Scientific Programming 22 (2014) 309-329 309
DOI 10.3233/SPR-140396
I0S Press

Collective mind: Towards practical and
collaborative auto-tuning

Grigori Fursin **, Renato Miceli b Anton Lokhmotov ¢, Michael Gerndt 9, Marc Baboulin?,
Allen D. Malony ¢, Zbigniew Chamski !, Diego Novillo ¢ and Davide Del Vento"

& Inria and University of Paris-Sud, Orsay, France

b University of Rennes 1, Rennes, France and ICHEC, Dublin, Ireland
¢ ARM, Cambridge, UK

4 Technical University of Munich, Munich, Germany

¢ University of Oregon, Eugene, OR, USA

f Infrasoft IT Solutions, Plock, Poland

& Google Inc., Toronto, Canada

N National Center for Atmospheric Research, Boulder, CO, USA

Abstract. Empirical auto-tuning and machine learning techniques have been showing high potential to improve execution time,
power consumption, code size, reliability and other important metrics of various applications for more than two decades. How-
ever, they are still far from widespread production use due to lack of native support for auto-tuning in an ever changing and
complex software and hardware stack, large and multi-dimensional optimization spaces, excessively long exploration times, and
lack of unified mechanisms for preserving and sharing of optimization knowledge and research material.

‘We present a possible collaborative approach to solve above problems using Collective Mind knowledge management system.
In contrast with previous cTuning framework, this modular infrastructure allows to preserve and share through the Internet the
whole auto-tuning setups with all related artifacts and their software and hardware dependencies besides just performance data.
It also allows to gradually structure, systematize and describe all available research material including tools, benchmarks, data
sets, search strategies and machine learning models. Researchers can take advantage of shared components and data with exten-
sible meta-description to quickly and collaboratively validate and improve existing auto-tuning and benchmarking techniques or
prototype new ones. The community can now gradually learn and improve complex behavior of all existing computer systems
while exposing behavior anomalies or model mispredictions to an interdisciplinary community in a reproducible way for further
analysis. We present several practical, collaborative and model-driven auto-tuning scenarios. We also decided to release all ma-
terial at c-mind.org/repo to set up an example for a collaborative and reproducible research as well as our new publication model
in computer engineering where experimental results are continuously shared and validated by the community.

Keywords: High performance computing, systematic auto-tuning, systematic benchmarking, big data driven optimization,
modeling of computer behavior, performance prediction, collaborative knowledge management, public repository of knowledge,
NoSQL repository, code and data sharing, specification sharing, collaborative experimentation, machine learning, data mining,
multi-objective optimization, model driven optimization, agile development, plugin-based tuning, performance regression
buildbot, open access publication model, reproducible research

1. Introduction and related work consuming, costly and error prone due to an enormous
number of available design and optimization choices
Computer systems’ users are always eager to have and complex interactions between all software and

faster, smaller, cheaper, more reliable and power effi-
cient computer systems either to improve their every
day tasks and quality of life or to continue innovation
in science and technology. However, designing and op-
timizing such systems is becoming excessively time

hardware components. Furthermore, multiple charac-
teristics have to be carefully balanced including exe-
cution time, code size, compilation time, power con-
sumption and reliability using a growing number of
incompatible tools and techniques with many ad-hoc,
*Corresponding author. E-mail: grigori.fursin @inria.fr. intuition based heuristics.

1058-9244/14/$27.50 © 2014 - IOS Press and the authors. All rights reserved

310 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

220
200
180

160
140
120
100
80
60
40

Number of flags or parameters

20

—4-Optimization flags —=Parameters

V46 VAT

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Fig. 1. Rising number of optimization dimensions in GCC in the past 12 years (Boolean or parametric flags). Obtained by automatically parsing
GCC manual pages, therefore small variation is possible (script was kindly shared by Yuriy Kashnikov). (Colors are visible in the online version

of the article; http://dx.doi.org/10.3233/SPR-140396.)

At the same time, development methodology for
computer systems has hardly changed in the past
decades: hardware is first designed and then the com-
piler is tuned for the new architecture using some
ad-hoc benchmarks and heuristics. As a result, peak
performance of the new systems is often achieved
only for a few previously optimized and not neces-
sarily representative benchmarks while leaving most
of the real user applications severely underperform-
ing. Therefore, users are often forced to resort to a te-
dious and often non-systematic optimization of their
programs for each new architecture. This, in turn, leads
to an enormous waste of time, expensive computing
resources and energy, dramatically increases develop-
ment costs and time-to-market for new products and
slows down innovation [4,22,65,74].

Various off-line and on-line auto-tuning techniques
together with run-time adaptation and split compilation
have been introduced during the past two decades to
address some of the above problems and help users au-
tomatically improve performance, power consumption
and other characteristics of their applications. These
approaches treat rapidly evolving computer system as a
black box and explore program and architecture design
and optimization spaces empirically [1,8,21,27,38,44,
48,49,51,53,59,64,70,73,77,78].

Since empirical auto-tuning was conceptually sim-
ple and did not require deep user knowledge about pro-
grams and computer systems, it quickly gained popu-
larity. At the same time, users immediately faced a fun-
damental problem: a continuously growing number of
available design and optimization choices makes it im-

possible to exhaustively explore the whole optimiza-
tion space. For example, Fig. 1 shows a continuously
rising number of available boolean and parametric op-
timizations available in a popular, production, open-
source compiler GCC used in practically all Linux and
Android based systems. Furthermore, there is no more
single combination of flags such as -O3 or -Ofast that
could deliver the best execution time across all user
programs. Figure 2 demonstrates 79 distinct combina-
tions of optimizations for GCC 4.7.2 that improve ex-
ecution time across 285 benchmarks with just one data
set over -O3 on Intel Xeon E5520 based platform af-
ter 5000 explored solutions using traditional iterative
compilation [37] (random selection of compiler opti-
mization flags and parameters).

Optimization space explodes even further when
considering heterogeneous architectures, multiple data
sets and fine grain program transformations and pa-
rameters including tiling, unrolling, inlining, padding,
prefetching, number of threads, processor frequency
and MPI communication [10,32,37,38,55,60]. For ex-
ample, Fig. 3 shows execution time of a matrix—matrix
multiplication kernel for square matrices on CPU (Intel
E6600) and GPU (NVIDIA 8600 GTS), depending on
their size. It motivates the need for adaptive scheduling
since it may be beneficial either to run kernel on CPU
or GPU depending on data set parameters (to amor-
tize the cost of data transfers to GPU). However, as we
show in [6,46,75], the final decision tree is architecture
and kernel dependent and requires both off-line kernel
cloning and some on-line, automatic and ad-hoc mod-
eling of application behavior.

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 311

4

-

8 M

v \

4 LY

SN

5 \

32 >

g_ ‘"’nu:., .

& A T

1 T T T T T T T
0 10 20 30 40 50 60 70
Distinct combination of compiler optimizations

1%)
ua E 15
= 10
S E
'g ﬁ 5 AVA A A
S € AWV N A WANANALANA_-AN U
> g 0 T T T T T T T

0 10 20 30 40 50 60 70

Fig. 2. Number of distinct combinations of compiler optimizations for GCC 4.7.2 with a maximum achievable execution time speedup over
-O3 optimization level on Intel Xeon E5520 platform across 285 shared Collective Mind benchmarks after 5000 random iterations (top graph)
together with a number of benchmarks where these combinations achieve more than 10% speedup (bottom graph). (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140396.)

180

o | —+-CPU cPu/ GPU»
- GPU J P

-4 Adaptive scheduler / ¥

=
B
o

BB
o N
o o©

D
o

Execution time (ms)
[+]
o

N b
o o©

o

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Data set feature N (size)

Fig. 3. Execution time of a matrix—matrix multiply kernel when executed on CPU (Intel E6600) and on GPU (NVIDIA 8600 GTS) depending on
size IV of square matrix as a motivation for online tuning and adaptive scheduling on heterogeneous architectures [46]. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140396.)

Machine learning techniques (predictive modeling optimization heuristics by crowdsourcing auto-tuning
and classification) have been gradually introduced dur- (processing a large amount of performance statistics
ing the past decade as an attempt to address the collected from many users to classify application and
above problems [2,14,23,46,57,62,67,71,72,81]. These build predictive models) [31,37,61]. However, this
techniques can help speed up program and architec- project exposed even more fundamental challenges in-
ture analysis, optimization and co-design by narrow- cluding:
ing down regions in large optimization spaces with the e Lack of common, large and diverse benchmarks
most likely highest speedup. They usually use prior and data sets needed to build statistically mean-
training similar to Fig. 2 in case of compiler tuning and ingful predictive models;
predict optimizations for previously unseen programs e Lack of common experimental methodology and
based on some code, data set and system features. unified ways to preserve, systematize and share

During the MILEPOST project in 2006-2009, we our growing optimization knowledge and research
made the first practical attempt to move auto-tuning material including benchmarks, data sets, tools,
and machine learning to production compilers in- tuning plugins, predictive models and optimiza-
cluding GCC by combining a plugin-based compiler tion results;
framework [45] and a public repository of experi- e Problem with continuously changing, “black box”
mental results (cTuning.org). This approach allowed and complex software and hardware stack with

to substitute and automatically learn default compiler many hardwired and hidden optimization choices

312 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

and heuristics not well suited for auto-tuning and
machine learning;

o Difficulty to reproduce performance results from
the cTuning.org database submitted by users due
to a lack of full software and hardware dependen-
cies;

o Difficulty to validate related auto-tuning and ma-
chine learning techniques from existing publica-
tions due to a lack of culture of sharing research
artifacts with full experiment specifications along
with publications in computer engineering.

As a result, we spent a considerable amount of our
“research” time on re-engineering existing tools or de-
veloping new ones to support auto-tuning and learn-
ing. At the same time, we were trying to somehow
assemble large and diverse experimental sets to make
our research and experimentation on machine learn-
ing and data mining statistically meaningful. We spent
even more time when struggling to reproduce existing
machine learning-based optimization techniques from
numerous publications.

Worse, when we were ready to deliver auto-tuning
solutions at the end of such tedious developments, ex-
perimentation and validation, we were already receiv-
ing new versions of compilers, third-party tools, li-
braries, operating systems and architectures. As a con-
sequence, our developments and results were already
potentially outdated even before being released while
optimization problems considerably evolved.

We believe that these are major reasons why so
many promising research techniques, tools and data
sets for auto-tuning and machine learning in computer
engineering have a life span of a PhD project, grant
funding or publication preparation, and often vanish
shortly after. Furthermore, we witness diminishing at-
tractiveness of computer engineering often seen by
students as “hacking” rather than systematic science.
Some of the recent long-term research visions ac-
knowledge these problems for computer engineering
and many research groups search for “holy grail” auto-
tuning solutions but no widely adopted solution has
been found yet [22,74].

In this paper, we describe the first, to our knowl-
edge, alternative, orthogonal, community-based and
big-data driven approach to address above problems. It
may help make auto-tuning a mainstream technology
based on our practical experience in the MILEPOST,
cTuning and Auto-tune projects, industrial usage of
our frameworks and community feedback. Our main
contribution is a collaborative knowledge management
framework for computer engineering called Collective

Mind (or cM for short) that brings interdisciplinary re-
searchers and developers together to organize, system-
atize, share and validate already available or new tools,
techniques and data in a unified format with gradu-
ally exposed actions and meta-information required for
auto-tuning and learning (optimization choices, fea-
tures and tuning characteristics).

Our approach should allow to collaboratively proto-
type, evaluate and improve various auto-tuning tech-
niques while reusing all shared artifacts just like
LEGO™ pieces and applying machine learning and
data mining techniques to find meaningful relations
between all shared material. It can also help crowd-
source long tuning and learning process including clas-
sification and model building among many participants
while using Collective Mind as a performance tracking
buildbot. At the same time, any unexpected program
behavior or model mispredictions can now be exposed
to the community through unified cM web-services for
collaborative analysis, explanation and solving. This,
in turn, enables reproducibility of experimental results
naturally and as a side effect rather than being en-
forced — interdisciplinary community needs to gradu-
ally find and add missing software and hardware de-
pendencies to the Collective Mind (fixing processor
frequency, pinning code to specific cores to avoid con-
tentions) or improve analysis and predictive models
(statistical normality tests for multiple experiments)
whenever abnormal behavior is detected.

We hope that our approach will eventually help
the community collaboratively evaluate and derive the
most effective auto-tuning and learning strategies. It
should also eventually help the community collabora-
tively learn complex behavior of all existing computer
systems using top-down methodology originating from
physics. At the same time, continuously collected and
systematized knowledge (“big data”) should help us
make more scientifically motivated advice about how
to improve design and optimization of the future com-
puter systems (particularly on our way towards ex-
treme scale computing). Finally, we believe that it
can naturally make computer engineering a systematic
science while supporting Vinton G. Cerf’s recent vi-
sion [15].

This paper is organized as follows: the current sec-
tion provides motivation for our approach and related
work. It is followed by Section 2 presenting possi-
ble solution to collaboratively systematize and unify
our knowledge about program optimization and auto-
tuning using public Collective Mind framework and
repository. Section 3 presents mathematical formaliza-

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 313

tion of auto-tuning techniques. Section 4 demonstrates
how our collaborative approach can be combined with
several existing plugin-based auto-tuning infrastruc-
tures including MILEPOST GCC [31], OpenME [30]
and Periscope Tuning Framework (PTF) [60] to start
systematizing and making practical various auto-
tuning scenarios from our industrial partners including
continuous benchmarking and comparison of compil-
ers, validation of new hardware designs, crowdsourc-
ing of program optimization using commodity mobile
phones and tablets, automatic modeling of applica-
tion behavior, model driven optimization and adaptive
scheduling. It is followed by a section on reproducibil-
ity of experimental results in our approach together
with a new publication model proposal where all re-
search material is continuously shared and validated by
the community. The last section includes conclusions
and future work directions.

2. Cleaning up research and experimental mess

Based on our long experience with auto-tuning
and machine learning in both academia and indus-
try, we now strongly believe that the missing piece
of the puzzle to make these techniques practical is
to enable sharing systematization, and reuse of all
available optimization knowledge and experience from
the community. However, our first attempt to crowd-
source auto-tuning and machine learning using cTun-

ing plugin-based framework and MySQL-based repos-
itory (cTuning) [29,31] suffered from many orthogonal
engineering issues. For example, we had to spend con-
siderable effort to develop and continuously update ad-
hoc research and experimental scenarios using many
hardwired scripts and tools while being able to expose
only a few dimensions, monitor a few characteristics
and extract a few features. At the same time, we strug-
gled with collection, processing and storing of a grow-
ing amount of experimental data in many different for-
mats as conceptually shown in Fig. 4(a). Furthermore,
adding a new version of a compiler or comparing mul-
tiple compilers at the same time required complex ma-
nipulations with numerous environment variables.
Eventually, all these problems motivated the devel-
opment of a modular Collective Mind framework and
NoSQL heterogeneous repository [18,30] to unify and
preserve the whole experimental setups with all related
artifacts and dependencies. First of all, to avoid in-
voking ad-hoc tools directly, we introduced cM mod-
ules which serve as wrappers around them to be able
to transparently set up all necessary environment vari-
ables and validate all software and hardware dependen-
cies before eventually calling these tools. Such an ap-
proach allows easy co-existence of multiple versions
of tools and libraries while protecting experimental se-
tups from continuous changes in the system. Further-
more, cM modules can now transparently monitor and
unify all information flow in the system. For exam-
ple, we currently monitor tools’ command line together

program, tuning

Run-timey \ analysis

CSV, XLS, TXT

dataset scripts

= Offline tuning ————————————— N
L User Ad-hoc | 7| Tool, %é[“un'ﬁm% \,| Ad-hoc Colle®

¢M modaules (tool/data wrappers) with unified input and output

and other files

Unified
JSONinput | [] Unified JSON
(if exists) input (meta-data)
o L Adion |
b
(b) ?) Behavior
Original | @
unmodified ; v
ad-hocinput ! |
o] E
%Q;—IF

environment
for a given
tool version

Unified JSON [~
output (meta-data)

Action function

Behavior

Parse
ELL 1Y

output

Data specification

{ Tool; H Generated files H Meta-description]

Fig. 4. Converting (a) continuously evolving, ad-hoc, hardwired and difficult to maintain experimental setups to (b) interconnected cM modules
(tool wrappers) with unified, dictionary-based inputs and outputs, data meta-description, and gradually exposed characteristics, tuning choices,
features and a system state. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140396.)

314 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

with their input and output files to expose measured
characteristics (behavior of computer systems), opti-
mization and tuning choices, program, data set and ar-
chitecture features, and a system state used in all our
existing auto-tuning and machine learning scenarios as
conceptually shown in Fig. 4(b).

Since researchers are often eager to quickly pro-
totype their research ideas rather than sink in low-
language implementations, complex APIs and data
structures that may change over time, we decided to
use a researcher friendly and portable Python language
as the main language in Collective Mind (though we
also provide possibility to use any other language for
writing modules through an OpenME interface de-
scribed later in this paper). Therefore, it is possible to
run minimal cM on practically any Linux and Win-
dows computer supporting Python. An additional ben-
efit of using Python is a growing collection of useful
packages for data management, mining and machine
learning.

We also decided to switch from traditional TXT,
CSV and XML formats used in the first cTuning frame-
work to a schema-free JSON data format [63] for all
module inputs, outputs and meta-description. JSON is
a popular, human readable and open standard format
that represent data objects as attribute—value pairs. It
is now backed up by many companies, supported by
most of the recent languages and powerful search en-
gines [24], and can be immediately used for web ser-
vices and P2P communication during collaborative re-
search and experimentation. Only when the format of
data becomes stable or a research technique is vali-
dated, the community can provide data specification as
will be described later in this paper.

At the same time, we noticed that we can apply ex-
actly the same concept of cM modules to systematize
and describe any research and development material
(code and data) while making sure that it can be eas-
ily found, reused and exposed to the Web. Researchers
and developers can now categorize any collections of
their files and directories by assigning an existing or
adding a new cM module and moving their material to
anew directory with a unique ID (UID) and an optional
alias. Thus we can now abstract an access to highly het-
erogeneous and evolving material by gradually adding
possible data actions and meta-description required for
user’s research and development. For example, all cM
modules have common actions to manage their data in
a unified way similar to any repository such as add,
list, view, copy, move and search. In addition, module
code.source abstracts access to programs and has an

individual action build to compile a given program. In
fact, all current cM functionality is implemented as in-
terconnected modules including kernel, core and repo
that provide main low-level cM functions documented
at c-mind.org/doxygen.

In contrast with using SQL-based databases, our ap-
proach can help systematize, preserve and describe any
heterogeneous code and data on any native file system
without any need for specialized databases, pre-defined
data schema and complex table restructuring as con-
ceptually shown in Fig. 5. Since ¢cM modules also have
their own UOA (UID or alias), it is now possible to eas-
ily reference and find any local user material similar to
DOI by a unified Collective ID (CID) of the following
format:

(cM module UOA) : (cM data UOA).

In addition, cM provides an option to transpar-
ently index meta-description of all artifacts using
a third-party, open-source and JSON-based Elastic-
Search framework implemented on Hadoop engine
[24] to enable fast and powerful search queries for
such a schema-free repository. Note that other similar
NoSQL databases including MongoDB and CouchDB
or even SQL-based repositories can be easily con-
nected to cM to cache data or speed up queries, if nec-
essary.

Any cM module with a given action can be executed
in a unified way using JSON format as both input and
output either through cM command line front-end

cm (module UOA) (action) @input.json
or using one Python function from a cM kernel module

r= cm_kernel.access({ ‘em_run_module_uoa’ :
(module UOA),
‘em_action’ : {action),
action parameters})
or as a web service when running internal cM web
server (also implemented as cM web.server module)
using the following URL
http://localhost:3333?cm_web_module_uoa=
(module UOA)&cm_web_action=(action) . . .

For example, a user can list all available programs in
the system using cm code.source list and then compile a

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 315

. Meta
Category ’ cM module Module actions All data description
Thlrd-'party tools, common?*, install O00-0! mE-~-m|
libraries \
High-level algorithms common*, transform ogd-0 oE-m
Applications, common®*, build O0-0 ! BE@E @
benchmarks, kernels 8
Multiple compilers common*, compile_program Oog--4d EE -3
Predictive models math.model common®, build, predict, fit, ogd-0o oE -
A detect_repr ive_points
Binaries and libraries code common?*, run oo-0o EE-@
Program data sets common*, create Ood->d EE -3
Operating Systems common*, detect_host_family! (1]~ (1 i HE @
*
Processors common’, oo-0: @@-@
} detect_host_processor
Staf15.t1cal und. data common*, analyze oo-0; E@E-=
mining functions {
* add, list, view, copy, move, search
cM repository
directory structure: .cmr! / module UOA (UID or alias) / data UOA ! / .cm / data.json

Fig. 5. Gradually categorizing all available user artifacts using cM modules while making them searchable through meta-description and reusable
through unified cM module actions. All material from this paper is shared through Collective Mind online live repository at c-mind.org/browse
and c-mind.org/github-code-source. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140396.)

given program using

cm code.source build
work_dir_data_uoa
=benchmark-cbench-security-blowfish

build_target_os_uoa=windows-generic-64

If some parameters or dependencies are missing, the
c¢M module should be implemented as such to inform
users about how to fix these problems.

In order to simplify validation and reuse of shared
experimental setups, we provide an option to keep
tools inside a cM repository also together with a unified
installation mechanism that resolves all software de-
pendencies. Such packages including third-party tools
and libraries can now be installed into a different en-
try in a cM repository with a unique IDs abstracted
by ¢cM code module. At the same time, OS-dependent
script is automatically generated for each version of a
package to set up appropriate environment including
all paths. This script is automatically called before ex-
ecuting a given tool version inside an associated cM
module as shown in Fig. 4.

In spite of its relative simplicity, the Collective Mind
approach helped us to gradually clean up and system-
atize our material that can now be easily searched,
shared, reused or exposed to the web. It also helps
substitute all ad-hoc and hardwired experimental se-

tups with interconnected and unified modules and data
that can be protected from continuous changes in com-
puter systems and easily shared among workgroups.
Users only need to categorize new material, move re-
lated files to a special directory of format .cmr/(module
UOA)/(data UOA) (where .cmr is an acronym for Col-
lective Mind Repository) to be automatically discov-
ered and indexed by cM, and provide some meta-
information in JSON format depending on research
scenarios.

In contrast with public web-based sharing services,
we provide an open-source, technology-neutral, agile,
customizable, and portable knowledge management
system which allows both private and public systemati-
zation of research and experimentation. To initiate and
demonstrate gradual and collaborative systematization
of a research material for auto-tuning and machine
learning, we decided to release all related code and
data at c-mind.org/browse to discuss, validate and rank
shared artifacts while extending their meta-description
and abstract actions with the help of the community.
We described and shared multiple benchmarks, ker-
nels and real applications using cM code.source mod-
ule, various data sets using cM dataset module, various
parameterized classification algorithms and predictive
models using cM math.model module, and many oth-
ers.

We also shared packages with exposed dependencies
and installation scripts for many popular tools and li-
braries in our public cM repository at c-mind.org/repo

316 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

including GCC, LLVM, ICC, Microsoft Visual Stu-
dio compilers, PGI compilers, Open64/PathScale com-
pilers, ROSE source-to-source compilers, Oracle JDK,
VTune, NVIDIA GPU toolkit, perf, gprof, GMP,
MPFR, MPC, PPL, LAPACK and many others. We
hope that this will ease the burden of the community
to continuously (re-)implement some ad-hoc and of-
ten unreleased experimental scenarios. In the next sec-
tions, we will show how this approach can be used to
systematize and formalize auto-tuning.

3. Formalizing auto-tuning and predictive
modeling

Almost all research on auto-tuning can be formal-
ized as finding a function of a behavior of a given
user program B running on a given computer system
with a given data set, selected design and optimization
choices including program transformations and archi-
tecture configuration ¢, and a system state s ([1,28,31,
78]):

b = B(c,s).

For example, in our current and past research and
experimentation, b is a behavior vector that includes
execution time, power consumption, accuracy, com-
pilation time, code size, device cost, and other im-
portant characteristics; ¢ represents the available de-
sign and optimization choices including algorithm se-
lection, the compiler and its optimizations, number
of threads, scheduling, affinity, processor ISA, cache
sizes, memory and interconnect bandwidth, etc.; and
finally s represents a state of the system including pro-
cessor frequency and cache or network contentions.

Knowing and minimizing this function is of a par-
ticular importance to our industrial partners when de-
signing, validating and optimizing the next generation
of hardware and software including compilers for a
broad range of customers’ applications, data sets and
requirements (constraints), since it can help reduce
time to market for the new systems and increase return
on investment (ROI). However, the fundamental prob-
lem is that this function B is highly non-linear with
a multi-dimensional discrete and continuous space
of choices [28,38] which is rarely possible to model
analytically or evaluate empirically using exhaustive
search unless really small kernels and libraries are used
with just one or a few program transformations [1,78].

This problem motivated research on automatic and
empirical modeling of an associated function P that
can quickly predict better design and optimization
choices for a given computer system ¢ based on some
features (properties) of an end-users’ program, data set
and a given hardware f, and a current state of a com-
puter system s:

c= P{,s).

For example, in our research on machine-learning
based optimization, vector f includes semantic or static
program features [2,31,62,72], data set features and
hardware counters [14,46], system configuration, and
run-time environment parameters among many oth-
ers. However, when trying to implement practical and
industrial scenarios in cTuning framework, we spent
most of our time on engineering issues trying to ex-
pose characteristics, choices, features and system state
using numerous, “black box” and not necessarily doc-
umented tools. Furthermore, when colleagues with
a machine learning background were trying to help
us improve optimization predictions, they were often
quickly demotivated when trying to understand our ter-
minology and problems.

The Collective Mind approach helped our col-
leagues solve this problem by formalizing the problem
and gradually exposing characteristics b, choices c,
system state s and features f (meta information) in ex-
perimental setups using JSON format as shown in the
following real example:

{”characteristics”:{
“execution_times”: [710.3”,710.1”,713.3”],
"code_size”: 131938, ...},
“choices”:{
Zos”: "linux”, “os_version”:”2.6.32-5-amd64”,
“compiler”:”gcc”, ”compiler_version”:”4.6.3”,
”compiler_flags”:”-03 -fno-if-conversion”,
“platform”:{”
“processor”: "intel_xeon_e5520”, "12”:78192",
“memory”:"24” ..}, ..},
“features”:{
”semantic_features”: {"number_of _bb”: 7247, ...},
“hardware_counters”: {"cpi”: 714”7 ..}, ... }
state”:{
“frequency”:"2.27", ...}

Furthermore, we can easily convert JSON hierar-
chical data into a flat vector format to apply above
mathematical formalization of auto-tuning and learn-
ing problem while making it easily understandable

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 317

to an interdisciplinary community particularly with a
background in mathematics and physics. In our flat
format, a flat key can reference any key in a complex
JSON hierarchy as one string. Such flat key always
starts with # followed by #key if it is a dictionary key or
@position_in_a_list if it is a value in a list. For exam-
ple, flat key for the second execution time “10.1” in one
of the previous examples of information flow can be
referenced as “##characteristics#execution_time@ 1.
Finally, users can gradually provide the following cM
data specification for the flat keys in information flow
to fully automate program optimization and learning
(kept together with a given cM module):

“flattened_json_key”:{
“type”: “text” | “integer”

.,

“characteristic”: ’yes”

9

no”,

95 9

no”,

”‘

»foat” | “dict” | “list”

LI

no”,

”uid”,

», 1)

“feature”: yes

., ”

Vstate”: ’yes
”has_choice”: "’yes” | ’no”,
“choices”: [list of strings if categorical choice”],

., 9

“explore_start”: “’start number if numerical range”,

»,

“explore_stop”: ”stop number if numerical range”,

.,

“explore_step”: step if numerical range”,
“can_be_omitted”: “’yes” | "no”,

»,

“default_value”: string”

Of course, such format may have some limitations,
but it supports well our current research and experi-
mentation on auto-tuning and will be extended only
when needed. Furthermore, such implementation al-
lowed us and our colleagues to collaboratively pro-
totype, validate and improve various auto-tuning and
learning scenarios simply by chaining available cM
modules similar to components and filters in elec-
tronics (cM experimental pipelines) and reusing all
shared artifacts. For example, we converted our ad-
hoc build and run scripts from cTuning framework
to a unified cM pipeline consisting of chained cM
modules as shown in Fig. 6. This pipeline (ctun-
ing.pipeline.build_and_run) is implemented and exe-
cuted as any other cM module to help researchers sim-
plify the following operations during experimentation:

e Source to source program transformation and
instrumentation (if required). For example, we
added support for PLUTO polyhedral compiler to
enable automatic restructuring and parallelization
of loops [12].

e Compilation and execution of any shared pro-
grams (real applications, benchmarks and ker-

c¢M build and run experimental pipeline
(cM modules chained together)

Apply source-to- q Profile;
pPly Compile !
source collect
. =—> andrun —>
transformations rogram hardware
if needed prog counters
Formalized function (model) 1

of a module behavior
Test behavior

for normal
distribution

=l

=B(c|=|,T|=|,5|m])
- al |a| |m l

Flattened JSON vectors
(either string categories
or integer/float values)

Apply Pareto
frontier filter

T
Collective Mind \ | Shared scenarios

repository and buildbot N

cM web front-end, % @ @ cM CMD

unified web services Interdisciplinary crowd front-end

Fig. 6. Unified build and run cM pipeline implemented as chained
cM modules. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140396.)

nels) using code.source module. Meta-description
of these programs includes information about
how to build and execute them. Code can be
executed with any shared data set as an input
(dataset module). The community can gradually
share more data sets together with the unified de-
scriptions of their features such as dimensions of
images, sizes of matrices and so on.

o Testing of measured characteristics from repeated
executions for normal distribution [25] using
shared ¢cM module ctuning.filter.variation to be
able to expose unusual behavior in a reproducible
way to the community for further analysis. Un-
expected behavior often means that some feature
is missing in the experimental pipeline such as
frequency or cache contention that can be gradu-
ally added by the community to separate execu-
tions with different contexts as described further
in Section 5.

e Applying Pareto frontier filter [31,44,50] to leave
only optimal solutions during multi-objective op-
timization when multiple characteristics have to
be balanced at the same time such as execution
time vs code size vs power consumption vs com-
pilation time. This, in turn, can help to avoid col-
lecting large amounts of off-line and often unnec-

318 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

essary experimental data that can easily saturate
repositories and make data analysis too time con-
suming or even impossible (as happened several
times with a public cTuning repository).

In the next section we show how we can reuse
and customize this pipeline (demonstrated online at
c-mind.org/ctuning-pipeline) to systematize and run
some existing auto-tuning scenarios from our indus-
trial partners.

4. Systematizing auto-tuning and learning
scenarios

Unified cM build and run pipeline combined with
mathematical formalization allows researchers and en-
gineers to focus their effort on implementing and ex-
tending universal auto-tuning and learning scenarios
rather than hardwiring them to specific systems, com-
pilers, optimizations or tuned characteristics. This, in
turn, allows to distribute long tuning process across
multiple users while potentially solving an old and
well-known problem of using a few possibly non-

representative benchmarks and a limited number of ar-
chitectures when developing and validating new opti-
mization techniques.

Furthermore, it is now possible to take advantage
of mature interdisciplinary methodologies from other
sciences such as physics and biology to analyze and
learn the behavior of complex systems. Therefore, cM
uses a top-down methodology to decompose software
and hardware into simple sub-components to be able
to start learning and tuning of a global, coarse-grain
program behavior with respect to exposed coarse-grain
tuning choices and features. Later, depending on user
requirements, time budget and expected return on in-
vestment during optimization, the community can ex-
tend components to cover finer-grain tuning choices
and behavior as conceptually shown in Fig. 7. Note,
that when analyzing a application at a finer-grain lev-
els such as code regions, we consider them as interact-
ing cM components with their own vectors of tuning
choices, characteristics, features and internal states. In
doing so, we can analyze and learn their behavior us-
ing methodologies from quantum mechanics or agent-
based modeling [69].

Gradually extend cM build
and run pipeline module

Select algorithm

Analyze and Process
transform
program
Function
Kernel
Loop
Instruction
Build program
Run code Run-time

environment
System

Data set
Run-time
analysis
Run-time
state

Statistical
analysis

Analyze profile

Model behavior

Gradually expose
characteristics

(time) productivity,
variable-accuracy,
complexity ...

time;
memory usage;
code size ...

time ...

time; power consumption

cost; size ...

size; values; description ...

time; precision ...
processor state; cache
state ...

time; size ...

size; precision

Gradually expose design and
optimization choices, features

Language, MPI, OpenMP, TBB,
MapReduce ...

transformation ordering;
polyhedral transformations;
transformation parameters;
instruction ordering;

MPI parameters;

number of threads;

compiler flags; pragmas ...

pinning/scheduling ...

CPU/GPU; frequency; memory ...
precision ...

hardware counters; power meters ...

helper threads; hardware counters ...

instrumentation; profiling ...

model type ...

Fig. 7. Gradual and collaborative top-down decomposition of computer system software and hardware using cM modules (wrappers) similar
to methodology in physics. First, coarse-grain design and optimization choices and features are exposed and tuned, and later more fine-grain
choices are exposed depending on the available tuning time budget and expected return on investment. (Colors are visible in the online version

of the article; http://dx.doi.org/10.3233/SPR-140396.)

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 319

As the first practical usage scenario, we devel-
oped a universal and customizable design and opti-
mization space exploration as cM module crtuning.
scenario.exploration on top of ctuning.pipeline.build_
and_run_program module to substitute most ad-hoc
tuning scripts and frameworks from our past research.
This scenario can be executed from the command
line as any other cM module thus enabling relatively
easy integration with third-party tools including com-
piler regression buildbots or Eclipse-based framework.
However, the most user friendly way is to run scenar-
ios is through cM web interface as demonstrated at
c-mind.org/ctuning-exploration (note that we plan to
improve the usability of this interface with dynamic
HTML, JavaScript and Ajax technology [39] while
hiding unnecessary information from users and avoid-
ing costly page refreshes). In such a way, cM will query
all chained modules for this scenario to automatically
visualize all available tuning choices, characteristics,
features and system states. cM will also preset all de-
fault values (if provided by specification) while allow-
ing a user to select which choices to explore, character-
istics to measure, search strategy to use, and statistical
analysis for experimental results to apply.

We currently implemented and shared uniform ran-
dom and exhaustive exploration strategies. We also
plan to add adaptive, probabilistic and hill climbing
sampling from our past research [27,37] or let users de-
velop and share any other universal strategy which is
not hardwired to any specific tool but can explore any
available choices exposed by the scenario.

Next, we present several practical and industrial
auto-tuning scenarios using above customized explo-
ration module.

4.1. Systematizing compiler benchmarking

Validating new architecture designs across multiple
benchmarks, tuning optimization heuristics of multiple
versions of compilers, or tuning compiler flags for a
customer application is a tedious, time consuming and
often ad-hoc process that is far from being solved. In
fact, it becomes even tougher with time due to the ever
rising number of available optimizations (Fig. 1) and
many strict requirements placed on compilers such as
generating fast and small code for all possible existing
architectures within a reasonable amount of time.

Collective Mind framework helps unify and dis-
tribute this process among many machines as a per-
formance tracking buildbot. For this purpose, we cus-
tomized universal cM exploration module for com-

piler flag tuning as a new ctuning.scenario.compiler.
optimizations module. Users just need to choose a
compiler version and related description of flags (ex-
ample is available at c-mind.org/ctuning-compiler-
desc) as an input and select either to explore a com-
piler flag optimization space for a given program or
distribute tuning of a default compiler optimization
heuristic across many machines using a set of shared
benchmarks. Note, that it is possible to use Collective
Mind not only on desktop machines, servers, data cen-
ters and cloud services but also on bare metal hard-
ware or Android-based mobile devices (either through
SSH or using a special Collective Mind Node appli-
cation available in Google Play Store [20] to help de-
ploy and crowdsource experiments on mobile phones
and tablets while aggregating results in web-based cM
repositories).

To demonstrate this scenario, we optimized a real
image corner detection program on a commodity
Samsung Galaxy Series mobile phone with ARMv6
830 MHz processor using Sourcery GCC v4.7.2 with
randomly generated combinations of compiler flags
of format -O3 -flno-)optimization_flag —parameter
param=random_number_from_range, LLVM v3.2
with -O3 flag, and a chained Paretto frontier filter (cM
module ctuning.filter.fronteer) for multi-objective op-
timization (balancing execution time, code size and
compilation time).

Experimental results during such exploration (cM
module output) are continuously recorded in a reposi-
tory in a unified flat vector format making it possible to
immediately take advantage of numerous and powerful
public web services for visualization, data mining and
analytics (for example from Google, Microsoft, Oracle
and IBM) or available as packages for Python, Weka,
MATLAB, SciLab and R. For example, Fig. 8 shows
2D visualization of these experimental results using
public Google Web Services integrated with cM. Such
interactive graphs are particularly useful when work-
ing in workgroups or for interactive publications (as
demonstrated at c-mind.org/interactive-graph-demo).

Note, that we always suggest to run optimized code
several times to check variation and test distribution for
normality as we used to do in physics and electronics.
If such a test fails or the variation of any characteris-
tic dimension is more than some threshold (currently
set as 2%), we do not skip such case but record it as
suspicious including all inputs and outputs for further
validation and analysis by the community as described
in Section 5. At the same time, using a Paretto frontier
filter allows users to easily select the most appropri-

320 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

o?

-,
©

1t t
800 o
Filtering |} |
optimal i i i
785 solutions——-1—1
8 ona frontier; |, | GCC-03
[} 1
5 packing \ ¢' 1
@ 770 experimental o '®!
S data e
z
(5]
£
o 755 |eeoeas
LLVM -03
740
2 9

16 23 30

Execution time (sec.)

Fig. 8. Compiler flag auto-tuning to improve execution time and code size of a shared image corner detection program with a fixed data set on
Samsung Galaxy Series mobile phone using cM for Android. Highlighted points represent frontier of optimal solutions as well as GCC with
-0O3 and -Os optimization flags versus LLVM with -O3 flag (c-mind.org/interactive-graph-demo). (Colors are visible in the online version of the

article; http://dx.doi.org/10.3233/SPR-140396.)

ate solution depending on the further intended usage
of their applications, i.e. the fastest variant if used for
HPC systems, the smallest variant if used for embed-
ded devices with very limited resources, such as credit
card chips or the future “Internet of Things” devices, or
balanced for both speed and size when used in mobile
phones and tablets.

Since Collective Mind framework also enables co-
existence of multiple versions of different compilers,
checks output of programs for correct execution dur-
ing optimization, and supports multiple shared bench-
marks and data sets, it can be easily used as a dis-
tributed and public buildbot for rigorous performance
tracking and simultaneous tuning of compilers (as
shown in Fig. 2) while taking advantage of a grow-
ing number of shared benchmarks and data sets [19].
Longer term, we expect that such an approach will help
the community fully automate compiler tuning for new
architectures or even validate new processor designs
for errors. It can also help derive a realistic, diverse
and representative training set of benchmarks and data
sets [55] to systematize and speed up training for ma-
chine learning based optimization prediction for previ-
ously unseen programs and architectures [31].

To continue this collaborative effort, we shared
the description of all parametric and boolean (on
or off) compiler flags in JSON format as “choices”
for a number of popular compilers including GCC,
LLVM, Open64, PathScale, PGI and ICC under ctun-
ing.compiler module. We also implemented and shared
several off-the-shelf classification and predictive mod-

els including KNN and SVM from our past research [2,
14,31] using math.model module to be able to auto-
matically predict better compiler optimization using
semantic and dynamic program features. Finally, we
started implementing standard complexity reduction
and differential analysis techniques [47,66] in cM to
iteratively isolate unusual program behavior [36] or to
find minimal set of representative benchmarks, data
sets and correlating features [30,55]. Users can now
collaboratively analyze unexpected program behavior,
improve predictive models, find best tuning strategies
and collect minimal set of influential optimizations,
representative features, most accurate models, bench-
marks and data sets.

4.2. Systematizing modeling of application behavior
to focus optimizations

Since programs may potentially have an infinite
number of data sets while auto-tuning is already time
consuming, it is usually performed for one or a few
and not necessarily representative data sets. Collec-
tive Mind framework can help to systematize and au-
tomate modeling of a behavior of a given application
across multiple data sets to suggest where to focus fur-
ther tuning (adaptive sampling and online learning) [2,
9,37]. We just needed to customize previously intro-
duced auto-tuning pipeline to explore data set param-
eters (already exposed through dataset module) and
model program behavior at the same time using ei-
ther off-the-shelf predictive models including linear re-

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

16

321

s a4
o N D

Exposed cM characteristic (CPI)

F

Powered by Collective Mind v 1.0

. " =

X

1000

0
Data set feature N (size) exposed by community as cM meta-description

2000

3000 4000 5000

Fig. 9. Online learning (predictive modeling) of a CPI behavior of a shared LU-decomposition benchmark on 2 different platforms (Intel
Core2 shown in red vs Intel i5 shown in blue) vs vector size /N (data set feature). (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-140396.)

gression, Support Vector Machines (SVM), Multivari-
ate Adaptive Regression Splines (MARS), and neural
networks available for R language and abstracted by
cM module math.model.r, or shared user-defined hy-
brid models specific for a given application.

For example, Fig. 9 demonstrates how such explo-
ration and online learning is performed using cM to-
gether with shared LU-decomposition benchmark ver-
sus size of input vector (/N), measured CPI charac-
teristic, and 2 Intel-based platforms (Intel Core2 Cen-
trino T7500 Merom 2.2 GHz L1 = 32 KB 8-way set-
associative, L2 = 4 MB 16-way set associative — red
dots vs. Intel Core i5 2540M 2.6 GHz Sandy Bridge
L1 = 32 KB 8-way set associative, L2 = 256 KB
8-way set associative, L3 = 3 MB 12-way set associa-
tive — blue dots).

In the beginning, cM does not have any knowledge
about behavior of this (or any other) benchmark, so
it simply observes and stores available characteristics
along with the data set features. At each exploration
(sampling) step, cM processes all historical observa-
tions using various available or shared predictive mod-
els such as SVM or MARS in order to find correlations
between data set features and characteristics. At the
same time it attempts to minimize Root-Mean-Square
Deviation (RMSE) between predicted and measured
values for all available points. Even if RMSE is rela-
tively low, cM can continue exploring and observing
behavior in order to detect discrepancies (failed predic-
tions).

Interestingly, in our example, practically no off-the-
shelf model could detect the A outliers (singularities)
which appear due to cache alignment problems. How-
ever, having mathematical formalization helps inter-

1400

1200 |

1000 |

@
o
=]

@
o
=]

- - 1
H
0 " "
200 400 600 800

0

'y
o
=]

[~
o

Data set feature Ny (matrix size)
o

1000 1200 1400
Data set feature Nx (matrix size)

CPI

050 075 100 125 150 175 200 225 250

Fig. 10. CPI behavior of a matrix—matrix multiply benchmark on In-
tel i5 platform vs matrix size. Hyperplanes separate areas with sim-
ilar behavior found using multivariate adaptive regression splines
(MARS). (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140396.)

disciplinary community to find and share better mod-
els that minimized RMSE and model size at the same
time. In the presented case, our colleagues from ma-
chine learning department managed to fit and share a
hybrid, parameterized, rule-based model that first val-
idates cases where data set size is a power of 2, other-
wise it uses linear models as functions of a data set and
cache size. This model resembles reversed analytical
roofline model [79] though is continuously and empir-
ically refined to capture even fine-grain effects. In con-
trast, standard MARS model managed to predict the
behavior of a matrix—matrix multiplication kernel for
different matrix sizes as shown in Fig. 10.

Such models can help focus auto-tuning on areas
with distinct behavior as described in [9,27,37]. For
example presented in Fig. 9, outlier points A can be

322 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

optimized using array padding; area B can profit from
parallelization and traditional compiler optimizations
targeting ILP; areas C-E can benefit from loop tiling;
points A saturate memory bus and can also benefit
from reduced processor frequency to save energy. Such
optimizations can be performed automatically if ex-
posed through cM or provided by the community as
shared advices using ctuning.advice module.

In the end, multiple customizable models can be
shared as parameterized cM modules along with appli-
cations thus allowing the community to continuously
refine them or even reuse them for similar classes of
applications. Finally, such predictive models can be
used for effective and online compaction of experi-
ments while avoiding collection of a large amount of
data (known in other fields as a “big data” problem)
and leaving only representative or unexpected behav-
ior. It can, in turn, minimize communications between
cM nodes while making Collective Mind a giant and
distributed learning and decision making network to
some extent similar to the brain [30].

4.3. Enabling fine-grain auto-tuning through plugins

After learning and tuning coarse-grain behavior, we
gradually move to finer-grain levels including selected
code regions, loop transformations, MPI parameters
and so on, as shown in Fig. 7. However, in our past
research, it required messy instrumentation of appli-

cations and development of complex source-to-source
transformation tools and pragma-based languages.

As an alternative and simpler solution, we developed
an event-based plugin framework (Interactive Compi-
lation Interface and was recently substituted by a new
and universal OpenME plugin-based framework con-
nected to cM) to expose tuning choices and seman-
tic program features from production compilers such
as GCC and LLVM through external plugins [29,33,
45]. This plugin-based tuning technique helped us to
start unifying, cleaning up and converting rigid compil-
ers into powerful and flexible research toolsets. Such
an approach also helped companies and end-users to
develop their own plugins with customized optimiza-
tion and tuning scenarios without rebuilding compil-
ers and instrumenting applications thus keeping them
clean and portable.

This framework also allowed to easily expose mul-
tiple semantic code features to automatically learn and
improve all optimization and tuning decisions using
standard machine learning techniques as conceptually
shown in Fig. 11. This plugin-based tuning technique
was successfully used in the MILEPOST project to au-
tomate online learning and tuning of the default op-
timization heuristic of GCC for new reconfigurable
processors from ARC during software and hardware
co-design [31]. The plugin framework was eventually
added to mainline GCC since version 4.6. We are grad-
ually adding to cM support for plugin-based selec-
tion and ordering of passes or tuning and learning of

Plugin-based GCC or LLVM;
any compiler with OpenME

-
Detect optimization

flags

| Optimization
i\ manager 3

OpenME
Simple and universal event based interface

Data layers
AST, CFG, CF ...

2)

(supports C, C++, Fortran, Python, Java, .

[cM modules]

¢

OpenME Alchemist plugin

<Dynamically linked shared libraries>

User customized scenarios:

Extracting semantic (static)
program properties
(features)

[Extracting code patterns]

Selecting or predicting
optimizations

Removing or adding
instructions for differential
analysis and for multiple
benchmark generation

S J

Fig. 11. Conceptual structure of compilers supporting plugin and event based interface to enable fine-grain tuning and learning of their internal
and often hidden heuristics through external plugins [45]. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

SPR-140396.)

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 323

Eclipse GUI
T Agent network
Analysis Parallel
PTF Frontend High- " agents rane
level Application
Analysis strategies Master agents
Search algorithms agent /
. . \
Scenario execution / .
z 2
Scenario execution T \ = 25
Common SIR file parser "
Tuning Plugin Interface
/

| Tuning
plugins

OpenME (high-level event-based plugin framework)

]

Web services
and Ul

H Collective Mind Framework and Repository }

Fig. 12. PTF plugin-based application online tuning framework. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

SPR-140396.)

internal compiler decisions while aggregating seman-
tic program features in a unified format using ctun-
ing.scenario.program.features.milepost module.

Plugin-based static compilers can help users auto-
matically or interactively tune a given application with
a given data set for a given architecture. However,
different data sets or run-time system state often re-
quire different optimizations and tuning parameters
that should be dynamically selected during execution.
Therefore, Periscope Tuning Framework (PTF) [60]
was designed to enable and automate online tuning
of parallel applications using external plugins with in-
tegrated tuning strategies. Users need to instrument
application to expose required tuning parameters and
measured characteristics for a given application. At the
same time, tuning space can be considerably reduced
inside such plugins per given application using previ-
ous compiler analysis or expert knowledge about typ-
ical performance bottlenecks and ways to detect and
improve them as conceptually shown in Fig. 12.

Once the online tuning process is finished, PTF gen-
erates a report with the recommended tuning actions
which can be integrated either manually or automati-
cally into the application for further production runs.
Currently, PTF includes plugins to tune execution time
of high-level parallel kernels for GPGPUs, balance en-
ergy consumption via CPU frequency scaling, opti-
mize MPI runtime parameters among many other sce-
narios in development.

Collective Mind can help PTF distribute tuning of
shared benchmarks and data sets among many users,

aggregate results in a common repository, apply data
mining and machine learning plugins to prune tuning
spaces, and automate prediction of optimal tuning pa-
rameters. PTF and cM can also complement each other
in terms of tuning coverage since cM currently focuses
on global, high-level, machine-learning guided opti-
mizations and compiler tuning while PTF currently fo-
cuses on finer-grain online application tuning. In our
future work we plan to connect PTF and cM together
using cM OpenME interface.

4.4. Systematizing split compilation and adaptive
scheduling

Many current online auto-tuning techniques have
a limitation — they usually do not support arbitrary
online code restructuring unless complex just-in-time
(JIT) compilers are used. As a possible solution to
this problem, we introduced split compilation to stati-
cally enable dynamic optimizations and adaptation by
cloning hot functions or kernels during compilation
and providing run-time selection mechanism depend-
ing on data set features, target architecture features and
a system state [34,46,55,58]. However, since this ap-
proach still requires a long and off-line training phase,
we can now use Collective Mind infrastructure to sys-
tematize off-line tuning and learning of a program be-
havior across many data sets and computer systems as
conceptually shown in Fig. 13.

Now, users can take advantage of continuously col-
lected knowledge about program behavior and opti-

324 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

Parallel application

¥

Expose
data set features
and system state
either automatically

X or by user
v //
Original Cloned
hot code code
section section,

I set of repr

architectures)

OpenME event-based plugin framework

— —

Run-time tuning and adaption plugin with a
compacted decision tree for low run-time overhead

code versions to minimize execution time, power
consumption and other characteristics for the following optimization cases :
 optimizations for different data sets, program phases and system states/contentions
® optimizations/compilation for different architectures (heterogeneous or
reconfigurable processors with different ISA such as GPGPU, CELL, etc or with the
same ISA with extensions such as 3dnow, SSE, etc, or asymmetric multi-core

e architecture reconfiguration (cache size, frequency, pinning, etc)

\
Monitor run-time behavior or
architectural changes (in virtual,
reconfigurable or heterogeneous
environments) using timers or
performance counters

ST

Cloned Plugin for
code frequency
section, change

Fig. 13. Making run-time adaptation and tuning practical using static multi-versioning, features exposed by users or automatically detected, and
predictive modeling (decision trees) while avoiding complex dynamic recompilation frameworks. (Colors are visible in the online version of the

article; http://dx.doi.org/10.3233/SPR-140396.)

mization in the repository to derive a minimal set of
representative optimizations or tuning parameters cov-
ering application behavior across as many data sets
and architectures as possible [55]. Furthermore, it is
now possible to reuse machine learning techniques
from cM to automatically derive small and fast deci-
sion trees needed for realistic cases shown in Figs 3,
9 and 10. Such decision trees can now be integrated
with the application through OpenME or PTF plug-
ins to dynamically select appropriate clones and auto-
matically adapt for heterogeneous architectures partic-
ularly in supercomputers and data centers, or even ex-
ecute some external tools to reconfigure architecture
(change frequency, for example) based on exposed fea-
tures to minimize execution time, power consumption
and other user objectives. These data set, program and
architecture feature can also be exposed through plu-
gins either automatically using OpenME-based com-
pilers or manually through application annotation and
instrumentation.

OpenME was designed especially to be very easy
to use for researchers and provide a simple connection
between Python-based Collective Mind and other mod-
ules or plugins written in other languages including C,
C++, Fortran and Java. It has only two functions to
initialize an event with an arbitrary string name, and to
call it with a void type argument that will be handled

by a user plugin and can range from a simple integer
to a cM JSON dictionary. However, since such imple-
mentation of OpenME can be relatively slow, we use
fast Periscope Tuning Framework for fine-grain tuning.
Possible example of such implementation for predic-
tive scheduling of matrix multiply using OpenME in-
terface and several clones for heterogeneous architec-
tures [46] is presented in Fig. 14.

Our static function cloning approach with dynamic
adaptation was recently added to mainline GCC since
version 4.8. We hope that together with OpenME, PTF
and cM, it will help systematize research on split com-
pilation while focusing on finding and exposing the
most appropriate features to improve run-time adapta-
tion decisions [55] using recent advances in machine
learning, data mining and decision making [11,26,43,
52].

4.5. Automating benchmark generation and
differential analysis

Our past research on machine learning to speed
up auto-tuning suffered from yet another well-known
problem: lack of large and diverse benchmarks.
Though Collective Mind helps share multiple pro-
grams and data sets including ones from [16,31,32],
it may still not be enough to cover all possible pro-

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 325

2mm.c / 2mm.cu

#ifdef OPENME
#include <openme.h>
#endif

int main(void) {

#ifdef OPENME
openme_init(NULL,NULL,NULL,0);
openme_callback("PROGRAM_START", NULL);

#endif

#ifdef OPENME
openme_callback(“SELECT_KERNEL", &adapt);
#endif

Fig. 14. Example of predictive scheduling of matrix—matrix multipl
statically generated kernel clones with different algorithm impleme

#ifdef OPENME
openme_callback("KERNEL_START", NULL);
#endif

if (adaptive_select==0) mm2_cpu(A, B, C, D, E);

elif (adaptive_select==1) cl_launch_kernel(A,B,C,D,E);

elif (adaptive_select==2) mm2Cuda(A, B, C, D, E,
E_outputFromGpu);

#ifdef OPENME
openme_callback("KERNEL_END", NULL);
#endif

#ifdef OPENME
openme_callback("PROGRAM_END", NULL);
#endif

ication kernel for heterogeneous architectures using OpenME interface and
ntations and optimizations to find the winning one at run-time. (Colors are

visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140396.)

gram behavior and features. One possibility is to gen-
erate many synthetic benchmarks and data sets but it
always result in explosion in tuning and training times.
Instead, we propose to use Alchemist plugin [30] to-
gether with plugin-enabled compilers such as GCC to
use existing benchmarks, kernels and even data sets
as templates and randomly modify them by removing,
modifying or adding various instructions, basic blocks,
loops and so on. Naturally, we can ignore crashing
variants of the code and continue evolving only the
working ones.

We can use such an approach not only to gradu-
ally extend realistic training sets, but also to iteratively
identify various behavior anomalies or detect missing
code feature to explain unexpected behavior similar to
differential analysis from electronics [47,66]. For ex-
ample, we are adding support to Alchemist plugin to
iteratively scalarize memory accesses to characterize
code and data set as CPU or memory bound [28,36].
Its prototype was used to obtain line X in Fig. 9 show-
ing ideal code behavior when all floating point memory
accesses are NOPed. Additionally, we use Alchemist
plugin to unify extraction of code structure, patterns
and other features to collaboratively improve predic-
tion during software/hardware co-design [23].

5. Enabling and improving reproducibility of
experimental results

Since cM allows to implement, preserve and share
the whole experimental setup, it can also be used for
reproducible research and experimentation. For exam-
ple, unified module invocation in ¢cM makes it pos-

sible to reproduce (replay) any experiment by saving
JSON input for a given module and an action, and com-
paring JSON output. At the same time, since execu-
tion time and other characteristics often vary, we devel-
oped and shared cM module that applies Shapiro—Wilk
test from R to test monitored characteristic for nor-
mality. However, in contrast with current experimen-
tal methodologies where results not passing such test
are simply skipped, we record them in a reproducible
way to find and explain missing features in the system.
For example, when analyzing multiple executions of
image corner detection benchmark on a smart phone
shown in Fig. 8, we noticed an occasional 4x differ-
ence in execution times as shown in Fig. 15. Simple
analysis showed that our phone was often in the low
power state at the beginning of experiments and then
gradually switched to the high-frequency state (4 x dif-
ference in frequency). Though relatively obvious, this
information allowed us to add CPU frequency to the
build and run pipeline using cpufreq module and thus
separate such experiments. Therefore, Collective Mind
research methodology can gradually improve repro-
ducibility as a side effect and with the help of the com-
munity rather than trying to somehow enforce it from
the start.

6. Conclusions and future work

This paper presents our novel, community-driven
approach to make auto-tuning practical and move it to
mainstream production environments. However, rather
than searching for yet another “holy grail” auto-tuning
technique, we propose to start preserving, sharing and

326 G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

Missing cM feature to separate experiments: CPU frequency

sk e!l‘eh Behavior type g

Behavior type ,

Distribution
-]
3

2%

10 15

B
9

20

Execution time (sec.)

Fig. 15. Unexpected behavior helped to identify and add a missing feature to cM (processor frequency) as well as software dependency (cpufreq)
that ensures reproducibility of experimental results. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140396.)

reusing already available practical knowledge and ex-
perience about program optimization and hardware co-
design using Collective Mind framework and reposi-
tory. Such approach helps researchers and engineers
quickly prototype and validate various auto-tuning and
learning techniques as plugins connected into exper-
imental pipelines while reusing all shared artifacts.
Such pipelines can be distributed among many users to
collaboratively learn, model and tune program behav-
ior using standard top-down methodology from ma-
ture sciences such as physics by decomposing complex
software into interconnected components while captur-
ing first coarse-grain effects and later move to finer-
grain levels. At the same time, any unexpected behav-
ior and optimization mispredictions are exposed to the
community in a reproducible way to be explained and
improved. Therefore, we can collaboratively search for
profitable optimizations, efficient auto-tuning strate-
gies, truly representative benchmarks, and most accu-
rate models to predict optimizations together with min-
imal set of relevant semantic and dynamic features.
Our future collaborative work includes exposing
more tuning dimensions, characteristics and features
using Collective Mind and Periscope tuning frame-
works to eventually tune the whole computer sys-
tem while extrapolating collected knowledge to build
faster, more power efficient and reliable self-tuning
computer systems. We are working with the commu-
nity to gradually unify existing techniques and tools
including pragma-based source-to-source transforma-
tions [41,80], plugin-based GCC and LLVM to expose
and tune all internal optimization decisions [30,31];
polyhedral source-to-source transformation tools [12];
differential analysis to detect performance anomalies
and CPU/memory bounds [28,36]; just-in-time compi-
lation for Android Dalvik or Oracle JDK; algorithm-
level tuning [3]; techniques to balance communication

and computation in numerical codes particularly for
heterogeneous architectures [7,75]; Scalasca frame-
work to automate analysis and modeling of scalabil-
ity of HPC applications [13,40]; LIKWID for light-
weight collection of hardware counters [76]; HPCC
and HPCG benchmarks to collaboratively rank HPC
systems [42,56]; benchmarks from GCC and LLVM,
TAU performance tuning framework [68]; and all re-
cent Periscope application tuning plugins [10,60].

At the same time we plan to use collected and uni-
fied knowledge to improve our past techniques on de-
composition of complex programs into interconnected
kernels, predictive modeling of program behavior, and
run-time tuning and adaptation [5,9,17,34,46,54,55,69,
82]. Finally, we are extending Collective Mind to as-
sist recent initiatives on reproducible research and new
publication models in computer engineering where all
experimental results and related research artifacts with
all dependencies are continuously shared along with
publications to be validated and improved by the com-
munity [35].

Acknowledgements

We would like to thank David Kuck, David Wong,
Abdul Memon, Yuriy Kashnikov, Michael Pankov,
Siegfried Benkner, David Padua, Olivier Zendra, Ar-
naud Legrand, Sascha Hunold, Jack Davidson, Bruce
Childers, Alex K. Jones, Daniel Mosse, Jean-Luc
Gaudiot, Christian Poli, Egor Pasko, Francois Bodin,
Thomas Fahringer, I-hsin Chung, Paul Hovland,
Prasanna Balaprakash, Stefan Wild, Hal Finkel, Bernd
Mohr, Arutyun Avetisyan, Anton Korzh, Andrey
Slepuhin, Vladimir Voevodin, Christophe Guillon,
Christian Bertin, Antoine Moynault, Francois De-
Ferriere, Reiji Suda, Takahiro Katagiri, Weichung

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 327

Wang, Chengyong Wu, Marisa Gil, Lasse Natvig, Na-
cho Navarro, Vittorio Zaccaria, Chris Fensch, Ayal
Zaks, Pooyan Dadvand, Paolo Faraboschi, Ana Lucia
Varbanescu, Cosmin Oancea, Petar Radojkovic, Chris-
tian Collberg, Olivier Temam and Panos Tsarchopou-
los, as well as cTuning, Collective Mind, Periscope and
HiPEAC communities for interesting related discus-
sions and feedback. We are also very grateful to anony-
mous reviewers for their insightful comments.

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

B. Aarts et al., OCEANS: Optimizing compilers for embed-
ded applications, in: Proc. Euro-Par 97, Lecture Notes in Com-
puter Science, Vol. 1300, 1997, pp. 1351-1356.

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P.
O’Boyle, J. Thomson, M. Toussaint and C.K.I. Williams, Us-
ing machine learning to focus iterative optimization, in: Pro-
ceedings of the International Symposium on Code Generation
and Optimization (CGO), 2006.

J. Ansel, C. Chan, Y.L. Wong, M. Olszewski, Q. Zhao, A. Edel-
man and S. Amarasinghe, PetaBricks: a language and com-
piler for algorithmic choice, in: Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’09, ACM, New York, NY, USA, 2009,
pp- 38-49.

K. Asanovic et al., The landscape of parallel computing re-
search: a view from Berkeley, Technical Report UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences,
University of California at Berkeley, December 2006.

C. Augonnet, S. Thibault, R. Namyst and P.-A. Wacrenier,
Starpu: A unified platform for task scheduling on heteroge-
neous multicore architectures, Concurr. Comput.: Pract. Ex-
per. 23(2) (2011), 187-198.

M. Baboulin, D. Becker and J. Dongarra, A parallel tiled solver
for dense symmetric indefinite systems on multicore architec-
tures, in: Parallel Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International, May 2012, pp. 14-24.

M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy
and S. Tomov, A class of communication-avoiding algorithms
for solving general dense linear systems on CPU/GPU parallel
machines, in: /CCS, 2012, pp. 17-26.

D.H. Bailey et al., Peri auto-tuning, Journal of Physics: Con-
ference Series (SciDAC 2008) 125 (2008), 6 pp.

P. Balaprakash, S.M. Wild and P.D. Hovland, Can search al-
gorithms save large-scale automatic performance tuning?, Pro-
cedia Computer Science 4 (2011), 2136-2145 (Proceedings of
the International Conference on Computational Science, ICCS
2011).

S. Benedict, V. Petkov and M. Gerndt, Periscope: An online-
based distributed performance analysis tool, in: Tools for High
Performance Computing 2009, 2010, pp. 1-16.

C.M. Bishop, Pattern Recognition and Machine Learning (In-
formation Science and Statistics), 1st edn, Springer, 2006.
(Corr. 2nd printing 2011 edition, October 2007.)

U. Bondhugula, A. Hartono, J. Ramanujam and P. Sadayap-
pan, A practical automatic polyhedral program optimization

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

system, in: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), June 2008.

A. Calotoiu, T. Hoefler, M. Poke and F. Wolf, Using auto-
mated performance modeling to find scalability bugs in com-
plex codes, in: SC, 2013, p. 45.

J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle
and O. Temam, Rapidly selecting good compiler optimiza-
tions using performance counters, in: Proceedings of the In-
ternational Symposium on Code Generation and Optimization
(CGO), March 2007.

V.G. Cerf, Where is the science in computer science?, Commu-
nications of the ACM 55(10) (2012), 5.

Y. Chen, L. Eeckhout, G. Fursin, L. Peng, O. Temam and
C. Wu, Evaluating iterative optimization across 1000 data
sets, in: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2010.

Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam
and C. Wu, Evaluating iterative optimization across 1000 data
sets, in: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), June
2010.

Collective Mind: open-source plugin-based infrastructure and
repository for systematic and collaborative research, experi-
mentation and management of large scientific data, available
at: http://c-mind.org.

Collective Mind Live Repo: public repository of knowledge
about design and optimization of computer systems, available
at: http://c-mind.org/repo.

Collective Mind Node: deploying experiments on Android-
based mobile computer systems, available at: https://play.
google.com/store/apps/details?id=com.collective_mind.node.
K.D. Cooper, P.J. Schielke and D. Subramanian, Optimizing
for reduced code space using genetic algorithms, in: Proceed-
ings of the Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), 1999, pp. 1-9.

J. Dongarra et al., The International Exascale Software Project
roadmap, Int. J. High Perform. Comput. Appl. 25(1) (2011),
3-60.

C. Dubach, T.M. Jones, E.V. Bonilla, G. Fursin and M.EP.
O’Boyle, Portable compiler optimization across embedded
programs and microarchitectures using machine learning, in:
Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), December 2009.

ElasticSearch: open source distributed real time search and an-
alytics, available at: http://www.elasticsearch.org.

T.W. Epps and L.B. Pulley, A test for normality based on
the empirical characteristic function, Biometrika 70(3) (1983),
723-726.

D. Ferrucci et al., Building Watson: An overview of the
DeepQA project, Al Magazine 31(3) (2010), 59-79.

B. Franke, M.E.P. O’Boyle, J. Thomson and G. Fursin, Prob-
abilistic source-level optimisation of embedded programs, in:
Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), 2005.

G. Fursin, Iterative compilation and performance prediction for
numerical applications, PhD thesis, University of Edinburgh,
United Kingdom, 2004.

G. Fursin, Collective tuning initiative: automating and acceler-
ating development and optimization of computing systems, in:
Proceedings of the GCC Developers’ Summit, June 2009.

328

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning

G. Fursin, Collective Mind: cleaning up the research and exper-
imentation mess in computer engineering using crowdsourc-
ing, big data and machine learning, CoRR, abs/1308.2410,
2013.

G. Fursin et al., MILEPOST GCC: Machine learning enabled
self-tuning compiler, International Journal of Parallel Pro-
gramming 39 (2011), 296-327.

G. Fursin, J. Cavazos, M. O’Boyle and O. Temam, Mi-
DataSets: Creating the conditions for a more realistic evalua-
tion of iterative optimization, in: Proceedings of the Interna-
tional Conference on High Performance Embedded Architec-
tures & Compilers (HiPEAC 2007), January 2007.

G. Fursin and A. Cohen, Building a practical iterative inter-
active compiler, in: 1st Workshop on Statistical and Machine
Learning Approaches Applied to Architectures and Compila-
tion (SMART’07), Colocated with HiPEAC 2007 Conference,
January 2007.

G. Fursin, A. Cohen, M. O’Boyle and O. Temam, A practi-
cal method for quickly evaluating program optimizations, in:
Proceedings of the International Conference on High Perfor-
mance Embedded Architectures & Compilers (HiPEAC 2005),
November 2005, pp. 29-46.

G. Fursin and C. Dubach, Experience report: community-
driven reviewing and validation of publications, in: Proceed-
ings of the 1st Workshop on Reproducible Research Method-
ologies and New Publication Models in Computer Engineering
(ACM SIGPLAN TRUST’14), ACM, 2014.

G. Fursin, M. O’Boyle, O. Temam and G. Watts, Fast and ac-
curate method for determining a lower bound on execution
time, Concurrency Comput.: Practice and Experience 16(2,3)
(2004), 271-292.

G. Fursin and O. Temam, Collective optimization: A practical
collaborative approach, ACM Transactions on Architecture and
Code Optimization (TACO) 7(4) (2010), 20:1-20:29.

G.G. Fursin, M.E.P. O’Boyle and P.M.W. Knijnenburg, Eval-
uating iterative compilation, in: Proceedings of the Workshop
on Languages and Compilers for Parallel Computers (LCPC),
2002, pp. 305-315.

JJ. Garrett, Ajax: A new approach to web applica-
tions, available at: http://www.adaptivepath.com/ideas/ajax-
new-approach-web-applications.

M. Geimer, F. Wolf, B.J.N. Wylie, E. Abra.hém, D. Becker and
B. Mohr, The Scalasca performance toolset architecture, Con-
curr. Comput.: Pract. Exper. 22(6) (2010), 702-719.

A. Hartono, B. Norris and P. Sadayappan, Annotation-based
empirical performance tuning using Orio, in: IEEE Interna-
tional Symposium on Parallel Distributed Processing, 2009.
IPDPS 2009, 2009, pp. 1-11.

M.A. Heroux and J. Dongarra, Toward a new metric for
ranking high performance computing systems, June 2013,
available at: http://0-www.osti.gov.iii-server.ualr.edu/scitech/
servlets/purl/1089988.

G.E. Hinton and S. Osindero, A fast learning algorithm for
deep belief nets, Neural Computation 18 (2006), 2006, 1527—
1554.

K. Hoste and L. Eeckhout, Cole: Compiler optimization level
exploration, in: Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2008.

Y. Huang, L. Peng, C. Wu, Y. Kashnikov, J. Renneke and
G. Fursin, Transforming GCC into a research-friendly envi-
ronment: plugins for optimization tuning and reordering, func-

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

tion cloning and program instrumentation, in: 2nd Interna-
tional Workshop on GCC Research Opportunities (GROW),
Colocated with HIiPEAC’10 Conference, January 2010.

V. Jimenez, 1. Gelado, L. Vilanova, M. Gil, G. Fursin and
N. Navarro, Predictive runtime code scheduling for heteroge-
neous architectures, in: Proceedings of the International Con-
ference on High Performance Embedded Architectures & Com-
pilers (HIPEAC 2009), January 2009.

Y. Jin, Fuzzy modeling of high-dimensional systems: complex-
ity reduction and interpretability improvement, /EEE Transac-
tions on Fuzzy Systems 8(2) (2000), 212-221.

T. Kisuki, PM.W. Knijnenburg and M.F.P. O’Boyle, Combined
selection of tile sizes and unroll factors using iterative compi-
lation, in: Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques (PACT), 2000,
pp. 237-246.

P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. David-
son, M. Bailey, Y. Pack and K. Gallivan, Finding effective op-
timization phase sequences, in: Proceedings of the Conference
on Languages, Compilers, and Tools for Embedded Systems
(LCTES), 2003, pp. 12-23.

H.T. Kung, F. Luccio and E.P. Preparata, On finding the max-
ima of a set of vectors, J. ACM 22(4) (1975), 469—476.

C. Lattner and V. Adve, LLVM: A compilation framework for
lifelong program analysis & transformation, in: Proceedings
of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, CA, March 2004.

Q. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G. Cor-
rado, J. Dean and A. Ng, Building high-level features using
large scale unsupervised learning, in: International Conference
in Machine Learning, 2012.

J. Lu, H. Chen, P.-C. Yew and W.-C. Hsu, Design and imple-
mentation of a lightweight dynamic optimization system, Jour-
nal of Instruction-Level Parallelism 6 (2004), 24 pp.

C.-K. Luk, S. Hong and H. Kim, Qilin: exploiting paral-
lelism on heterogeneous multiprocessors with adaptive map-
ping, in: Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 42, ACM,
New York, NY, USA, 2009, pp. 45-55.

L. Luo, Y. Chen, C. Wu, S. Long and G. Fursin, Finding
representative sets of optimizations for adaptive multiversion-
ing applications, in: 3rd Workshop on Statistical and Machine
Learning Approaches Applied to Architectures and Compi-
lation (SMART’09), Colocated with HIPEAC’09 Conference,
January 2009.

PR. Luszczek, D.H. Bailey, J.J. Dongarra, J. Kepner, R.E. Lu-
cas, R. Rabenseifner and D. Takahashi, The HPC chal-
lenge (HPCC) benchmark suite, in: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC’06, ACM,
New York, NY, USA, 2006.

G. Marin and J. Mellor-Crummey, Cross-architecture perfor-
mance predictions for scientific applications using parameter-
ized models, SIGMETRICS Perform. Eval. Rev. 32(1) (2004),
2-13.

J. Mars and R. Hundt, Scenario based optimization: A frame-
work for statically enabling online optimizations, in: CGO,
2009, pp. 169-179.

F. Matteo and S. Johnson, FFTW: An adaptive software ar-
chitecture for the FFT, in: Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, Vol. 3, Seattle, WA, May 1998, pp. 1381-1384.

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

G. Fursin et al. / Collective mind: Towards practical and collaborative auto-tuning 329

R. Miceli et al., Autotune: A plugin-driven approach to the au-
tomatic tuning of parallel applications, in: Proceedings of the
11th International Conference on Applied Parallel and Scien-
tific Computing, PARA’12, Springer-Verlag, Berlin/Heidelberg,
2013, pp. 328-342.

MILEPOST project archive (Machlne Learning for Embed-
ded PrOgramS opTimization), available at: http://cTuning.org/
project-milepost.

A. Monsifrot, F. Bodin and R. Quiniou, A machine learning ap-
proach to automatic production of compiler heuristics, in: Pro-
ceedings of the International Conference on Artificial Intelli-
gence: Methodology, Systems, Applications, LNCS, Vol. 2443,
2002, pp. 41-50.

Online JSON introduction, available at: http://www.json.org.
Z. Pan and R. Eigenmann, Fast and effective orchestration of
compiler optimizations for automatic performance tuning, in:
Proceedings of the International Symposium on Code Genera-
tion and Optimization (CGO), 2006, pp. 319-332.

PRACE: Partnership for Advanced Computing in Europe,
available at: http://www.prace-project.eu.

H. Roubos and M. Setnes, Compact and transparent fuzzy
models and classifiers through iterative complexity reduction,
IEEE Transactions on Fuzzy Systems 9(4) (2001), 516-524.

J. Shen, A.L. Varbanescu, H.J. Sips, M. Arntzen and D.G. Si-
mons, Glinda: a framework for accelerating imbalanced ap-
plications on heterogeneous platforms, in: Conf. Computing
Frontiers, 2013, p. 14.

S.S. Shende and A.D. Malony, The Tau parallel performance
system, Int. J. High Perform. Comput. Appl. 20(2) (2006), 287—
311.

Y. Shoham and K. Leyton-Brown, Multiagent Systems: Al-
gorithmic, Game-Theoretic, and Logical Foundations, Cam-
bridge Univ. Press, New York, NY, USA, 2008.

B. Singer and M. Veloso, Learning to predict performance
from formula modeling and training data, in: Proceedings of
the Conference on Machine Learning, 2000.

M. Stephenson and S. Amarasinghe, Predicting unroll factors
using supervised classification, in: Proceedings of the Inter-
national Symposium on Code Generation and Optimization
(CGO), IEEE Computer Society, 2005.

M. Stephenson, S. Amarasinghe, M. Martin and U.-M.
O’Reilly, Meta optimization: Improving compiler heuristics
with machine learning, in: Proceedings of the ACM SIGPLAN

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Conference on Programming Language Design and Implemen-
tation (PLDI’03), June 2003, pp. 77-90.

C. Tapus, I.-H. Chung and J.K. Hollingsworth, Active har-
mony: towards automated performance tuning, in: Proceedings
of the 2002 ACM/IEEE Conference on Supercomputing, Super-
computing’02, IEEE Computer Society Press, Los Alamitos,
CA, USA, 2002, pp. 1-11.

The HiPEAC vision on high-performance and embedded ar-
chitecture and compilation (2012-2020), 2012, available at:
http://www.hipeac.net/roadmap.

S. Tomov, J. Dongarra and M. Baboulin, Towards dense linear
algebra for hybrid GPU accelerated manycore systems, Paral-
lel Comput. 36(5,6) (2010), 232-240.

J. Treibig, G. Hager and G. Wellein, Likwid: A lightweight
performance-oriented tool suite for x86 multicore environ-
ments, CoRR, abs/1004.4431, 2010.

M.J. Voss and R. Eigenmann, ADAPT: Automated de-coupled
adaptive program transformation, in: Proceedings of Interna-
tional Conference on Parallel Processing, 2000.

R. Whaley and J. Dongarra, Automatically tuned linear alge-
bra software, in: Proceedings of the Conference on High Per-

formance Networking and Computing, 1998.

S. Williams, A. Waterman and D. Patterson, Roofline: an in-
sightful visual performance model for multicore architectures,
Commun. ACM 52(4) (2009), 65-76.

Q. Yi, K. Seymour, H. You, R. Vuduc and D. Quinlan, POET:
Parameterized optimizations for empirical tuning, in: Proceed-
ings of the Workshop on Performance Optimization of High-
Level Languages and Libraries (POHLL), Co-located with
IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), 2007.

M. Zhao, B.R. Childers and M.L. Soffa, A model-based frame-
work: an approach for profit-driven optimization, in: Third An-
nual IEEE/ACM International Conference on Code Genera-
tion and Optimization, 2005, pp. 317-327.

S. Zuckerman, J. Suetterlein, R. Knauerhase and G.R. Gao,
Using a “codelet” program execution model for exascale ma-
chines: position paper, in: Proceedings of the 1st International
Workshop on Adaptive Self-Tuning Computing Systems for the
Exaflop Era, EXADAPT’11, ACM, New York, NY, USA, 2011,
pp. 64-69.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

