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Bhaskar and Lakshmikantham (2006) showed the existence of coupled coincidence points of a
mapping F from X ×X into X and a mapping g from X into X with some applications. The aim of
this paper is to extend the results of Bhaskar and Lakshmikantham and improve the recent fixed-
point theorems due to Bessem Samet (2010). Indeed, we introduce the definition of generalized g-
Meir-Keeler type contractions and prove some coupled fixed point theorems under a generalized
g-Meir-Keeler-contractive condition. Also, some applications of the main results in this paper are
given.

1. Introduction

The Banach contraction principle [1] is a classical and powerful tool in nonlinear analysis and
has been generalized by many authors (see [2–15] and others).

Recently, Bhaskar and Lakshmikantham [16] introduced the notion of a coupled fixed-
point of the given two variables mapping. More precisely, let X be a nonempty set and F :
X × X → X be a given mapping. An element (x, y) ∈ X × X is called a coupled fixed-point of
the mapping F if

F
(
x, y
)
= x, F

(
y, x
)
= y. (1.1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194579095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mathematical Problems in Engineering

They also showed the uniqueness of a coupled fixed-point of the mapping F and
applied their theorems to the problems of the existence and uniqueness of a solution for a
periodic boundary value problem.

Theorem 1.1 (see Zeidler [15]). Let (X,≤) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Let F : X × X → X be a continuous
mapping having the mixed monotone property on X. Assume that there exists k ∈ [0, 1) such that

d
(
F
(
x, y
)
, F(u, v)

) ≤ k

2
[
d(x, u) + d

(
y, v
)]

(1.2)

for all x ≥ u and y ≤ v. Moreover, if there exist x0, y0 ∈ X such that

x0 ≤ F
(
x0, y0

)
, y0 ≥ F

(
y0, x0

)
, (1.3)

then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x).

Later, in [17], Lakshmikantham and Ćirić investigated some more coupled fixed-point
theorems in partially ordered sets, and some others obtained many results on coupled fixed-
point theorems in conemetric spaces, intuitionistic fuzzy normed spaces, ordered conemetric
spaces and topological spaces (see, e.g., [18–25]).

In [9], Meir and Keeler generalized the well-known Banach fixed-point theorem [1] as
follows.

Theorem 1.2 (Meir and Keeler [9]). Let (X, d) be a complete metric space and T : X → X be a
given mapping. Suppose that, for any ε > 0, there exists δ(ε) > 0 such that

ε ≤ d
(
x, y
)
< ε + δ(ε) =⇒ d

(
T(x), T

(
y
))

< ε (1.4)

for all x, y ∈ X. Then T admits a unique fixed-point x0 ∈ X and, for all x ∈ X, the sequence {Tn(x)}
converges to x0.

Proposition 1.3 (see [17]). Let (X, d) be a partially ordered metric space and F : X × X → X
be a given mapping. If the contraction (1.2) is satisfied, then F is a generalized Meir-Keeler type
contraction.

Motivated by the results of Bhaskar and Lakshmikantham [16], Lakshmikantham
and Ćirić [17], and Samet [26], in this paper, we introduce the definition of g-Meir-Keeler-
contractive mappings and prove some coupled fixed-point theorems under a generalized
g-Meir-Keeler contractive condition.

2. Main Results

Let X be a nonempty set. We note that an element (x, y) ∈ X ×X is called a coupled coincidence
point of a mapping F : X × X → X and g : X → X if F(x, y) = g(x) and F(y, x) = g(y)
for all x, y ∈ X. Also, we say that F and g are commutative (or commuting) if g(F(x, y)) =
F(g(x), g(y)) for all x, y ∈ X.

We introduce the following two definitions.
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Definition 2.1. Let (X,≤) be a partially ordered set and F : X × X → X and g : X → X. We
say that F has the mixed strict g-monotone property if, for any x, y ∈ X,

x1, x2 ∈ X, g(x1) < g(x2) =⇒ F
(
x1, y

)
< F
(
x2, y

)
,

y1, y2 ∈ X, g
(
y1
)
< g
(
y2
)
=⇒ F

(
x, y1

)
> F
(
x, y2

)
.

(2.1)

Definition 2.2. Let (X,≤) be a partially ordered set and d be a metric on X. Let F : X ×X → X
and g : X → X be two given mappings. We say that F is a generalized g-Meir-Keeler type
contraction if, for all ε > 0, there exists δ(ε) > 0 such that, for all x, y, u, v ∈ X with g(x) ≤ g(u)
and g(y) ≥ g(v),

ε ≤ 1
2
[
d
(
g(x), g(u)

)
+ d
(
g
(
y
)
, g(v)

)]
< ε + δ(ε) =⇒ d

(
F
(
x, y
)
, F(u, v)

)
< ε. (2.2)

Lemma 2.3. Let (X,≤) be a partially ordered set and d be a metric on X. Let F : X × X → X and
g : X → X be two given mappings. If F is a generalized g-Meir-Keeler type contraction, then we
have

d
(
F
(
x, y
)
, F(u, v)

)
<

1
2
[
d
(
g(x), g(u)

)
+ d
(
g
(
y
)
, g(v)

)]
(2.3)

for all x, y, u, v with g(x) < g(u), g(y) ≥ g(v) or g(x) ≤ g(u), g(y) > g(v).

Proof. Let x, y, u, v ∈ X such that g(x) < g(u) and g(y) ≥ g(v) or g(x) ≤ g(u) and g(y) >
g(v). Then d(g(x), g(u)) + d(g(y), g(v)) > 0. Since F is a generalized g-Meir-Keeler type
contraction, for ε = (1/2)[d(g(x), g(u)) + d(g(y), g(v))], there exists δ(ε) > 0 such that, for
all x0, y0, u0, v0 ∈ X with g(x0) ≤ g(u0) and g(y0) ≥ g(v0),

ε ≤ 1
2
[
d
(
g(x0), g(u0)

)
+ d
(
g
(
y0
)
, g(v0)

)]
< ε + δ(ε) =⇒ d

(
F
(
x0, y0

)
, F(u0, v0)

)
< ε.

(2.4)

Therefore, putting x0 = x, y0 = y, u0 = u and v0 = v, we have

d
(
F
(
x, y
)
, F(u, v)

)
<

1
2
[
d
(
g(x), g(u)

)
+ d
(
g
(
y
)
, g(v)

)]
. (2.5)

This completes the proof.

From now on, we suppose that (X,≤) is a partially ordered set, and there exists ametric
d on X such that (X, d) is a complete metric space.
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Theorem 2.4. Let F : X ×X → X and g : X → X be such that F(X ×X) ⊆ g(X), g is continuous
and commutative with F. Also, suppose that

(a) F has the mixed strict g-monotone property;

(b) F is a generalized g-Meir-keeler type contraction;

(c) there exist x0, y0 ∈ X such that g(x0) < F(x0, y0) and g(y0) > F(y0, x0).

Then there exist x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y, x); that is, F and g have a
coupled coincidence in X ×X.

Proof. Let x0, y0 ∈ X be such that g(x0) < F(x0, y0) and g(y0) > F(y0, x0). Since F(X × X) ⊆
g(X), we can choose x1, y1 ∈ X such that g(x1) = F(x0, y0) and g(y1) = F(y0, x0). Again, from
F(X ×X) ⊆ g(X), we can choose x2, y2 ∈ X such that g(x2) = F(x1, y1) and g(y2) = F(y1, x1).

Continuing this process, we can construct the sequences {xn} and {yn} in X such that

g(xn+1) = F
(
xn, yn

)
, g

(
yn+1

)
= F
(
yn, xn

)
(2.6)

for all n ≥ 0.
Now, we show that

g(xn) < g(xn+1), g
(
yn

)
> g
(
yn+1

)
(2.7)

for all n ≥ 0. For n = 0, we have

g(x0) < F
(
x0, y0

)
= g(x1), g

(
y0
)
> F
(
y0, x0

)
= g
(
y1
)
. (2.8)

Since F has the mixed strict g-monotone property, then we have

g(x0) < g(x1) =⇒ F
(
x0, y1

)
< F
(
x1, y1

)
,

g
(
y0
)
> g
(
y1
)
=⇒ F

(
x0, y0

)
< F
(
x0, y1

)
.

(2.9)

It follows that F(x0, y0) < F(x1, y1), that is, g(x1) < g(x2).
Similarly, we have

g
(
y1
)
< g
(
y0
)
=⇒ F

(
y1, x0

)
< F
(
y0, x0

)
,

g(x1) > g(x0) =⇒ F
(
y1, x1

)
< F
(
y1, x0

)
.

(2.10)

Thus it follows that F(y1, x1) < F(y0, x0), that is, g(y2) < g(y1).
Again, we have

g(x1) < g(x2) =⇒ F
(
x1, y2

)
< F
(
x2, y2

)
,

g
(
y1
)
> g
(
y2
)
=⇒ F

(
x1, y1

)
< F
(
x1, y2

)
.

(2.11)

Thus it follows that F(x1, y1) < F(x2, y2), that is, g(x2) < g(x3).
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Similarly, we have

g
(
y2
)
< g
(
y1
)
=⇒ F

(
y2, x1

)
< F
(
y1, x1

)
,

g(x2) > g(x1) =⇒ F
(
y2, x2

)
< F
(
y2, x1

)
.

(2.12)

Thus it follows that F(y2, x2) < F(y1, x1), that is, g(y3) < g(y2).
Continuing this process for each n ≥ 1, we get the following:

g(x0) < g(x1) < g(x2) < · · · < g(xn) < g(xn+1) < · · · ,

g
(
y0
)
> g
(
y1
)
> g
(
y2
)
> · · · g(yn

)
> g
(
yn+1

)
> · · · .

(2.13)

Denote that

δn := d
(
g(xn), g(xn+1)

)
+ d
(
g
(
yn

)
, g
(
yn+1

))
. (2.14)

Since g(xn−1) < g(xn) and g(yn−1) > g(yn), it follows from (2.6) and Lemma 2.3 that

d
(
g(xn), g(xn+1)

)
= d
(
F
(
xn−1, yn−1

)
, F
(
xn, yn

))

<
1
2
[
d
(
g(xn−1), g(xn)

)
+ d
(
g
(
yn−1

)
, g
(
yn

))]
.

(2.15)

Since g(yn) < g(yn−1) and g(xn) > g(xn−1), it follows from (2.6) and Lemma 2.3 that

d
(
g
(
yn+1

)
, g
(
yn

))
= d
(
F
(
yn, xn

)
, F
(
yn−1, xn−1

))

<
1
2
[
d
(
g
(
yn

)
, g
(
yn−1

))
+ d
(
g(xn), g(xn−1)

)]
.

(2.16)

Thus it follows from (2.14)–(2.16) that δn < δn−1. This means that the sequence {δn/2} is
monotone decreasing. Therefore, there exists δ∗ ≥ 0 such that limn→∞ δn/2 = δ∗, that is,

lim
n→∞

1
2
[
d
(
g(xn), g(xn+1)

)
+ d
(
g
(
yn

)
, g
(
yn+1

))]
= δ∗. (2.17)

Now, we show that δ∗ = 0. Suppose that δ∗ > 0 hold. Let δ∗ = ε. Then there exists a
positive integer m such that

ε ≤ 1
2
[
d
(
g(xm), g(xm+1)

)
+ d
(
g
(
ym

)
, g
(
ym+1

))]
< ε + δ(ε). (2.18)

Then, by using (2.7) and the condition (b), we have

d
(
F
(
xm, ym

)
, F
(
xm+1, ym+1

))
< ε, (2.19)
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and so, by (2.6), we have

d
(
g(xm+1), g(xm+2)

)
< ε. (2.20)

On the other hand, by (2.15), we have

1
2
[
d
(
g(xm), g(xm+1)

)
+ d
(
g
(
ym

)
, g
(
ym+1

))]
< ε, (2.21)

which is a contradiction with (2.18). Thus we have ε = δ∗ = 0, that is,

lim
n→∞

1
2
[
d
(
g(xn), g(xn+1)

)
+ d
(
g
(
yn

)
, g
(
yn+1

))]
= 0, (2.22)

that is,

lim
n→∞

δn = 0. (2.23)

Now, we prove that {g(xn)} and {g(yn)} are Cauchy sequences in X. Suppose that at
least one of {g(xn)} or {g(yn)} is not a Cauchy sequence. Then there exist ε > 0 and two
subsequences {lk}, {mk} of integers such that mk > lk ≥ k and

d
(
g(xlk), g(xmk)

) ≥ ε

2
, d

(
g
(
ylk

)
, g
(
ymk

)) ≥ ε

2
(2.24)

for all k ≥ 1. Thus we have

rk = d
(
g(xlk), g(xmk)

)
+ d
(
g
(
ylk

)
, g
(
ymk

)) ≥ ε (2.25)

for all k ≥ 1. Letmk be the smallest number exceeding lk such that (2.25) holds. Then we have

d
(
g(xlk), g(xmk−1)

)
+ d
(
g
(
ylk

)
, g
(
ymk−1

))
< ε. (2.26)

Thus, from (2.14), (2.25), (2.26) and the triangle inequality, it follows that

ε ≤ rk

≤ d
(
g(xlk), g(xmk−1)

)
+ d
(
g(xmk−1), g(xmk)

)

+ d
(
g
(
ylk

)
, g
(
ymk−1

))
+ d
(
g
(
ymk−1

)
, g
(
ymk

))

< ε + δmk−1

(2.27)

and so

ε ≤ lim
k→∞

rk ≤ lim
k→∞

(ε + δmk−1). (2.28)
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Hence, by (2.23), we have

lim
k→∞

rk = ε+. (2.29)

It follows from (2.6), (2.14), and the triangle inequality that

rk = d
(
g(xlk), g(xmk)

)
+ d
(
g
(
ylk

)
, g
(
ymk

))

≤ d
(
g(xlk), g(xlk+1)

)
+ d
(
g(xlk+1), g(xmk+1)

)
+ d
(
g(xmk+1), g(xmk)

)

+ d
(
g
(
ylk

)
, g
(
ylk+1

))
+ d
(
g
(
ylk+1

)
, g
(
ymk+1

))
+ d
(
g
(
ymk+1

)
, g
(
ymk

))

= δlk + δmk + d
(
g(xlk+1), g(xmk+1)

)
+ d
(
g
(
ylk+1

)
, g
(
ymk+1

))

= δlk + δmk + d
(
F
(
xlk , ylk

)
, F
(
xmk , ymk

))
+ d
(
F
(
ylk , xlk

)
, F
(
ymk , xmk

))
.

(2.30)

Form (2.13) we have g(xlk) < g(xmk) and g(ylk) > g(ymk). Now, it follows from Lemma 2.3
and (2.30) that

rk < δlk + δmk + d
(
g(xlk), g(xmk)

)
+ d
(
g
(
ylk

)
, g
(
ymk

))
, (2.31)

that is,

rk < δlk + δmk + rk. (2.32)

This is a contradiction. Therefore, {g(xn)} and {g(yn)} are Cauchy sequences. Since X is
complete, there exist x, y ∈ X such that

lim
n→∞

g(xn) = x, lim
n→∞

g
(
yn

)
= y. (2.33)

Since {g(xn)} is monotone increasing and {g(yn)} is monotone decreasing, we have

g(xn) < x, g
(
yn

)
> y (2.34)

for all n ≥ 1. Thus it follows from (2.33) and the continuity of g that

lim
n→∞

g
(
g(xn)

)
= g(x), lim

n→∞
g
(
g
(
yn

))
= g
(
y
)
. (2.35)

Thus, for all m ≥ 1, there exists a positive integer n0 such that, for all n ≥ n0,

d
(
g
(
g(xn)

)
, g(x)

)
<

1
4m

, d
(
g
(
g
(
yn

))
, g
(
y
))

<
1
4m

. (2.36)
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Hence, from (2.6), the commutativity of F and g and the triangle inequality, we have

d
(
F
(
x, y
)
, g(x)

) ≤ d
(
F
(
x, y
)
, g
(
g(xn)

))
+ d
(
g
(
g(xn)

)
, g(x)

)

= d
(
F
(
x, y
)
, g
(
F
(
xn−1, yn−1

)))
+ d
(
g
(
g(xn)

)
, g(x)

)

= d
(
F
(
x, y
)
, F
(
g(xn−1), g

(
yn−1

)))
+ d
(
g
(
g(xn)

)
, g(x)

)
.

(2.37)

Thus, it follows from (2.34), (2.36), and Lemma 2.3 that

d
(
F
(
x, y
)
, g(x)

)

<
1
2
[
d
(
g
(
g(xn−1)

)
, g(x)

)
+ d
(
g
(
g
(
yn−1

))
, g
(
y
))]

+ d
(
g
(
g(xn)

)
, g(x)

)

<
1
8m

+
1
8m

+
1
4m

=
1
2m

−→ 0

(2.38)

as m → ∞. Therefore, we have F(x, y) = g(x). Similarly, we can show that F(y, x) = g(y).
This means that F and g have a coupled coincidence point in X × X. This completes the
proof.

Corollary 2.5. Let F : X ×X → X be a mapping satisfying the following conditions:

(a) F has the mixed strict monotone property;

(b) F is a generalized Meir-Keeler type contraction;

(c) there exists x0, y0 ∈ X such that x0 < F(x0, y0) and y0 > F(y0, x0).

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x).

Proof. The conclusion follows from Theorem 2.4 by putting g = I (: the identity mapping) on
X.

Now, we introduce the product space X × X with the following partial order: for all
(x, y), (u, v) ∈ X ×X,

(u, v) ≤ (x, y)⇐⇒ u < x, v ≥ y. (2.39)

Theorem 2.6. Suppose that all the hypotheses of Theorem 2.4 hold and, further, for all
(x, y), (x∗, y∗) ∈ X × X, there exists (u, v) ∈ X × X such that (F(u, v), F(v, u)) is comparable
with (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)). Then F and g have a unique coupled common
fixed-point, that is, there exists a unique (x, y) ∈ X ×X such that

x = g(x) = F
(
x, y
)
, y = g

(
y
)
= F
(
y, x
)
. (2.40)
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Proof. By Theorem 2.4, the set of coupled coincidences of the mapping F and g is nonempty.
First, we show that, if (x, y) and (x∗, y∗) are coupled coincidence points of F and g,

that is, if

g(x) = F
(
x, y
)
, g

(
y
)
= F
(
y, x
)
, g(x∗) = F

(
x∗, y∗), g

(
y∗) = F

(
y∗, x∗),

(2.41)

then we have

g(x) = g(x∗), g
(
y
)
= g
(
y∗). (2.42)

Put u0 = u, v0 = v and choose u1, v1 ∈ X such that g(u1) = F(u0, v0) and g(v1) = F(v0, u0).
Then, similarly as in the proof of Theorem 2.4, we can inductively define the sequences
{g(un)} and {g(vn)} such that

g(un+1) = F(un, vn), g(vn+1) = F(vn, un) (2.43)

for all n ≥ 0. Also, if we set x0 = x, y0 = y, x∗
0 = x∗, and y∗

0 = y∗, then we can define the
sequences {g(xn)}, {g(yn)}, {g(x∗

n)}, and {g(y∗
n)} as follows:

g(xn+1) = F
(
xn, yn

)
, g

(
yn+1

)
= F
(
yn, xn

)
,

g
(
x∗
n+1

)
= F
(
x∗
n, y

∗
n

)
, g

(
y∗
n+1

)
= F
(
y∗
n, x

∗
n

) (2.44)

for all n ≥ 0. Since

(
F
(
x, y
)
, F
(
y, x
))

=
(
g(x1), g

(
y1
))

=
(
g(x), g

(
y
))
,

(F(u, v), F(v, u)) =
(
g(u1), g(v1)

) (2.45)

are comparable each other, then g(x) < g(u1) and g(y) ≥ g(v1). It is easy to show that
(g(x), g(y)), and (g(un), g(vn)) are comparable each other, that is, g(x) < g(un) and g(y) ≥
g(vn) for all n ≥ 1. Thus it follows from Lemma 2.3 that

d
(
g(x), g(un+1)

)
+ d
(
g
(
y
)
, g(vn+1)

)

= d
(
F
(
x, y
)
, F(un, vn)

)
+ d
(
F
(
y, x
)
, F(vn, un)

)

<
1
2
[
d
(
g(x), g(un)

)
+ d
(
g
(
y
)
, g(vn)

)]
+
1
2
[
d
(
g
(
y
)
, g(vn)

)
+ d
(
g(x), g(un)

)]

= d
(
g(x), g(un)

)
+ d
(
g
(
y
)
, g(vn)

)

(2.46)

and so

1
2
[
d
(
g(x), g(un+1)

)
+ d
(
g
(
y
)
, g(vn+1)

)]
<

1
2n
[
d
(
g(x), g(u1)

)
+ d
(
g
(
y
)
, g(v1)

)] −→ 0

(2.47)
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as n → ∞. Therefore, we have

lim
n→∞

d
(
g(x), g(un+1)

)
= 0, lim

n→∞
d
(
g
(
y
)
, g(vn+1)

)
= 0. (2.48)

Similarly, we can prove that

lim
n→∞

d
(
g(x∗), g(un+1)

)
= 0, lim

n→∞
d
(
g
(
y∗), g(vn+1)

)
= 0. (2.49)

Thus, by the triangle inequality, (2.48) and (2.49), we have

d
(
g(x), g(x∗)

) ≤ d
(
g(x), g(un+1)

)
+ d
(
g(x∗), g(un+1)

) −→ 0,

d
(
g
(
y
)
, g
(
y∗)) ≤ d

(
g
(
y
)
, g(vn+1)

)
+ d
(
g
(
y∗), g(vn+1)

) −→ 0
(2.50)

as n → ∞, which imply that g(x) = g(x∗) and g(y) = g(y∗).
Now, we prove that g(x) = x and g(y) = y. Denote that g(x) = z and g(x) = w. Since

g(x) = F(x, y) and g(y) = F(y, x), by the commutativity of F and g, we have

g(z) = g
(
g(x)

)
= g
(
F
(
x, y
))

= F
(
g(x), g

(
y
))

= F(z,w), (2.51)

g(w) = g
(
g
(
y
))

= g
(
F
(
y, x
))

= F
(
g
(
y
)
, g(x)

)
= F(w, z). (2.52)

Thus, (z,w) is a coupled coincidence point of F and g.
Putting x∗ = z and y∗ = w in (2.52), it follows from (2.42) that

z = g(x) = g(x∗) = g(z), w = g
(
y
)
= g
(
y∗) = g(w) (2.53)

and so, from (2.51) and (2.52),

z = g(z) = F(z,w), w = g(w) = F(w, z). (2.54)

Therefore, (z,w) is a coupled common fixed-point of F and g.
Finally, to prove the uniqueness of the coupled common fixed-point of F and g, assume

that (p, q) is another coupled common fixed-point of F and g. Then, by (2.42), we have p =
g(p) = g(z) = z and q = g(q) = g(w) = w. This completes the proof.

Corollary 2.7. Suppose that all the hypotheses of Corollary 2.5 hold and, further, for all (x, y) and
(x∗, y∗) ∈ X ×X, there exists (u, v) ∈ X ×X that is comparable with (x, y) and (x∗, y∗). Then there
exists a unique x ∈ X such that x = F(x, x).
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3. Applications

Now, we give some applications of the main results in Section 2.

Theorem 3.1. Let F : X × X → X and g : X → X be two given mappings. Assume that there
exists a function ϕ : [0,+∞) → [0,+∞) satisfying the following conditions:

(a) ϕ(0) = 0 and ϕ(t) > 0 for any t > 0;

(b) ϕ is nondecreasing and right continuous;

(c) for any ε > 0, there exists δ(ε) > 0 such that, for all x, y, u, v ∈ X with g(x) ≤ g(u) and
g(y) ≥ g(v),

ε ≤ ϕ

(
1
2
[
d
(
g(x), g(u)

)
+ d
(
g
(
y
)
, g(v)

)]
)

< ε + δ(ε) =⇒ ϕ
[
d
(
F
(
x, y
)
, F(u, v)

)]
< ε.

(3.1)

Then F is a generalized g-Meir-Keeler type contraction.

Proof. For any ε > 0, it follows from (a) that ϕ(ε) > 0 and so there exists α > 0 such that, for
all u, v, u∗, v� ∈ X with g(u) ≤ g(u∗) and g(v) ≥ g(v∗),

ϕ(ε) ≤ ϕ

(
1
2
[
d
(
g(u), g(u∗)

)
+ d
(
g(v), g(v∗)

)]
)

< ϕ(ε) + α

=⇒ ϕ[d(F(u, v), F(u∗, v∗))] < ϕ(ε).

(3.2)

From the right continuity of ϕ, there exists δ > 0 such that ϕ(ε + δ) < ϕ(ε) + α. For any
x, y, u, v ∈ X such that g(x) ≤ g(u), g(y) ≥ g(v) and

ε ≤ 1
2
[
d
(
g(x), g(u)

)
+ d
(
g
(
y
)
, g(v)

)]
< ε + δ, (3.3)

since ϕ is nondecreasing function, we get the following:

ϕ(ε) ≤ ϕ

(
1
2
[
d
(
g(x), g(u)

)
+ d
(
g
(
y
)
, g(v)

)]
)

< ϕ(ε + α) < ϕ(ε) + α. (3.4)

By (3.2), we have ϕ[d(F(x, y), F(u, v))] < ϕ(ε) and so d(F(x, y), F(u, v)) < ε. Therefore, it
follows that F is a generalized g-Meir-Keeler type contraction. This completes the proof.

Corollary 3.2 (see [26, Theorem 3.1]). Let F : X × X → X be a given mapping. Assume that
there exists a function ϕ : [0,+∞) → [0,+∞) satisfying the following conditions:

(a) ϕ(0) = 0 and ϕ(t) > 0 for any t > 0;

(b) ϕ is nondecreasing and right continuous;
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(c) for any ε > 0, there exists δ(ε) > 0 such that x ≤ u, y ≥ v and

ε ≤ ϕ

(
1
2
[
d(x, u) + d

(
y, v
)]
)

< ε + δ(ε) =⇒ ϕ
[
d
(
F
(
x, y
)
, F(u, v)

)]
< ε. (3.5)

Then F is a generalized Meir-Keeler type contraction.

The following result is an immediate consequence of Theorems 2.4 and 3.1.

Corollary 3.3. Let F : X × X → X and g : X → X be two given mappings such that F(X × X) ⊆
g(X), g is continuous and commutative with F. Also, suppose that

(a) F has the mixed strict g-monotone property;

(b) for any ε > 0, there exists δ(ε) > 0 such that, for all x, y, u, v ∈ X with g(x) ≤ g(u) and
g(y) ≥ g(v),

ε ≤
∫ (1/2)[d(g(x),g(u))+d(g(y),g(v))]

0
ϕ(t)dt < ε + δ(ε) =⇒

∫d(F(x,y),F(u,v))

0
ϕ(t)dt < ε, (3.6)

where ϕ is a locally integrable function from [0,+∞) into itself satisfying the following
condition:

∫s

0
ϕ(t)dt > 0 (3.7)

for all s > 0;

(c) there exist x0, y0 ∈ X such that g(x0) < F(x0, y0) and g(y0) > F(y0, x0).

Then there exists (x, y) ∈ X × X such that g(x) = F(x, y) and g(y) = F(y, x). Moreover, if g(x0)
and g(y0) are comparable to each other, then F and g have a unique coupled common fixed-point in
X ×X.

Corollary 3.4. Let F : X ×X → X be a mapping satisfying the following conditions:

(a) F has the mixed strict monotone property;

(b) for any ε > 0, there exists δ(ε) > 0 such that x ≤ u, y ≥ v and

ε ≤
∫ (1/2)[d(x,u)+d(y,v)]

0
ϕ(t)dt < ε + δ(ε) =⇒

∫ [d(F(x,y),F(u,v))]

0
ϕ(t)dt < ε, (3.8)
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where ϕ is a locally integrable function from [0,+∞) into itself satisfying

∫s

0
ϕ(t)dt > 0 (3.9)

for all s > 0;

(c) there exist x0, y0 ∈ X such that x0 < F(x0, y0) and y0 > F(y0, x0).

Then there exists (x, y) ∈ X × X such that x = F(x, y) and y = F(y, x). Moreover, if x0 and y0 are
comparable to each other, then F has a unique coupled common fixed-point in X ×X.

Corollary 3.5. Let F : X × X → X and g : X → X be two given mappings such that F(X × X) ⊆
g(X), g is continuous and commutes with F. Also, suppose that

(a) F has the mixed strict g-monotone property;

(b) for any x, y, u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v),

∫ [d(F(x,y),F(u,v))]

0
ϕ(t)dt ≤ k

∫ (1/2)[d(g(x),g(u))+d(g(y),g(v))]

0
ϕ(t)dt, (3.10)

where k ∈ (0, 1) and ϕ is a locally integrable function from [0,+∞) into itself satisfying

∫s

0
ϕ(t)dt > 0 (3.11)

for all s > 0;

(c) there exist x0, y0 ∈ X such that g(x0) < F(x0, y0) and g(y0) > F(y0, x0).

Then there exists (x, y) ∈ X × X such that g(x) = F(x, y) and g(y) = F(y, x). Moreover, if g(x0)
and g(y0) are comparable to each other, then F and g have a unique coupled common fixed-point in
X ×X.

Proof. For any ε > 0, if we take δ(ε) = (1/k − 1)ε and apply Corollary 3.3, then we can get the
conclusion.

Corollary 3.6. Let F : X ×X → X be a mapping satisfying the following conditions:

(a) F has the mixed strict monotone property,

(b) for any x, y, u, v ∈ X with x ≤ u and y ≥ v,

∫d(F(x,y),F(u,v))

0
ϕ(t)dt ≤ k

∫ (1/2)[d(x,u)+d(y,v)]

0
ϕ(t)dt, (3.12)
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where k ∈ (0, 1) and ϕ is a locally integrable function from [0,+∞) into itself satisfying

∫s

0
ϕ(t)dt > 0 (3.13)

for all s > 0;

(c) there exist x0, y0 ∈ X such that x0 < F(x0, y0) and y0 > F(y0, x0).

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x). Moreover, if x0 and y0 are
comparable to each other, then F has a unique coupled common fixed-point in X ×X.

Finally, by using the above results, we show the existence of solutions for the following
integral equation:

(
x(t), y(t)

)
=

(∫T

0
G(t, s)

[(
f(s, x(s)) + λx(s)

) − (f(s, y(s)) + λy(s)
)]
ds,

∫T

0
G(t, s)

[(
f
(
s, y(s)

)
+ λy(s)

) − (f(s, x(s)) + λx(s)
)]
ds

)

,

(3.14)

where x, y ∈ C(I,R) (: the set of continuous functions from I into R), T > 0, f : I × R → R is
a continuous function and

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eλ(T+s−t)

eλT − 1
, if 0 ≤ s < t ≤ T ;

eλ(s−t)

eλT − 1
, if 0 ≤ t < s ≤ T.

(3.15)

Definition 3.7. A lower solution for the integral equation (3.14) is an element (α, β) ∈ C1(I,R)×
C1(I,R) such that

α′(t) + λβ(t) ≤ f(t, α(t)) − f
(
t, β(t)

)
, α(0) < α(T),

β′(t) + λα(t) ≥ f
(
t, β(t)

) − f(t, α(t)), β(0) ≥ β(T),
(3.16)

where C1(I,R) denotes the set of differentiable functions from I into R.

Now, we prove the existence of solutions for the integral equation (3.14) by using the
existence of a lower solution for the integral equation (3.14).

Theorem 3.8. Let A be the class of the functions ϕ : [0,∞) → [0,∞) satisfying the following
conditions:

(a) ϕ is increasing;

(b) for any x ≥ 0, there exists k ∈ [0, 1) such that ϕ(x) < (k/2)x.
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In the integral equation (3.14), suppose that there exists λ > 0 such that, for all x, y ∈ R with y > x,

0 < f
(
t, y
)
+ λy − [f(t, x) + λx

] ≤ λϕ
(
y − x

)
, (3.17)

where ϕ ∈ A. If a lower solution of the integral equation (3.14) exists, then a solution of the integral
equation (3.14) exists.

Proof. Define a mapping F : C(I,R) × C(I,R) → C(I,R) by

F
(
x(t), y(t)

)
=
∫T

0
G(t, s)

[(
f(s, x(s)) + λx(s)

) − (f(s, y(s)) + λy(s)
)]
ds. (3.18)

Note that, if (x(t), y(t)) ∈ C(I,R) × C(I,R) is a coupled fixed-point of F, then
(x(t), y(t)) is a solution of the integral equation (3.14).

Now, we check the hypotheses in Corollary 2.5 as follows:

(1) X ×X = C(I,R) × C(I,R) is a partially ordered set if we define the order relation in
X ×X as follows:

(u(t), v(t)) ≤ (x(t), y(t)) iff u(t) < x(t), v(t) ≥ y(t) (3.19)

for all (x(t), y(t)), (u(t), v(t)) ∈ X ×X and t ∈ I.

(2) (X, d) is a complete metric space if we define a metric d as follows:

d
(
x(t), y(t)

)
= sup

t∈I

{∣∣x(t) − y(t)
∣∣ : x(t), y(t) ∈ X

}
. (3.20)

(3) The mapping F has the mixed strict monotone property. In fact, by hypothesis, if
x2 > x1, then we have

f(t, x2) + λx2 > f(t, x1) + λx1, (3.21)

which implies that, for any t ∈ I,

∫T

0

[
f(s, x2(s)) + λx2(s) − f

(
s, y(s)

) − λy(s)
]
G(t, s)ds

>

∫T

0

[
f(s, x1(s)) + λx1(s) − f

(
s, y(s)

) − λy(s)
]
G(t, s)ds,

(3.22)

that is,

F
(
x2(t), y(t)

)
> F
(
x1(t), y(t)

)
. (3.23)
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Similarly, if y1 < y2, then we have

f
(
t, y2
)
+ λy2 > f

(
t, y1
)
+ λy1, (3.24)

which implies that, for any t ∈ I,

∫T

0

[
f(s, x(s)) + λx(s) − f

(
s, y2(s)

) − λy2(s)
]
G(t, s)ds

<

∫T

0

[
f(s, x(s)) + λx(s) − f

(
s, y1(s)

) − λy1(s)
]
G(t, s)ds,

(3.25)

that is,

F
(
x(t), y2(t)

)
< F
(
x(t), y1(t)

)
. (3.26)

Now, we show that F satisfies (1.2). In fact, let (x, y) ≤ (u, v) and t ∈ I. Then we have

d
(
F
(
x(t), y(t)

)
, F(u(t), v(t))

)

= sup
{∣∣F
(
x(t), y(t)

) − F(u(t), v(t))
∣∣ : t ∈ I

}

= sup
t∈I

{∣∣∣∣∣

∫T

0
G(t, s)

[
f(s, x(s)) + λx(s) − f

(
s, y(s)

) − λy(s)
]
ds

−
∫T

0
G(t, s)

[
f(s, u(s)) + λu(s) − f(s, v(s)) − λv(s)

]
ds

∣∣∣∣∣

}

≤ sup
t∈I

∫T

0
G(t, s)

∣∣f(s, x(s)) + λx(s) − f(s, u(s)) − λu(s)

+f(s, v(s)) + λv(s) − f
(
s, y(s)

) − λy(s)
∣∣ds.

(3.27)

Since the function ϕ(x) is increasing and (x, y) ≤ (u, v), we have

ϕ(x(s) − u(s)) ≤ ϕ(d(x(s), u(s))), ϕ
(
v(s) − y(s)

) ≤ ϕ
(
d
(
v(s), y(s)

))
, (3.28)
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we obtain the following:

d
(
F
(
x(t), y(t)

)
, F(u(t), v(t))

)

≤ sup
t∈I

∫T

0
G(t, s)

∣
∣λϕ(x(s) − u(s)) + λϕ

(
v(s) − y(s)

)∣∣ds

≤ λsup
t∈I

∫T

0
G(t, s)

∣
∣ϕ(d(x(s), u(s))) + ϕ

(
d
(
v(s), y(s)

))∣∣ds

= λ
(
ϕ(d(x(s), u(s))) + ϕ

(
d
(
v(s), y(s)

))) · sup
t∈I

∫T

0
G(t, s)ds

= λ
(
ϕ(d(x(s), u(s))) + ϕ

(
d
(
v(s), y(s)

))) · sup
t∈I

1
eλT − 1

([
1
λ
eλ(T+s−t)

]t

0
+
[
1
λ
eλ(s−t)

]T

t

)

= λ
(
ϕ(d(x(s), u(s))) + ϕ

(
d
(
v(s), y(s)

))) · 1
λeλT − 1

(
eλT − 1

)

= ϕ(d(x(s), u(s))) + ϕ
(
d
(
v(s), y(s)

))

<
k

2
[
d(x(s), u(s)) + d

(
v(s), y(s)

)]

≤ k

2
sup{|x(t) − u(t)| : t ∈ I} + k

2
sup
{∣∣v(t) − y(t)

∣∣ : t ∈ I
}

=
k

2
[
d(x(t), u(t)) + d

(
y(t), v(t)

)]
.

(3.29)

Then, by Proposition 1.3, F is a generalized Meir-Keeler type contraction.
Finally, let (α(t), β(t)) ∈ C1(I,R) ×C1(I,R) be a lower solution for the integral equation

(3.14). Then we show that

α < F
(
α, β
)
, β ≥ F

(
β, α
)
. (3.30)

Indeed, we have α′(t) + λβ(t) ≤ f(t, α(t)) − f(t, β(t)) for any t ∈ I and so

α′(t) + λα(t) ≤ f(t, α(t)) − f
(
t, β(t)

)
+ λα(t) − λβ(t) (3.31)

for any t ∈ I. Multiplying by eλt in (3.31), we get the following:

(
α(t)eλt

)′ ≤ [(f(t, α(t)) + λα(t)
) − (f(t, β(t)) + λβ(t)

)]
eλt (3.32)

for any t ∈ I, which implies that

α(t)eλt ≤ α(0) +
∫ t

0

[(
f(s, α(s)) + λα(s)

) − f
(
s, β(s)

) − λβ(s)
]
eλsds (3.33)
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for any t ∈ I. This implies that

α(0)eλt < α(T)eλT ≤ α(0) +
∫T

0

[
f(s, α(s)) + λα(s) − f

(
s, β(s)

) − λβ(s)
]
eλsds (3.34)

and so

α(0) <
∫T

0

eλs

eλT − 1
[
f(s, α(s)) + λα(s) − f

(
s, β(s)

) − λβ(s)
]
ds. (3.35)

Thus it follows from (3.35) and (3.33) that

α(t)eλt <
∫T

t

eλs

eλT − 1
[
f(s, α(s)) + λα(s) − f

(
s, β(s)

) − λβ(s)
]
ds

+
∫ t

0

eλ(T+s)

eλT − 1
[
f(s, α(s)) + λα(s) − f

(
s, β(s)

) − λβ(s)
]
ds,

(3.36)

and so

α(t) <
∫ t

0

eλ(T+s−t)

eλT − 1
[
f(s, α(s)) + λα(s) − f

(
s, β(s)

) − λβ(s)
]
ds

+
∫T

t

eλ(s−t)

eλT − 1
[
f(s, α(s)) + λα(s) − f

(
s, β(s)

) − λβ(s)
]
ds.

(3.37)

Hence we have

α(t) <
∫T

0
G(t, s)

[
f(s, α(s)) + λα(s) − f

(
s, β(s)

) − λβ(s)
]
ds = F

(
α(t), β(t)

)
(3.38)

for any t ∈ I.
Similarly, we have β(t) ≥ F(β(t), α(t)). Therefore, by Corollary 2.5, F has a coupled

fixed-point.

Example 3.9. In the integral equation (3.14), we put λ = 1.5, f(u, v) = u−v for all (u, v) ∈ I ×R

and T = 0.5. Then f is a continuous function, and we have

(
x(t), y(t)

)
=

(∫0.5

0
G(t, s)

[
0.5x(s) − 0.5y(s)

]
ds,

∫0.5

0
G(t, s)

[
0.5y(s) − 0.5x(s)

]
ds

)

,

(3.39)
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where x, y ∈ C(I,R), and

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1.5(0.5+s−t)

e0.75 − 1
, if 0 ≤ s < t ≤ 0.5,

e1.5(s−t)

e0.75 − 1
, if 0 ≤ t < s ≤ 0.5.

(3.40)

Also, (α(t), β(t)) = (−2e−0.5t, 3e−0.5t) is a lower solution of (3.39). Moreover, if we define ϕ(x) =
x/3 for all x ∈ [0,∞), then ϕ is increasing and, for any x > 0, there exists k = 1/1.1 ∈ [0, 1)
such that ϕ(x) = x/3 < (k/2)x = x/2.2. For all x, y ∈ R with y > x, we have

0 < f
(
t, y
)
+ λy − [f(t, x) + λx

]
= 0.5

(
y − x

) ≤ λϕ
(
y − x

)
= 1.5

y − x

3
= 0.5

(
y − x

)
.

(3.41)

Therefore, all the conditions of Theorem 3.8 hold, and a solution of (3.39) exists.
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