the optimal prediction
map generated from maximum occurrence probabilities that
reflect the best predictions for a chosenmethod and available
data. The optimal prediction map of the soil series and
the corresponding maximum occurrence probability map
(Figure 5) were estimated from simulated realizations gener-
ated by Co-MCSS, conditioned on both the sample data and
the legacy soil map. The maximum occurrence probability
map reflects the uncertainty of the optimal prediction map
against the conditioning data. Comparing with the legacy
soil map and the reference map (Figure 3) shows that the
unchanged S2 and S4 were exactly reproduced as SU2 and
SU4, respectively, and that the S3, which was merged with
a minor soil series (S5) without other changes, was also
exactly reproduced as SU3 in the optimal prediction map
(Figure 5(a)). However, the S6 and S7, which changed into
each other in some areas, were only approximately captured
(as SU6 and SU7, resp.) with apparent uncertainty (see
shallow gray areas in Figure 5(b)). The uncertainty mainly
occurred at the boundary zones between these two soil series.
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Table 1: Cross-field transition probability matrix from sample data (5 soil series) to colocated data in the legacy soil map (7 soil series).

Data Soil series† Legacy soil map
S1 S2 S3 S4 S5 S6 S7

Sample data

SU2 .0000 1.0000 .0000 .0000 .0000 .0000 .0000
SU3 .0000 .0000 .9011 .0000 .0989 .0000 .0000
SU4 .0000 .0000 .0000 1.0000 .0000 .0000 .0000
SU6 .0000 .0000 .0000 .0000 .0000 .8143 .1857
SU7 .2169 .0000 .0000 .0000 .0000 .0271 .7560

†S1 is a soil series in the legacy soil map. SU2 is a soil series in the updated soil map.
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Figure 4: Two subsets of transiogram models interpolated from
experimental transiograms estimated from the sample data. The
numbers in transiogram labels (1 to 5) refer to the five updated soil
series (i.e., SU2, SU3, SU4, SU6, and SU7), respectively.

Those areas of these two soil series that are located far away
from each other were also well reproduced. Although soil
type changeswere confirmedby sample data only in two small
areas (i.e., the top-left corner and the bottom-middle east) for
S6 and S7, such changes caused the uncertainty of these two
soil types in other areas in the updatedmap.This is reasonable
because if a soil series is found to have changed at someplaces,

it is quite possible that it may also have changed at other
places, even if the changes at other places were not verified by
the new survey. The changed areas of S6 and S7 (i.e., the top-
left corner and the bottom-middle east) were well captured
in the optimal prediction map (Figures 3(a) and 3(b)). The
merging of S1 into S7 only increased the total area of SU7 and
did not affect its uncertainty caused by the transformation in
some areas between S6 and S7.

Similar to hand-delineated maps, optimal prediction
maps of categorical spatial variables normally also have an
omission effect: minor classes are underrepresented because
of their lower occurrence probabilities at most unsampled
locations andmajor classes are consequently overrepresented
[20, 38]. This situation also occurred on the predicted soil
maps using theMLRmethod [3]. Because of the contribution
of the legacy soil map and the lack of apparent minor classes,
this effect is visually not obvious in the optimal prediction
map by Co-MCSS compared with the simulated realization
maps (Figure 6), which normally do not have such an effect.

The simulated realizationmaps (Figure 6) andoccurrence
probability maps of single soil series (Figure 7) further verify
the judgments based on the results provided in Figure 5.
Between those two realizations (Figure 6), soil series SU2,
SU3, and SU4 do not show differences in pattern details,
but some differences for SU6 and SU7 do exist. In Figure 7,
occurrence probabilitymaps of SU2, SU3, and SU4 are simply
binary maps (i.e., 0 and 1), meaning that they are simply
inherited from the legacymap because no changes other than
taxonomic adjustments were confirmed by sample data. This
does not mean that these soil series in the updated soil map
are correct. They just made no changes against the legacy
map.Uncertainties in the occurrence probabilitymaps of SU6
and SU7 are clear but mainly appear along the boundaries
between them.

3.3. Comparison with MCSS. To verify the improvement and
advantages of Co-MCSS over MCSS, which cannot incorpo-
rate auxiliary information, we also used the MCSS method
to conduct a simulation conditioned on the same sample
data. Comparing optimal prediction and maximum occur-
rence probability maps (Figure 8) generated by MCSS to
those generated by Co-MCSS (see Figure 5) clearly indicates
distinct differences: (1) unlike MCSS, Co-MCSS can capture
pattern details, particularly linear features; and (2) MCSS
generated much more uncertainty than did Co-MCSS. Thus,
the contribution of the legacy soil map to the accuracy of the
simulated results by Co-MCSS is huge due to the assumed
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Figure 5: The optimal prediction map (a) and the maximum occurrence probability map (b) of updated soil series conditioned on sample
data and the legacy soil map using the Co-MCSS method.
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Figure 6: Two simulated realization maps of updated soil series conditioned on sample data and the legacy soil map using the Co-MCSS
method.
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Figure 7: Occurrence probability maps of updated single soil series conditioned on the sample data and the legacy soil map using the Co-
MCSS method. (a) SU2; (b) SU3; (c) SU4; (d) SU6; and (e) SU7.

good quality of the legacy map. The simulated realization
maps and occurrence probability maps of single soil series by
MCSS are omitted (one may see similar simulations in [20])
but corroborated the same conclusions.

The PCC value represents the accuracy of a classifiedmap
compared to reference data. Using the reference map modi-
fied from the legacy soil map (Figure 3(c)), we calculated the
PCC values of the optimal prediction maps and the averaged
PCC values of the simulated realization maps generated by
Co-MCSS and MCSS. The results (Table 2) show that the
optimal prediction map and the simulated realization maps
by Co-MCSS have a substantive improvement in simulation
accuracy over those by MCSS. For the optimal prediction
map, the improvement is about 16% in absolute values and
about 19% in relative values, whereas for the realizationmaps,
the improvement is about 18% in absolute values and about
23% in relative values. These accuracy improvements are

attributed to the legacy soil map as auxiliary information.The
accuracies of the optimal prediction map and the realization
maps by Co-MCSS are generally above 97%. Such a high
accuracy should be related to the relatively small soil changes.
If the soil series in the study area have large changes since last
survey or if the legacy soil map is of lower quality with many
errors confirmed, the legacy map cannot contribute so much
in improving simulation accuracy. Of course, unidentified
errors in the legacy map will be brought into the updated soil
map invisibly.

Sample data directly extracted from the unchanged areas
of the legacy soil map are not real survey data for map updat-
ing. They were used for fairly estimating the transiogram
models and the cross-field transition probability parameters
and also for conditioning the simulations. This study does
not show that the conditioning of the extracted pseudosample
data for unchanged soil series (including merged unchanged
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Figure 8: The optimal prediction map (a) and the maximum occurrence probability map (b) of updated soil series conditioned only on the
sample data using the MCSS method.

Table 2: Percentages of correctly classified locations (PCCs) of
optimal prediction maps and simulated realizations (averaged from
100 realizations) generated by Co-MCSS and MCSS. PCCs (%) are
estimated relative to the reference soil map with sample data being
excluded.

Item
Accuracy

Optimal prediction
map

Realization
maps

MCSS 82.50 79.32
Co-MCSS 98.25 97.23
Absolute improvement† 15.75 17.91
Relative improvement‡ 19.09 22.58
†Absolute improvement = PCC of Co-MCSS − PCC of MCSS. ‡Relative
improvement = absolute improvement/PCC of MCSS × 100.

soil series) in simulations is necessary, as these unchanged soil
series are simply reproduced from the legacy soil map. But if
a soil type change is confirmed at a place by a survey sample
datum, pseudosample data should not be extracted nearby
unless they are surely correct because pseudosample data
confirm the unchanged status of soil series at their locations.

4. Conclusions

Updating categorical soil maps is necessary formany reasons,
such as being outdated or of low quality.We assumed that the
most recent legacy soil maps may need only limited correc-
tions due to modest natural and anthropogenic soil changes
occurring during the intervening time period. As a result,

updates to the legacy maps are necessary in only the changed
and mistakenly mapped areas. In essence, we assume that
the legacy soil maps were outdated but of good quality. Such
a situation may be applicable to the soil map update of the
United States, where quite detailed large-scale categorical soil
maps exist for each county in most states.

We introduced the random-path Co-MCSS algorithm,
which extended the random-pathMCSS algorithm, for revis-
ing categorical soil maps and applied it to a case study of
synthetic data that involved the revision of a legacy soil series
map using limited survey data. Simulated results show that
(1)Co-MCSS can greatly improve simulation accuracy of soil
types via the contribution of legacy soil maps, and (2) the
accuracy of the optimally predicted soil map by Co-MCSS is
better than that by MCSS, at least in a situation characterized
by the use of limited survey sample data. Co-MCSS demon-
strated the following merits: (1) if a soil type has no changes
confirmed in an update survey or if it is decided to be reclassi-
fied into another type that is deemed to have no change, it will
be simply reproduced in updated soil maps; (2) if a soil type
has changes in some areas (e.g., an update survey confirmed
the changes or map examination found previous wrong clas-
sification), it will be simulated with uncertainty; (3) if a soil
type has no change in an area but has changes in other distant
areas, it still can be captured with little changes in the area.
The occurrence probability maps estimated from the simu-
lated realizations reflect only the uncertainty verified by new
survey sample data and do not reflect the uncertainty con-
tained in the legacy soil map but unverified by sample data. In
general, we conclude that Co-MCSS may provide a practical
spatial statistical tool for revising categorical soil maps.
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Finally, other related data, such as land cover/land use
and discretized DEM-derived data (e.g., elevation), are often
correlated with the spatial distributions of soil series and
may also be incorporated as auxiliary information to improve
the accuracy of soil mapping, especially when legacy soil
maps are of low quality or unavailable and the survey sample
data are very sparse. In this study, because we assumed that
legacy soil maps were available and of high quality and only
limited soil changes occurred, other auxiliary variables were
not considered.
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