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Swarm intelligence (SI) is widely and successfully applied in the engineering field to solve practical optimization problems because
various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive
abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS) as well as the singular spectrum
analysis (SSA), time series, and machine learning methods are proposed to conduct short-term power load prediction. The
forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test
results are representative of the out-performance of the SSA andCS in tuning the seasonal autoregressive integratedmoving average
(SARIMA) and support vector regression (SVR) in improving load forecasting, which indicates that both the SSA-based data
denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally,
the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong
robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

1. Introduction

With the additional types of energy integration into the
power grid and the development of generation technologies,
power utilities are going through a crucial challenge stem-
ming frommaintaining the desired security and reliability of
the electricity supply [1]. Various technologies in power gen-
eration, transmission, distribution, and utility are researched
by organizations, and the power grid is facing amajor change.
The smart grid, an internationally popular topic recently,
is pushing the power grid into an open system with the
characteristics of robustness and dynamics, which provides
a great chance to improve and enhance the load demand
response programs [2]. However, the high accuracy of load
prediction is the key factor in a power intelligence system,
which determines the quality of the smart grid. If the load
demands are overestimated, it will induce a conservative
operation with excessive energy purchased, thereby resulting
in energy waste and unnecessary cost. It has been estimated

that a 1% increase in the forecasting error will result in a
10 million dollar increase in operation costs [3]. If the load
demands are underestimated, it will induce a risky operation
with a deficient preparation of the spinning reserve, causing
the power system to operate in a vulnerable region to the
disturbance and power cut [4].

Therefore, according to the aforementioned analysis, the
power load prediction should be urgently conducted with
high accuracy to guarantee the operational performance
of the power system. Over the past few decades, large
efforts have been devoted to improving the power load fore-
casting accuracy. The various methods utilized for load
prediction range from the traditional statistical models to
the complicated artificial intelligence-based models [5]. For
intelligence-based methods, the evolutionary programming,
expert systems, artificial neural networks (ANN), and fuzzy
inferences are included [6]. Among the intelligent approach-
es, the ANN method has received more attention because
of its good flexibility, easy implementation, and nonlinear
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mapping ability between the powers loads and weather vari-
ables such as humidity, temperature, wind speed, and histori-
cal load patterns [7]. Moreover, to perform a better training
process and improve the load forecasting accuracy, the ANN
is usually exploited in a hybrid model by combining it with
other methods or techniques, such as the support vector
regression (SVR). The SVR [8] model is used successfully
to address forecasting problems in many fields, such as
the financial time series (exchange rate and stocks index)
prediction [9, 10], hydroinformatic forecasting [11, 12], and
tourist arrival forecasting [13]. Additionally, the SVR model
is also successfully applied in forecasting the power load
[14–17]. The empirical results demonstrate that the selection
of the two parameters 𝐶 (to trade off the training errors
and large weights) and 𝜎 (the parameter for the Gaussian
kernel function) in an SVR model influences the forecasting
accuracy considerably. To conquer the difficult problems in
the selection of the parameters for the SVR, the author con-
ducted a series of relevant experiments by employing a hybrid
sequence with swarm intelligent optimization algorithms for
the parameter determination to overcome the problem of
immature convergence (trapped in local optimum) [11, 15, 17].
To continue testing the superiority of the hybrid sequence
with swarm intelligent optimization algorithms, this paper
tried to employ the cuckoo search (CS) and particle swarm
optimization (PSO) algorithm to determine the values of
three parameters in an SVR model.

The cuckoo search (CS) algorithm is a new optimization
metaheuristic algorithm [21] based on a stochastic global
search and the obligate brood-parasitic behavior of cuckoos
in combination with the Lévy flight behavior of several birds
and fruit flies. It is widely and successfully used in a number of
practical problems, such as knapsack problems [22], software
test effort estimations [23], scheduling problems [24], test
sequence optimization problems [25], convex and nonconvex
ED (economic dispatch) problems, and microgrid power
dispatch problems [26]. In [26], the author implemented the
CS algorithm to solve both the convex and nonconvex ED
problems and the micro grid power dispatch problem. More-
over, the author compared the CS algorithmwith many other
artificial optimization algorithms, such as simulated anneal-
ing (SA), evolutionary programming (EP), genetic algorithm
(GA), PSO, differential evolution (DE), and bacterial foraging
algorithm (BFA). It is seen that the proposed CS algorithm
has the ability to converge to a better quality solution than
all of the artificial optimization algorithms mentioned above.
One of the main advantages of the CS algorithm is that there
are fewer parameters to be fine-tuned in the CS algorithm
than in the GA and PSO [21]. In [21], Yang and Deb formu-
lated the CS algorithm to search the minimum values of the
multimodal objective functions: the bivariate Michalewicz
function, De Jong’s first function, Shubert’s bivariate func-
tion, Griewangk’s test function, Ackley’s function, general-
ized Rosenbrock’s function, Schwefel’s test function, Rastri-
gin’s test function, and Michalewicz’s test function. Then, by
comparing the results searched by the CS algorithm with the
PSO and GA, Yang and Deb concluded that the CS algorithm
is superior to these existing algorithms formultimodal objec-
tive functions. The preliminary studies indicate that it is very

promising and could outperform the existing algorithms,
such as the artificial bee colony (ABC), GA, PSO, bacterial
foraging (BF), ant colony optimization (ACO), and honey-
bee mating optimization (HBMO) [27–38]. However, few
papers employ the CS algorithm to optimize the parameters
of the SARIMA and compare the convergence speed with the
PSO, which has a fast convergence speed. In this paper, we
conduct the CS algorithm to optimize the parameters of the
SVR and SARIMA and meanwhile compare the accuracy of
the forecast and convergence speed of the CS algorithm with
that of the PSO in predicting the power load.

The most popular and classic statistical models include
the linear or nonlinear regression models, time series mod-
els, state estimation, and Kalman filtering technology [7].
The multiregression models consider certain factors as the
explanatory variables, such as the weather factors, climatic
conditions, social activities, and seasonal factors, with the
regression coefficients estimated by the least squares estima-
tion or modern regression method. The time series models
assume that the load is related to its past values, which can
be regarded as an autoregressive process that is therefore
forecasted by time series models. Based on the aforemen-
tioned literature, however, most studies have been regardless
of the seasonal patterns, the fluctuation of which can lead to
a deviation in the load forecasts. To solve this, Wang et al.
[39] proposed a hybrid model by incorporating the SARIMA
and ANN to address the periodic relationships and nonlinear
patterns, respectively. SARIMA [40, 41] mainly addresses
the linear relationships and considers the periodicity of the
time series in a real-life scenario. Considering, insufficient
work that is related to the periodicity of load data has been
performed.Therefore, a newhybridmodel based on SARIMA
is proposed in this paper.

The SSA [42, 43] is a powerful and novel technique of
time-series analysis and forecasting incorporating the ele-
ments of classical time-series analysis, multivariate geom-
etry, multivariate statistics, dynamical systems, and signal
processing [44]. The main purpose of the SSA is to develop
a decomposition of the raw time series into the sum of
several interpretable and independent components, such as a
gradually varying trend, oscillatory components (periodic or
quasi-periodic components) and a structure-less noise.Then,
several of these components are used for time series forecast-
ing. The SSA technique has been successfully used in several
fields such as geophysics, hydrology, climatology [45, 46],
and economics [47, 48]. Golyandina and Korobeynikov [49]
described very detailed steps to show how the methodology
of the SSA analysis, forecasting, and parameter estimation
can be implemented with the help of the package Rssa. Chen
et al. [50] assessed the value of the SSA for extracting the
time-variable seasonal signals from the GPS time series and
compared the SSA-based results to the least-squares analysis
and Kalman filtering. The results demonstrate that the SSA
is a viable and complementary tool for extracting modulated
oscillations from the GPS time series. In [51], Wu and Chau
attempts to eliminate the lag effect, often appearing in the
ANN modeling process, by using the singular spectrum
analysis (SSA). Twowatersheds fromChina are exploredwith
daily collected data. The results demonstrate that the SSA
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can significantly enhance the performance of the prediction
model and eliminate the lag effect.

If the original load data are directly applied to a train
model without eliminating noise, the high-frequency com-
ponents may disturb the forecasted load patterns [6]. To
improve the load forecasting accuracy, a wavelet denoising
technique is usually adopted to extract the low frequency
component of the load pattern. Therefore, these data are uti-
lized in load forecastingmethods.However,many parameters
should be determined during the procedure of wavelet anal-
ysis, such as the determination of the decomposition layers,
wavelet basis function, and threshold function; furthermore,
each of the parameters is a large amount and is hard to
determine objectively. Because of the subjective selection of
the parameters for the wavelet, different researchers obtain
various denoising effects; thus, researchers often need to
conduct a large amount of data experiments to gain a satisfac-
tory result before continuing the study. However, one of the
major advantages of the SSA compared to other approaches
is that only two parameters are required to model the time
series under analysis [44]. It is a relatively new data-driven
or nonparametric technique developed to model a nonlinear
and/or nonstationary as well as noisy short time series [52].
Moreover, it is considered from Claudio [44] that the SSA
does not depend on a priori defined functions, such as the
Fourier approach (based on sine and cosine functions), but it
generates a set of components directly from the time series
under study. Additionally, the SSA technique can compute
periodic or quasiperiodic components and a slowly changing
trend. To the best of our knowledge, the SSA is not applied
to denoise the power load time series. Most of the references
predict the components that are decomposed by the SSA and
then reconstruct them. In this paper, we denoise the power
load by the SSA and then conduct the linear and nonlinear
methods to validate whether this denoising technique can
help the linear and nonlinear models further improve the
accuracy of forecasting.

This paper starts with a brief description of the related
methodology in Section 2, specifies the procedure of the SSA
in Section 3.1, and presents the results of the case study for
simulating the power load in Section 3.2.

2. Related Methodology

In this section, SSA, SARIMA, the SVR model, the SI
algorithm (CS and PSO), and the design of the proposed
hybrid SI-based predictive models are summarized as the
foundation to construct the proposed hybrid model.

2.1. Singular Spectral Analysis (SSA)Technique. TheSSA tech-
nique, a well-developed method of time series analysis, can
extract major information from a time series, such as the
trend and periodicities components without prior knowl-
edge regarding the trend as well as period values [50]. In
this section, the information regarding the SSA, which is crit-
ical for understanding the implementations of the SSA, is
described, and the SSA tool is used for the analysis of the
power load series.

The basic SSA consists of two complementary parts:
decomposition and reconstruction. For the decomposition
part, it comprises two steps: embedding and singular values
decomposition. For the reconstruction part, two steps are also
involved, which are the Eigentriple grouping and diagonal
averaging [51]. Assume a time series 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
}.

The processes of the SSA are given as follows [49].

Part 1 (decomposition). Consider the following.
Step 1 (embedding).Theoriginal time series𝑋 ismapped into
a sequence of multidimensional lagged vectors of size 𝐿 by
performing the embedding procedure
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For the trajectory matrix X, there are two vital properties,
which are the following.

(i) Both the columns and rows ofX are a subseries of the
original series𝑋.

(ii) The trajectorymatrixX is Hankel with equal elements
on the antidiagonals.

Step 2 (singular values decomposition (SVD)). Decompose
the trajectory matrix X by using the following:

X =
𝐿

∑

𝑖=1

𝑃
𝑖
𝑄
𝑖

𝑇
= X
1
+ X
2
+ ⋅ ⋅ ⋅ + X

𝐿
, (3)

where {𝑃
𝑖
}
𝐿

𝑖=1
is an orthonormal basis in 𝑅𝐿 and 𝑄

𝑖
= X𝑇𝑃

𝑖
.

For the orthonormal basis {𝑃
𝑖
}
𝐿

𝑖=1
, here we have two versions

for consideration:

(A) basic: {𝑃
𝑖
}
𝐿

𝑖=1
are the eigenvectors of XX𝑇,

(B) Toeplitz: {𝑃
𝑖
}
𝐿

𝑖=1
are the eigenvectors of the matrix C,

which is given by

𝑐
𝑖𝑗
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, 1 ≤ 𝑖, 𝑗 ≤ 𝐿. (4)

In both cases, the eigenvectors are ordered, which can
thereby guarantee that the corresponding eigenvalues are
placed in decreasing order.

Note that the Case (B) version is only suitable for the
analysis of the stationary time series with mean value zero.

Note also that the Case (A) version corresponds to the
SVD of X; that is, X = ∑
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𝑖
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singular vectors of X. Consider 𝑄
𝑖
= √𝜆

𝑖
𝑉
𝑖
, where 𝜆
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orthonormal systems of the eigenvectors corresponding to
these eigenvalues aswell as the right singular vectors ofX.The
collection (𝜆

𝑖
, 𝑈
𝑖
, 𝑉
𝑖
) is called the 𝑖th eigentriple of the SVD.

Part 2 (reconstruction). Consider the following.
Step 3 (eigentriple grouping). Let 𝑑 = max{𝑗 : 𝜆

𝑗
̸=

0}. After decomposition, the grouping procedure splits the
set of indices {1, . . . , 𝑑} into 𝑚 disjoint subsets 𝐼

1
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𝑚
.

Let 𝐼 = {𝐼
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The above procedure of selecting the sets 𝐼
1
, . . . , 𝐼

𝑚
is called

the eigentriple grouping. If 𝑚 = 𝑑 and 𝐼
𝑗
= {𝑗}, 𝑗 = 1, . . . , 𝑑,

then the corresponding grouping is called elementary. The
selection of several leading eigentriples for the Case (A) ver-
sion determines the approximation of the original time series
and corresponds to thewell-knownoptimality property of the
SVD.

Step 4 (diagonal averaging). In this step, each matrix X
𝐼
𝑗

is
transformed into a new series of length𝑁. Let Y be the 𝐿×𝐾
matrix with elements 𝑦

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑗 ≥ 𝐾, and 𝐿 ≤ 𝐾.

By performing diagonal averaging, we transfer the matrix Y
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The diagonal averaging utilized for a resultant matrix X
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Then, the initial series 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥
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} is decomposed

into a sum of𝑚 reconstructed series:
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𝑛
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The reconstructed series produced by the elementary
grouping is called the elementary reconstructed series.

The SSA is a data-driven technique that can extract
information from a short and noisy time series without
prior knowledge of the dynamics affecting the time series.
A significant characteristic of the SSA is that trend patterns
obtained in this way are not necessarily linear [50]. Most
importantly, the intricate periodicities lying in the time series
can be modulated and extracted out.

2.2. Seasonal Autoregressive Moving Average (SARIMA). The
time series that mainly contains the periodic and stochastic
components can be forecasted by the SARIMAmodel, which
is the most popular linear model for a seasonal time series
and has achieved great success in both academic research and
industrial applications over the past few decades [53].

A time series {𝑋
𝑡
| 𝑡 = 1, 2, . . . , 𝑁} is generated by a

SARIMA (𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)
𝑠
process if
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where 𝑝, 𝑑, 𝑞, 𝑃,𝐷,𝑄 are integers and 𝑠 is the periodicity
length. Consider the following:
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are polynomials in𝐵 of degree𝑝, 𝑞,𝑃, and𝑄. Herein,𝐵,𝑑, and
𝐷 denote the backward shift operator, the regular differential
order, and the seasonal differential order, respectively. 𝜀

𝑡
and

𝑋
𝑡
are the estimated residual and the observed value at time

𝑡; 𝑡 = 1, 2, . . . , 𝑘, separately. The residual series should be
identical and independent as a white noise with an average
value equal to zero and a constant variance value.

When fitting a SARIMA model, the following four steps
are involved [54].
Step 1 (model identification). Identify the SARIMA (𝑝, 𝑑, 𝑞)
(𝑃,𝐷,𝑄)

𝑠
, which determines the most relevant combination

of the autoregression and moving average process.
Step 2 (model estimation). These parameters are estimated
and determined by the maximum likelihood estimation
(MLE).
Step 3 (model validation).The precision of the chosen model
is tested, and possible enhancements are also established
during this step.
Step 4 (model forecasting). The future values that are refore-
casted based on the constructed SARIMA (𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)

𝑠
.

2.3. Basic Description of the Support Vector Regression (SVR).
The SVR is an adaptation of a recently developed machine
learning theory (MLT) known as the support vector machine
(SVM) proposed by Vapnik et al. [55]. In the SVR model, a
regression function 𝑦 = 𝑓(𝑥) is fit, and then it is applied to
predict the outputs based on a new input set. A brief review
of the SVR is introduced as follows [56].
Step 1. A nonlinear mapping 𝜑(⋅) : R𝑛 → R𝑛ℎ is defined to
solve a nonlinear regression problem bymapping the training
sets {(x

𝑖
, 𝑦
𝑖
)}
𝑁

𝑖=1
into a high dimensional feature spaceR𝑛ℎ .

Step 2. In the high dimensional feature space, the nonlinear
regression problem in the lower dimension space is trans-
formed into a linear one by a linear function, namely, the SVR
function

𝑓 (x) = w𝑇 ⋅ 𝜑 (x) + 𝑏, (10)

where 𝑓(x) denotes the forecasting values; the coefficients
w (w ∈ R𝑛ℎ)and 𝑏 (𝑏 ∈ R) are adjustable.
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Step 3. Define the empirical risk 𝑅emp(𝑓):

𝑅emp (𝑓) =
1

𝑁

𝑁

∑

𝑖=1

Θ
𝜀
(𝑦
𝑖
,w𝑇𝜑 (x

𝑖
) + 𝑏) , (11)

whereΘ
𝜀
(y, 𝑓(x)) is the 𝜀-intensive loss function and is given

by

Θ
𝜀
(y, 𝑓 (x)) = {

󵄨󵄨󵄨󵄨𝑓 (x) − y󵄨󵄨󵄨󵄨 − 𝜀, if 󵄨󵄨󵄨󵄨𝑓 (x) − y󵄨󵄨󵄨󵄨 ≥ 𝜀
0, otherwise.

(12)

The 𝜀-intensive loss function is utilized to control the
sparsity of the solutions and generalization of the models.
Step 4. Determine the training overall errors between the
training data and 𝜀-insensitive loss function, which can be
defined as a quadratic optimization problem with inequality
constraints. Consider the following:

Min
w,𝑏,𝜉∗,𝜉
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𝜀
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2
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y
𝑖
− w𝑇𝜑 (x

𝑖
) − 𝑏 ≤ 𝜀 + 𝜉
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𝑖
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𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

𝜉
∗

𝑖
, 𝜉
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(14)

The first term in (13) is employed to regularize weight
sizes, to penalize large weights, and to maintain regression
function flatness. The second term in (13) penalizes the
training errors of𝑓(x) and y by exploiting the 𝜀-intensive loss
function.Herein,𝐶 is a parameter to balance these two terms.
Training errors below −𝜀 are denoted as 𝜉

𝑖
. Otherwise, they

are denoted as 𝜉∗
𝑖
.

Step 5. Obtain the parameter vector w by solving the
quadratic optimization problem defined in Step 4:

w =
𝑁

∑

𝑖=1

(𝛽
∗

𝑖
− 𝛽
𝑖
) 𝜑 (x
𝑖
) , (15)

where 𝛽∗
𝑖
, 𝛽
𝑖
are the Lagrangian multipliers.

Step 6. Establish the SVR regression function by using the
following equations:

𝑓 (x) =
𝑁

∑

𝑖=1

(𝛽
∗

𝑖
− 𝛽
𝑖
)𝐾 (x

𝑖
, x
𝑗
) + 𝑏,

𝐾 (x
𝑖
, x
𝑗
) = exp (−𝛾󵄩󵄩󵄩󵄩󵄩x𝑖 − x

𝑗

󵄩󵄩󵄩󵄩󵄩

2

) , 𝛾 > 0,

(16)

where 𝐾(x
𝑖
, x
𝑗
) is the kernel function and 𝐾(x

𝑖
, x
𝑗
) = 𝜑(x

𝑖
) ⋅

𝜑(x
𝑗
). Several types of kernel functions can be selected to

build the model. However, the most commonly used kernel
functions are the Gaussian radial basis functions (RBF) and
the polynomial kernel functions. Until now, it has been diffi-
cult to determine which type of kernel functions for specific

data patterns is suitable [57]. In this paper, the RBF is selected
as the kernel function because of its easy implementation
and its strong capability of nonlinearly mapping the training
sets into an infinite dimensional space, which is suitable
to handle nonlinear relationship problems. Therefore, the
Gaussian RBF kernel function is specified in this study.

2.4. Swarm Intelligence Optimization Algorithms. In recent
years, the metaheuristic optimization algorithms and evolu-
tionary computation have been a noticeable part for solving
realmathematics and engineering problems [19], especially in
the field of parameter determination. In this section, several
of the optimization algorithms utilized in this study are
described briefly.

2.4.1. Cuckoo Search (CS). The CS algorithm, inspired by
the breeding behavior of cuckoos, is a recently developed
metaheuristic algorithm by Yang and Deb [21]. For the CS
algorithm, two behaviors are adapted and combined from
nature that fulfills the criteria of a metaheuristic algorithm,
which are described as follows [22–24].
Breeding Behavior. Many species of cuckoos lay their eggs
in communal nests, but to increase the hatching probability
of their own eggs, they always remove other cuckoos’ eggs.
Once a host cuckoo discovers an alien egg (does not belong
to itself), then it will either throw the egg away or discard
the current nest and build another nest elsewhere. For the CS
algorithm in each step with the new solutions generated, the
poorer solutions are abandoned.
Lévy Flight. Generally, the flight path of many birds is
effectively a random walk, which is representative of Lévy
flights, with a step length drawn from the Lévy distribution.
In the CS-based algorithm for producing a new solution
𝑥
(𝑡+1) for a cuckoo, a Lévy flight is defined as the following

expression:

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝛼 ⊕ Lévy (𝜆) , (17)

𝛼 = 𝛼
0
(𝑥
(𝑡)

𝑗
− 𝑥
(𝑡)

𝑖
) , (18)

Lévy (𝜆) ∼ 𝑙−𝜆, (1 < 𝜆 < 3) , (19)

where 𝑥𝑡
𝑖
is the eggs (samples), 𝑖 is the sample size, 𝑡 is the

iterations, and 𝛼 is the step size that is mostly utilized as
in (18). The symbol ⊕ denotes an entry-wise multiplication,
while the Lévy(𝜆) values are found in the Lévy distribution
defined in (19).

Figure 1 illustrates the basic steps of the CS algorithm and
Lévy flight together with a detailed immigration of a cuckoo
toward a goal habitat. More information regarding the CS
method can be found in literature [21].

2.4.2. Particle Swarm Optimization (PSO). The PSO algo-
rithm, inspired by the social behaviors of animal movements,
investigates the search space by applying a flock of potential
solutions named particle swarms, characterized by their
corresponding position and velocity [58]. The individual
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Shifted to another
area by long jump
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can be described as:

Group1

Group 3
Group 2

Begin
Objective function,;
Generate initial population of n host nest,;
While (t < max generation or stop criterion)

Evaluate its quality/fitness,
Choose a nest among n(say, j) randomly
If()

Replace j by the new solution
End

Worst nests are abandoned and new nest are built;
Keep the best solution;
Rank the solutions and find the current bests;

End while
Post process of results and visualization;
End
The basic steps of the CS algorithm.

CS algorithm is based upon
three main roles.

(1) Each cuckoo lays one egg at a time,

and dumps its egg in randomly chosen nest.

(2) The best nests with high quality of eggs

will carry over to the next generations.

(3) The number of available host nests is

fixed, and the egg laid by a cuckoo is

discovered by the host bird with a

New habitat

𝛼

A Lévy fight in two-dimensional plane

A fraction (Pa) of worst nest occurs;

Get a cuckoo randomly by Lévy light

A
∗
d

probability (0 < Pa < 1)Pa

Figure 1: The basic steps of the CS algorithm and Lévy flight together with a detailed immigration of a cuckoo toward a goal habitat [18–20].
In this paper, we set the initial population size as 25 and the iteration to 100; an alien egg laid by a cuckoo bird is discovered by the host cuckoo
with a probability 𝑃

𝑎
= 0.25.

particles’ position and the velocity are given by (20) and (21),
respectively [20],

𝑥
𝑘+1

𝑖
= 𝑥
𝑘

𝑖
+ V𝑘
𝑖
, (20)

V𝑘+1
𝑖

= 𝜔V𝑘
𝑖
+ 𝑐
1
𝑟
1
(𝑃best,𝑖 − 𝑥

𝑘

𝑖
) + 𝑐
2
𝑟
2
(𝐺best − 𝑥

𝑘

𝑖
) , (21)

where𝜔 is the inertia weight; 𝑐
1
and 𝑐
2
denote the acceleration

constants; 𝑃best,𝑖 and 𝐺best are the individual and global best
position, separately. For each step, the velocity of each particle
is changed toward the best local and global locations. The
process is repeated until a predefined termination condition
is reached. More details on the PSO are available in literature
[32]. In this paper, we set the initial population size as 25 and
the iteration as 100, which are the same as the CS algorithm,
and the acceleration 𝑐

1
and 𝑐
2
equals 1.49455.

2.5. Design of the Proposed Hybrid SI-Based PredictiveModels.
The original power load data have some noisy information.
If not eliminating noise and directly training and building
models, the high frequency components may disturb the
forecasted load patterns [6]. To improve the load forecasting
accuracy, the SSA technique is adopted to extract the trend
and periodic components and remove the useless informa-
tion from the load pattern. After this procedure of data
preprocessing, a smoother power loads time series is obtained
for forecasting. Furthermore, it can also calculate the period.
It is well known that the predictive accuracy of an SVR
model largely relies on a reasonable setting of the kernel
parameter 𝜎 and hyperparameters 𝐶. Therefore, the determi-
nation of two parameters is a significant issue [59]. However,
there is no structural approach or any shortage of opinions
on the efficient selection of SVR parameters. The traditional
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Figure 2: The structure of the proposed SI-based hybrid models.
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method to determine the parameters of the SVR is a grid
search, which is time-consuming and not effective enough
to obtain a satisfactory result. In this study, the artificial
intelligence optimization (AIO) algorithm, that is, the CS
and PSO, is adopted to optimize the parameter selection
of the proposed SVR model. Additionally, the traditional
method of estimating the parameters of SARIMA is the
maximum likelihood estimation, which has an assumption
of a normal distribution or another known distribution.
However, in the real-world scenario, the power load data are
not strictly normally distributed. Thus, employing CS and
PSO to optimize the parameters of SARIMA is necessary to
build a more proper time series model. The structure of the
proposed hybrid models is given in Figure 2.

2.6. Evaluation Criteria. The determination of which pre-
diction model outperforms the other models is of prime
concern. Inmost study cases,model performance is evaluated
by numerous error evaluation criteria that can be classified
into two main types: absolute error and relative error. For
the absolute error, there are the mean absolute error (MAE)
and root mean square error (RMSE). For the relative error,
there are the mean absolute percentage error (MAPE) and
symmetrical mean absolute percentage error (SMPAE). All
of them are commonly used to evaluate the accuracy. In this
paper, the mean absolute error (MAE) and mean absolute
percentage error (MAPE) are used to measure the prediction
accuracy of these models. The smaller these values are, the
better the predictive performance is.

The MAE can be defined as

MAE = 1
𝑇

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑦𝑡 − 𝑦𝑡
󵄨󵄨󵄨󵄨 .

(22)

The MAPE can be defined as

MAPE = 1
𝑇

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
𝑡
− 𝑦
𝑡

𝑦
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100%, (23)

where 𝑦
𝑡
and 𝑦

𝑡
denote the real and predictive values at time

𝑡, respectively.

3. Case Study

As described previously, the SSA technique is widely used
in extracting principal information; that is, its trend and
oscillation components, which are then effectively used for
time series forecasting. Understanding that extracting lead-
ing information by the SSA is also a procedure of denoising
such as wavelet denoising, in this work, we decompose the
power load time series and then reconstruct the principal
components into a smoother time series. To demonstrate the
performance of the SSA denoising used in the power load,
in Section 3.1, we specify the procedure of simulating the
power load time series fromNSW. In Section 3.2, to eliminate
noisy information that may disturb the forecasted accuracy,
the results of the SARIMA and SVR prediction after the SSA-
based denoising are displayed to test the capability of SSA
noise elimination. Moreover, forecasting models optimized

(1) (98.35%) (2) (0.65%) (3) (0.62%)

(4) (0.15%) (5 (0.14%) (6) (0.03%)

Figure 3: 1st stage: eigenvectors (𝐿 = 48).

by the PSO and CS algorithms are proposed in this section
to further improve the predictive ability.

We choose two samples of a half-hour power load, each of
which contains 336 training data and 48 test data from April
to May in NSW of Australia.

3.1. SSA-Based Denoising. Thepower load time series in Case
1 is chosen as an example to show the detailed process of SSA-
based denoising.The data in Case 2 are denoised by the same
procedure as described below. SSA-based denoising has two
main stages: the 1st stage is to extract the trend; the 2nd stage
is to extract the seasonal components from the residuals from
the first step and then reconstruct it.
1st Stage (decomposition). In this stage, the main task is to
extract the trend component from the original time series
with a small window length. For a varying form of the trend,
its extraction is similar to a smoothing effect, and we begin
with choosing a possibly minimal window length which in
this case is 𝐿 = 48. The SSA with small 𝐿 performs a smooth-
ing effect of the series by using a filter of order 2𝐿 − 1. The
reason we choose this window length is similar to that in
moving the averaging procedure: because the smoothing time
series includes a periodic component, the window length
should be divisible by the period.

Six leading eigenvectors are displayed in Figure 3, which
reflects a large contribution of the leading eigentriple. The
leading eigenvector contains nearly constant coordinates, and
thus, it corresponds to a pure smoothing by the Bartlett filter.

1st Stage (reconstruction). In Figure 4, the result of recon-
struction by each of the six eigentriple is illustrated. Com-
bining both figures confirms that the first eigentriple cor-
responds to the trend, while the rest of the eigentriples
contains high frequency components and thus are not related
to the first component, the trend. Additionally, Figure 4(1)
is roughly considered as the weekly trend, having a share of
98.35% of the power load time series according to Figure 3(1).
The trend in Figure 5 is precisely the trend depicted by one
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Figure 5: 1st stage: initial series, estimated trend, and residuals (𝐿 = 48, ET1).

leading eigentriple and coincides with the first reconstructed
component from Figure 4(1).
2nd Stage (decomposition and visual information). Because
we have extracted out the trend in the first stage, this stage
is the extraction of seasonality from the residual component
depicted as a green dotted line in Figure 5.

To properly identify the sine waves, we use the graph of
eigenvalues (Figure 6), scatterplots of eigenvectors (Figure 7),
periodogram (Figure 8), and w-correlation matrix of the
elementary components (Figure 9). In Figure 6, we see that
several steps are obtained by approximately equal eigenval-
ues. Eight pairs of eigenvectors are illustrated in Figure 7,
showing four nearly regular polygons. The number of edges
of polygons represents their periods. ET1-2, ET3-4, ET5-6,
and ET7-8 correspond to the periods of 48, 24, 16, and 12
in Figure 8, respectively, and correspond to F1-F2, F3-F4,
F5-F6, and F7-F8 in Figure 9. These periods are obtained
by the seasonality, are clearly explained by the periodogram
(Figure 8), and are estimated as 48.14255, 23.94845, 16.04126,
and 12.00288. Figure 9 displays the considered pairs of
components for a high correlation within and for a low
correlation between.
2nd Stage (reconstruction and plotting of the results). The
extracted seasonality (ET1-8) is illustrated in Figure 10(c).
A slow change in the sine wave phases and amplitudes is
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Figure 6: 2nd stage: eigenvalues of residuals (𝐿 = 168).

observed in Figure 7 and produces a periodic performance
with a complicated form. Figure 10 demonstrates the resultant
decomposition of both stages of SSA. Figure 11 depicts the
reconstructed time series in comparison with the actual
power load time series.

3.2. Forecasting Results Analysis of Proposed SI-Based Forecast-
ing Models. In this section, we employ SARIMA and SVR
to build the forecasting models after denoising the useless
information in the power load by SSA. To further improve
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Figure 7: 2nd stage: scatterplot for eigenvector pairs (𝐿 = 168).
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the accuracy of forecasting, we optimize the parameters of
SAMRIA and SVR by the CS and PSO.

The proposed hybrid models are applied for short-term
(half an hour) load forecasting with a 48-step ahead of NSW
in Australia over a prediction of one day in two cases. The
performance of the proposed methods is marked as CS-SSA-
SARIMA and CS-SSA-SVR. The comparisons of the power
load forecasting results are intuitively shown in Figures 12 and
13. The forecasts for Case 1 based on the PSO-SSA-SARIMA,
CS-SSA-SARIMA, PSO-SSA-SVR, and CS-SSA-SVR models
are illustrated in Figure 12, while Figure 13 shows the results of
the proposed methods for Case 2. Figures 12(b) and 12(c) are
boxplots of the percent error (PE) and error (E), respectively.
In Figure 12(b), the first to fourth boxplots correspond to
the models of SARIMA, SSA-SARIMA, PSO-SSA-SARIMA,
and CS-SSA-SARIMA.The positive values of PE and E mean
the forecasting values are underestimated, while the negative
values indicate the forecasting values are overestimated. The
rest of the graphs and subgraphs can be identified in the same
manner.

It can be seen from Figures 12 to 13 over the predictive
horizon that the forecasting series obtained by the pro-
posed hybrid models CS-SSA-SARIMA and CS-SSA-SVR
perform substantially betterwith synchronicity and a range of

the vibration of the series approximating to the original series.
In Figures 12(a) and 12(d), it is obvious that both of the curves
for SSA-SARIMA and SSA-SVR are substantially closer to
the original data. A consistent conclusion can be seen in
Figures 12(b), 12(c), 12(e), and 12(f). In Figures 12(b) and
12(c), the boxplots from left to right represent the accuracy
of SARIMA, SSA-SARIMA, PSO-SSA-SARIMA, and CS-
SSA-SARIMA. Through observing the trend of these four
boxplots from Figures 12(b) and 12(c), we discover a trend
evidently decreasing progressively. Similarly, a decreasing
tendency can be observed from Figures 12(e) and 12(f).
Furthermore, when observing each of boxplot from Fig-
ure 12(b), we notice that many forecasting values of SARMIA
model are underestimated, while that of SSA-SARIMA are
less underestimated because the median of SSA-SARIMA’s
boxplot is much smaller than that of SARIMA’s boxplot.
These results combinedwith the similar results obtained from
Figure 13 demonstrate the excellent denoising performance of
the SSA and that processed data by the SSA can enhance the
forecasting estimate of themodels built by SARIMAand SVR.

In Figures 12(a)–12(c), it can obviously be observed that
the forecasting performance of SARIMA, SSA-SARIMA, and
PSO-SSA-SARIMAare substantially lower than that obtained
by the proposed model, especially during the periods of peak
load,which ismarkedwith black dotted rectangles.Moreover,
the same phenomenon can be obtained from Figures 12(d)–
12(f) with the poorest forecasting results obtained by a
single SVR model. Additionally, from Figures 12(e) and
12(f) the median of CS-SSA-SVR’s boxplot is close to zero,
while median of other models are not. This indicates that
the forecasting values of proposed model are only slightly
underestimated. In sum, the forecasting values ofmodel SSA-
SVR are substantially better than that of the SVR but are
inferior to that generated by the model CS-SSA-SVR. As for
Case 2, the similar results can be concluded from Figure 13.
These figures reveal that the models of SSA-SARIMA and
SSA-SVR based on the optimization of the CS have a higher
predictive precision.
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Figure 9: 2nd stage: w-correlation matrix (𝐿 = 168).
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Figure 12:The forecasting results of the proposed PSO-SSA-SARIMA, CS-SSA-SARIMA, PSO-SSA-SVR, and CS-SSA-SVRmodels for Case
1 ((b, e): PE(𝑡) = (𝑦(𝑡) − 𝑦(𝑡))/𝑦(𝑡), (c, f): E(𝑡) = 𝑦(𝑡) − 𝑦(𝑡)).

Figure 14 illustrates the convergence speed by PSO and
CS optimizing the SSA-SARIMA model in Case 1 and Case
2, respectively. It is evident that in both cases, both the
convergence point and MSE of the PSO is smaller than that
of the CS, while the precision of the prediction for the CS-
SSA-SARIMAmodel is higher than that of the PSO illustrated
fromFigures 12 and 13 and listed in Table 1.This demonstrates
that PSO has a faster convergence speed but a lower accuracy
than the CS in these two cases, implying that the PSO appears
to be overfitting.

To evaluate the forecasting model quantitatively, the sta-
tistical errors are computed in testing datasets over the fore-
casting horizon. Table 1 and Figure 15 give the statistical error
measures’ comparisons between different models. As shown
in Table 1 and Figure 15, MAPE of SARIMA decreases from
4.22% to 2.37% in Case 1 and from 6.87% to 4.60% in Case

Table 1: Statistical error measures’ comparison between different
models.

Model MAPE (%) MAE
Case 1 Case 2 Case 1 Case 2

SARIMA 4.22 6.87 344.32 613.62
SSA-SARIMA 2.37 4.60 190.68 404.10
PSO-SSA-SARIMA 2.37 4.47 190.79 392.06
CS-SSA-SARIMA 1.38 3.82 113.72 333.12
SVR 8.75 6.64 734.83 580.10
SSA-SVR 5.53 5.76 451.26 516.21
PSO-SSA-SVR 4.96 4.68 404.26 392.42
CS-SSA-SVR 3.42 3.73 278.86 305.88

2. The result of the MAE is similar to the MAPE, decreasing
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Figure 13:The forecasting results of the proposed PSO-SSA-SARIMA, CS-SSA-SARIMA, PSO-SSA-SVR, and CS-SSA-SVRmodels for Case
2 ((b, e): PE(𝑡) = (𝑦(𝑡) − 𝑦(𝑡))/𝑦(𝑡), (c, f): E(𝑡) = 𝑦(𝑡) − 𝑦(𝑡)).

from 344.32 to 190.68 in Case 1 and from 613.62 to 404.10 in
Case 2. As for the SVR, the SSA-SVR outperforms the single
SVR method because both the MAPE and MAE decrease in
Case 1 and Case 2.This result demonstrates that the SSA has a
strong capacity for noise elimination, which can improve the
forecasting performance of SARIMA and SVR. Considering
that the cuckoo search can be a very effective tool in
parameter searching for further improving the accuracy of
the SARIMA and SVR models, in this study, the CS-SSA-
SARIMA and CS-SSA-SVR models outperform the SSA-
SARIMA, PSO-SSA-SARIMA, SSA-SVR, and PSO-SSA-SVR
models, respectively. These results prove that the cuckoo
search is capable of improving the accuracy ofmodel forecast-
ing. Then, a comparison between the CS-SSA-SARIMA and
PSO-SSA-SARIMA models and a comparison between the
CS-SSA-SVR and PSO-SSA-SVRmodels indicate that the CS

algorithm outperforms the PSO algorithm in the application
of improving the forecasting capacity of the proposed hybrid
models.

4. Conclusions and Future Work

This paper presents hybrid swarm intelligent forecasting
model strategies to accurately predict the short-term power
load.The results obtained in this study illustrate that the SSA
technique can be successfully used as a noise eliminating
technique for time series similar to the short-term power
load time series used here. The SSA-based denoising tech-
nique is capable of extracting important trend and seasonal
components and then reconstructing it into smooth data to
enhance the forecasting accuracy for SARIMA and SVR. In
addition, the good noise eliminating ability via SSA could
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Figure 14: CS and PSO convergence procedure during the training for the NSW load.
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Figure 15: Statistical error measures’ comparison between different models.

make these characteristics more obvious when modeling and
could provide amore accurate forecast by SARIMA and SVR.

The CS algorithm is a recently developed metaheuristic
artificial intelligence algorithm of parameter optimization.
It has the ability to search parameters outstrips, that of

the maximum likelihood estimation method and that of
the traditional optimization algorithm (PSO) when estimat-
ing the parameters of SARIMA. Similarly, its capability of
expanding the scope of the search intelligently provides an
optimization that is more effective and efficient than a grid
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search when searching the optimal hyperparameters in SVR.
Although PSO has a faster convergence velocity, it appears
to have an overfitting problem. In our cases, it is revealed
that by optimizing the parameters of the SSA-SARIMA and
SSA-SVR models, the CS algorithm can further enhance
the accuracy of prediction in short-term power loads and
obtains a higher precision than PSO. The proposed hybrid
swarm intelligent forecasting model could predict the short-
term power load in a real-world scenario, which helps to
enhance the predictive accuracy of the power system.

In this paper, our contribution is that an SI-based fore-
casting model is proposed to highly increase the accuracy.
However, we did not sufficiently compare other feasible
forecasting models, data preprocessing methods, and AI
algorithms, such as BP, autoregressive integrated moving
average (ARIMA), wavelet analysis, and GA. Amore detailed
comparison between the proposedmethod and other feasible
forecasting models, data preprocessing methods, and SI
optimizations is required. This is a very heavy workload but
is very meaningful research; thus, it is necessary to perform
additional research in future work.

For future work, we outline four directions. The first
direction is to study the use of the other feasible forecast-
ing models mentioned above within our framework. The
second direction is to study in detail the other feasible SI
optimization algorithms mentioned in this paper to search
parameters of various forecastingmodels.The third direction
is to study the use of other feasible data preprocessing
methods, including themethods of not only denoising useless
information but also removing outliers. The fourth direction
is to explore the ability of different SI optimization algorithms
to search certain parameters of certain forecasting models.

Highlights

(i) A novel swarm intelligence-based hybrid approach is
proposed for short-term load forecasting.

(ii) The proposed approach consists of three steps to in-
crease the forecasting accuracy.

(iii) SSA is used for removing noised information in the
first step.

(iv) SARIMA and SVR are used for forecasting in the sec-
ond step.

(v) CS is employed to optimize the parameters of SARI-
MA and SVR.

(vi) The proposed approach can improve the forecasting
accuracy.
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H. Sossa, “A multi-threshold segmentation approach based on
artificial bee colony optimization,” Applied Intelligence, vol. 37,
no. 3, pp. 321–336, 2012.

[28] R. C. Eberhart and Y. Shi, “Particle swarm optimization:
developments, applications and resources,” in Proceeding IEEE
International Conference on Evolutionary Computation, vol. 1,
pp. 81–86, 2001.

[29] K. Hammouche, M. Diaf, and P. Siarry, “A multilevel automatic
thresholding method based on a genetic algorithm for a fast
image segmentation,” Computer Vision and Image Understand-
ing, vol. 109, no. 2, pp. 163–175, 2008.

[30] M.-H. Horng, “Multilevel minimum cross entropy threshold
selection based on the honey bee mating optimization,” Expert
Systems with Applications, vol. 37, no. 6, pp. 4580–4592, 2010.

[31] M.-H. Horng and T.-W. Jiang, “Multilevel image thresholding
selection using the artificial bee colony algorithm,” in Artificial
Intelligence and Computational Intelligence, vol. 6320 of Lecture
Notes in Computer Science, pp. 318–325, Springer, Berlin, Ger-
many, 2010.

[32] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, December 1995.
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