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We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-
Volterra systems and the existence of invariant tori in quadratic systems in R?.

1. Introduction

It is well known that n-dimensional generalized Lotka-
Volterra systems are widely used as the first approximation for
a community of # interacting species, each of which would
exhibit logistic growth in the absence of other species in
population dynamics. And this system is of wide interest
in different branches of science, such as physics, chemistry,
biology, evolutionary game theory, and economics. We refer
the reader to the book of Hofbauer and Sigmund [1] for
its applications. The existence of limit cycles and invariant
tori for these models is interesting and significant in both
mathematics and applications since the existence of stable
limit cycles and invariant tori provided a satisfactory expla-
nation for those species communities in which populations
are observed to oscillate in a rather reproducible periodic
manner (cf. [2-4] and references therein).

To study the bifurcation of Lotka-Volterra class, we con-
sider three-dimensional generalized Lotka-Volterra systems

ax; (@)

3
T:X,.(t)(ﬁ,.+j=zloc,.jxj(t)>, i=123, (1)

which describes the interaction of three species in a constant
and homogeneous environment, where X;(f) is the number
of individuals in the ith population at time ¢ and X;(¢) > 0,
B; is the intrinsic growth rate of the ith population, the o;

are interaction coefficients measuring the extent to which the
jth species affects the growth rate of the ith, ; and «; are
parameters, and the values of these parameters are not very
small usually.

Over the last several decades, many researchers have
devoted their effort to study the existence and number of
isolated periodic solutions for system (1). There have been
a series of achievements and unprecedented challenges on
the theme even if system (1) is a competitive system (cf. [5-
12]). In [13], Bobienski and Zotadek gave four components of
center variety in the three-dimensional Lotka-Volterra class
and studied the existence and number of isolated periodic
solutions by certain Poincaré-Melnikov integrals of a new
type. In [14], Llibre and Xiao used the averaging method
to study the existence of limit cycles of three-dimensional
Lotka-Volterra systems. In this paper, we will use the normal
form theory to study the same question. And furthermore, we
will give the existence of invariant tori in a system of the form
(2).

This paper is organized as follows. In Section 2, we obtain
some preliminary theorems about a normal form system of
degree two in R* with two small parameters A, and A, and
other bounded parameters. In Section 3, we first change the
system (1) into a system of the form

d
—U=u8U+vV+

o
dr >, apU' VW,

i+j+k=2



2
av ird
— =W +ueV+ Y b UVIWE
dt i+j+k=2
aw A
- Vel
W 42_ U VIWE,
i+j+k=2

)
where a;j;, b, and ¢ for i, j,k = 0, 1,2 are functions of the
parameters f3; and «; in system (1), u and v > 0 are bounded
parameters, and 0 < &€ <« 1 is perturbation parameter. And
then we get the real normal form of the system (2) after
a series of transformations. Two examples are provided to

illustrate these results in the last section.

2. Preliminary Theorems

In this section, we first consider a normal form system of

degree two in R®. Then, by a series of transformations we

introduce some theorems for the normal form. The reader is

referred to [15] for more details about the following content.
Consider the 3-dimensional system

x =Dx+ X, (x), (3)

where X, (x) = O(|x|*) is C* in x € R?, and

010
D:<—100>. (4)
000

By adding up the 2-parameter linear part diag(A,, 1;, 1,)x we
obtain

x=D(A,MA,)x+ X, (x), (5)
where D(A,, A,) = diag(A(A,), A,), with
A1
Ao =(Y 1) ©

It can be verified that (5) has the following real normal form
up to order 3 (see [15]):

Xy =A X+ X+ a X, x5 + bxyxs + (ayx) + byx;y)

X (xf + xi) +(asx, + byx,) xi +0 (|x1,x2,x3|4) ,
Xy =—x; + Axy — byx x5 + a;x,5 + (~byx; + ayx,)

X (xf + xi) + (=byx; + asx,) x5 + O (|x1,x2,x3|4) ,
X3 =A,%5 + ¢ (xf + xi) + dlxi ) (xf + xi) X5

+ dzxg +0 (lxl, X5, x3|4) .
7)

For convenience, we assume that a,b, ¢, #0 as in [15]. By the
scaling

|d1| |d1| 1
—_ X, — Xy, x
let]ay %
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(7) becomes

. 7 - T 2, .2
X = A x4 X, +xx5 +byx,xs + (ale + bzxz) (x1 + x2)
_ = 2 4

+ ((13x1 + b3x2)x3 + O(|x1,x2,x3| ),

Xy = =X+ A X, —bixyx; + x5 + (—ble + ﬁgxz)
2, .2 7 ~ 2 4

X (xl + xz) + (—b3x1 + a3x2)x3 + O(|x1,x2,x3| ),
. (2, 2\ G2 (2,2
X3 = A5+ G (x1 + xZ) +d;x5+ 6 (x1 + xz)x3

-, .
+dyxy + O |y, x50 55" )

)
where
- b d -  |di|b
b1=_1) azzlllaja 2=|1|2)
0 o1 af leifai
~ _ % 7 _b __ |4y
a; = e b, = et G = T sgn(c), (10)
-~ d d - d
a =2, ~:|1|Q, d=-2.
a || af a9
Then, by introducing polar coordinates
x, = pcos0, x, = —psin6, 1
(9) further becomes
O=1+bx;+b,p" +byxs +p 'S, (0,p,x3),
P=Mp+pxs+@p +a@px; +5,(60,p.x3),
3= ApXs +Ep° +di X3 +5p7x; +dox) + 85 (6, p ;)
(12)

where §;, S,, and S; are 27 periodicin 0, and S, S,, and S; =
O(lp, x3|4). By a further scaling of the form

p— &p X3 — €X3,
AL — &by, A, — €, (13)
>0, |6, =1,

(12) becomes
0=1+¢ [Elx3 + e(l?zp2 +l~93x§)] + p7183O(|p, x3|4) ,

p=¢p [61 + X5 +s(ﬁzp2 +?i3x§)] +O(s3),

X3 =€ [62x3 + E1P2 + 51?6? te (Ezpsz + d;x:)] +0 (83) .
(14)
We obtain from (14)
dp =
90 &p [fo (p.x3) +ef1 (P x3) + £ (6, p, x3,£)] >
(15)

dx _
d_63 =¢e[go (P, x3) + €9, (P x3) + G (0, P x5.€)]
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where
fo(pox3) = 8) + x5,

9o (Psx3) = 85 + E1P2 + Jlx;

fi(pxs) = —0,byx; + 52172 + (53 - bl) x%,
g1 (p.x3) = —5152X§ + (Ez - ElEl)sz3 + (Jz —791071)";

f,3=0(¢).
(16)

Note that the functions f and g in (15) are 27 periodic in 8 but
may not be well defined at p = 0. Thus, we suppose p > & > 0
for (15).

The averaging system

d
d_z = pfo (P x3),

dx
d_63 = g0 (P x3)

17)

has a singular point (p,, s,) on the half plane p > 0 if

& (d, - 8,6,) <0, (18)

where py = \/(8,8, - d,)/¢, s, = —6,. By denoting

0 (pfo> 90)

B=—"—"0p5) (19)
a(p»x;) (o)

we obtain |B| = -2, p} # 0, and the characteristic polynomial
of Bis f,(B) = A* = (8, — 2d,8,)A — 2(d, — 8,8,). We define

A=(8,-24,8,) +8(d, - 8,8,). (20)

According to Theorem 4.1.3 in [15], we can obtain the
following theorem.

Theorem 1. Suppose that (18) holds. Then, (7) has a periodic
orbit near the origin for 0 < & < 1. Further, the periodic
orbit is stable (resp. unstable) if one (resp. none) of the following
conditions holds:

(a) A=0andd, —2d,8, <0,

(b) A <0and 8, —2d,6, <0,

() A>0,8,-2d,8, <0,andd, — 8,5, <0,
where A is given by (20).

Then, by letting s = x; +8, and @ — &' and truncating
the terms of order &*, we have from (15)

d
% =ps+ep [§2p2 + £, (s)] ,

(21)
ds

a0 ElPZ +g,(s)+e [93 (s) P2 * 94 (5)] >

3
where
fo(s)= (@ -b) s’ +08, (b - 2a) s + &,
9, () = dys* + (8, -28,d,) s + 6, (8,d, - 8,),
(22)

g3 (s) = (é _‘7151) (s=6y),

94 () = (Jz _Elél}) (s- 51)3 - 5251 (s- 51)2-

Thus, in order that (21) has a limit cycle, we necessarily
suppose

8,-28,d, =8, SeR, (23)
and ¢ < 0,5d, > 0, that is,
a;q <0, ad; > 0. (24)

This yields ¢, = d, < 0, and hence (21) becomes

dp ~ 2
0 ps+ep [azp +f2(s)],

(25)
jl_; = 51(P2+52—1)+s[g3(s)p2+§4(5)+o(s)]’
where
5, (d-ab)< +3, (a5, - 30,)<
(26)

+ (6+ 3d, +5151)s— (6+cf2 +EIEI)81.
For small € > 0, (25) has a focus A, (p(¢), s(¢)) with
p(0) =1, s(0) =0, SO =-(@+a). (27)
We define
8 = 25153—332—@—252(1 -a)

<[, -5 - 25, (1-) - 254

2 . (28)
8(’): 3-2¢ [(2_51)(25153—3612)—(1_51)

x (g +23,(1-5))].
By using the coefficients in (7), we have

2d 3d d d
8y = 13‘13__22__12[02+2a2(1__1>:|>
4 ay aa a

11
Ay = 3 [_3 (3a1d2 - 2a3d1)
a;

-2 (o 20 (1-2))
cai 2 2 a, ’
, 2 d,\ [ 2d,a, 3d,
%52, [P )\ e T
1 1 1 1 1

A (12D (g2 (1-2)) .

(29)

Then, in 1997, the following result was obtained in [15].



Theorem 2. Suppose that (24) holds and A, # 0. Then, for any
given &, > 0 there exist an g, > 0 and a C' function ¢y(A,) =
2d, A /ay) + 8gA% + O(N3) and ¢, (A,) = (2d, A1 /a;) +S)A% +
O(Ai) such that for 0 < )L% +A§ < &, (7) has a unique invariant
torus near the origin if Ay¢;(1;) — A3 < Agh, < Aydy(A,)
and has no invariant torus if AgA, > Ay¢y(A,). Moreover,
the torus, if it exists, is stable (resp. unstable) when A, < 0

(resp. > 0).

3. Normal Form of System (2)

In this section, we consider system (1) in the first octant Ri,
where R, = {x € R : x > 0}. We now look for the conditions
for the existence of positive equilibria of system (1), which
is equivalent to find the positive solutions of the following
system:

Bi+ Z“U i<

We suppose that there exists at least one positive solution
of (30). Without loss of generality, we assume that the positive
equilibriumis (1, 1, 1). Then, we move it to the origin by doing
the change of variables Y; = X; — 1,i = 1,2, 3. Then, system
(1) can be written as

i=1,23. (30)

——(Y+1)Zoc,1 o i=1,23. (31)

Now, we shall investigate a special form of system (31)
with a small parameter; we write the perturbed system as

il—Y_(YH)Za,](e)Y, i=1,23. (32)
j=1

Denote M(¢g) = ((x i(€))353> and we suppose M () is similar to

ue v 0
Y= <—v ue 0>, (u,v) = (u(e),v(e)). (33)
0 0 ¢

Then, system (32) can be changed into the system (2) by a
linear transformation.

In this section, our task is to change system (2) into the
normal form of (7). Making the transformation

x, =U, x, =V,

1
X3 = ‘/‘/) t— ;ta (34)

system (2) becomes

. ~ i j. k
X =Axg x4+ z aiijIXéX'y
i+j+k=2

. k
X, = —x; + A%, + Z b]kx x2x3, (35)
i+j+k=2

. ~ ijk
X3 = Ayxs + Z cijkxlxéxy
i+j+k=2
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where
1 - 1 _ 1
ijk Aijie> bijk ;bijk> Cijk ijko
. (36)
u
A, = —¢, A, = ~¢.
1 27
Let
110
T=(i10]|, (37)
001

by changing y = Tx, where y = (¥, 75 ¥)", x =
(%1, %, %3)", and system (35) becomes a complex system of
the form

. « i j k
yp= A +i) y; + Z “ijk)’;}’;)’a’

i+j+k=2
. . = i j k
yr=(A =)y + Z bijk)’i)’é)’y (38)
i+j+k=2
. * ik
Y3 =Ayys+ z ;]kyll)’z)’y
i+j+k=2
where
* 1 ~ ~ 7 1 ~ 7 7 .
o0 = 1 (azoo — Ay T bno) + 1 (_auo + by — bozo) L,
* 1 ~ P 7 1 ~ 7 7 .
a0 = 1 (‘1020 — Oy T bllo) + 1 (_auo +byy0 — bzoo) L,

¥~ B
Aoz = Goo2 T Yoo2ts

. 1/~ =
a0 = 5 (bzoo + bozo) 5 (‘7200 + dyo) iy
N 1, _ 1 -
A1 = 5 (@01 = Fon1) + E by, - 011)
" 1, 1
Ao11 = 5 (a 101) 5( 101 bou)
. 1 1 SN
bygo = 1 (bzoo 020 T auo) + 1 ( 110 + Ga00 — aozo) L,
. 1 1 .
byzo = 1 (bozo - bzoo + auo) + 1 ( 110 + Goz0 — ‘1200) L

* 7 P .
byoz = booz + Ggoai>

X
by =

1, _ 1/~ ~ .
5 (@200 + Foo) — 5 (bzoo + bozo) L,

* 1, _ ~ N
by, = 5 (“101 - aou) 3

(5101 - 5011) +

® 7 —_~ .
boi1 = 5 (_bIOI + aou) L

(Eon + ‘7101) + >

_ _ 1_ .
oo = (@200 = Fo20) — Zano’)
1

* _~ _~ _~ .
Co20 = (G20 = Ga00) — Z“uo”

*
A= B = N = N
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* =
Co02 = %002
N ~ N
Q0= — 5 (@00 + Fo20) 1>
1
* _~ ~
Clo1 = 5 (@01 = @o11) »

1 1

¥ _ - .
11 = 5 %11 ~ ;%01
o T 5 >

(39)

By the fundamental theory of normal form [16], we know
that system (38) can be converted to the normal form by
some transformations. So our following task is to find the
transformations and work out the normal form of system
(38).

We denote (38) as ¥ = F(y), where F(0) = 0, and for
simplicity, we write the nonlinear part of (38) as ®(y). By
doing the following transformation:

y=z+P(z)=h(2), z e R (40)

where P(z) = (P, (z),PZ(z),P3(z))T, which is to be deter-
mined, (38) becomes

¢ = [Dh, (2)] 'F (h, (2)). (41)
Then, by noting
(Dh))"' =1-DP+(DP)’ +O(IDP]'),  (42)

we can get from (41)

3

) oP,

Z; = vz + Vb - Za_zlyjzj
=19%j (43)

+0,(2)+0(lz’), =123,

wherey, = A, +iandy, = A, —i,y; = A,. In order to eliminate
the quadratic homogeneous polynomial, we need

3
op, .
VP - Zlgyjzj =-0,(2)+0(lz'), i=1,23 (44)
Jj= J

We take P, i = 1,2, 3 as quadratic homogeneous polynomial,
having the form

2 2 2
P =lyzy + 125 + 1325 + 142125 + 1152123 + lig2p23, (45)

where [, k = 1,...,6, are real undermined coefficients. By
inserting (45) into (44) and comparing the coefficients of
similar items, we can obtain

L= @ .= A0 I = 02
1= > 2= 5 i E—
N 29, -1 23 -1
ly = @ lis = @ 16 = —a;oo ;
Y2 Y3 Y2tVs— N
121 — b2*00 l22 — b(;kZO 123 — bJOZ
) -7, Y2 2y -9, (46)
A _% 5 _—bl*m lzs_@
4 — > 5 — > - >
4! N+ V3
L. = _ G L. = G L. = %02
31 = > 32 = > 33 = >
2y -y3 29, -3 Y3
L, = A L. = Cl*ﬂ L., = @
34 = > 35 = > 36 = .
Nt+r2—% 4! Y2

Note that |[y;| = |A,] < L, |y, + 9, — sl = 124, = A,| < 1. The
terms with coefficients [;5, L4, I35, and Iy, that appeared above
cannot be removed. Those terms are called the resonance
terms. Then, we have
P = 1,22 + 1,20 + 11322 + 12,2, + 16252
1= biZy a2y 3%y 4212 62,23,

2 2 2
Py = 1)12] + 1525 + 1325 + 2,2, + 152,25, (47)

2 2
Py = I5,2] + 1325 + 1352125 + 362,23,
and system (43) becomes

. * 3

Z1 = N2t 8912123 O(|Zl,zz,z3| ))

. * 3

2y = V2% + by 223 + O(]zl,zz,z3| )) (48)
L * 2 * 0 3

Z3 = V323 + G253 T 92122 + (|Z1’22)Z3| .

Let L(z) denote the cubic terms in z of (48). Then, from (41)
and (42) we have

3
- PP
=1

3 hy 5 Y121
L@ =| —YPyP |+|h |+OP?| nz |,
J:l hy V323
-2 PyyiP;
=1

(49)



where P,»j = azz/azj, i,j=1,2,3,
_ * 2 * 2 * 2
hy =- Py, (%0021 T 002, t aoozz3)
* 2 * 2 * 2
- by (bzoozl + b2, + boozzs)

- P (Cz*oozf * C520Z§ + Cgozé)
= Py (110212 + 810,2125 + 491, 2,23)
= Py, (b)19212, + by 2125 + by, 2,23)
= Pi3 (c110%122 + €101 2123 + 11 2223)
+ 2 (ay0021 Py + Ggy02, Py + G, 25 P5)
+ayy, (21P, + 2,P)) + agg, (2P +23P,)
+ag;, (2,P; +23P,),
h, = - Py (agoozf + agzozi + agozzg)
- Py (bz*oozf + bgzozg + bgozzi)
- Py (%*oozf + ngozg + C(;‘ozzg)

P * % *
= Py (4130212, + 10,2123 + G411 2,23)
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5 % %
= Py (b1107122 + bioy 2125 + byy12223)
P * * *
= Py (c1102122 + €01 2125 + G112223)
* * *
+ 2 (byoz1 Py + by 22 Py + by23 P3)
* *
+b)30 (2P, + 2,P) + by, (21 Ps + 23Py)
*
+ by (22P5 +23P,) 5
_ * 2 * 2 * 2
hy = - Py (%0021 T Ay, + aoozzs)
* 2 * 2 * 2
- P (bZOOZI + by, + boozz3)
* 2 * 2 * 2
- Py (CZOOZI + G2 T Coozz3)
P * * *
= Py (a1,0212 + a10,2125 + 49, 2,23)
* * *
= Py, (b19212, + by 2125 + by, 2,23)
P * * *
= Py (c110%12 + €101 2123 + €112223)
* * *
+2 (60021 P + €022 Py + G223 P3)
* *
+ 119 (21P, + 2,P)) + ¢y (2, P5 + 23P;)

+ ¢y (2,P; + 23P,) .

3 3 3 2 2 2 2 2 2
€112 t€p2; t €323 +€14212; +€152123 + €16212; t €172123 + €132,25 + €192,23 + €19212,2;3

3 3 3 2 2 2 2 2 2
L(z) = | €711 €n% +eZ; + €422 + €352, 23 + 626212, + €272125 + €285 %3 + 292523 + €2021%2%3

3 3 3 2 2 2 2 2 2
€312] €332, +€3323 +€34212, + €352123 + 36212, t €372123 + €332,23 + €392,23 + €302,2,2;3

where
* * *2 * *
8401600 | 2050 ay15by0
e = + + ,
A 2 " ) -7,
% % % * % *
_ 2a5200620 . F020%10 . 0115020
e = + 2 + > >
Y2 YN Y2~ Vs
* * * * *
e = a0, (a101 = 26002) + 9116002
13= ,
23— 23—,
* * * * * * *
- 2a0,0b30 . %11%00 + ano (@500 +b110)
1=
-7 2n-v 4!
2a5.a
+ ZB200%0
Y2
* * * * *
o = ay1big; + ato (¢lo1 = @0)
15 =
NtVs— %2 4!

2a . cr as b
+ 002%200 + 011200 ,
- 21

By substituting (42) into the above, we obtain
* * * * * * *
o = 200,011 N aro (a0 + by) N 4101%20
16 =
Y1 Y2 29, =93
* * 2 * *
_ “%nu‘ao + 9200%020
bl
+tB—-Nn 2n-n
* * * * * * * *
g1, 6101 25008005 290026101 . H10b002
€7 = + + + ,
NtB-Y 2N "1 2y -9,
* * * * *
o = 9110%11 + 20 (aIOI - Zbon)
18 =
Y2191 2y, -
* * * * *
+ ag1y (Boao + 1) + 200,620
b
)2) 29, - v
% % * * % *
_ O11 (alo; = boyy — Cooz) 20008502
e = +

Y27V~ 23—,

205026011 . F02M10
+ +

Y2 2y -1 '

(50)

(51)
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5 # s # % % * *
_ 20500911 + Borfon ~ a110bo11 285056110
Y2tVs— N Y2 23 -1
* * * * *
+ agyy (b1 + o) + 240,00,

4! Y1+Y3_Y2’

2a300b200 + b00bi10 + 101200
)4 2y -y, 271V

* * *2 * *
30500110 + 2byy + Bo11%020
2y, =1 Y2 29— 13

*

boos (b;n - 25;02) + 5025101
295 -1, 2y5-n
2byy0b300 + bo1100
2n-v2 217
b’ (ay, +b 2bya’
+ 110 (@300 + B1o) + 2%200%110

"1 Y2

>

b 100101 + byoy (601 + a30)
NtVs— " Y1
4 2b30,%00 + b0 (o1, = 2“?01)
2y - 29 -7,
2by50b110 + bj10 (@110 + Bra)

Y1 )2)

>

€ =
% * * *
b1 . 203004020
+ + ,
2p-vs 21N

s # * % # #
bioy (b1, = A1 = So0a) + 2by04g,

N+ys—" 23—

€y =

2by0,6101 + b1 106002
%! 2y -, ’
bl*loagn + agzobl*m
tB—-Nn 2N
bon (C;u - bgzo) 2by026020
+ +

Y2 29, = ¥ ’

* * * * * * * *
911 b101 + 2by0b002 + 2by 6011 + 3902110

tB—Nn 2V Y2 2)’3_)’1)

€y =

* * * * * * *
2by50%11 + bios (11 + a110) 2506110

Y2tVs— N Y2 23—,

€ =

* % * * % %
bo11€101 — briothon + 2by30b101

+ ;
4! NntVs— "

* * 2 * * * b*
€101%00 + %0000 + €110%00
b
2 - )2 2y -1,

2 % b* % * % %
€020%20 + %2010 + S11%20

Y2 2= 2075 '

a’.c:
0026101

% *
0110002

* *
26050b200

2ys-n 2y3 - )’2,

o116
+ 011%200

2n -7,

2y - s

o (@,
, G110 00

* *
C10b1o1

# 5 % %
+b/19 ~ o) N 260019

" )2)

>

Nty

* * *
+ clo1 (€lo1 + a500)
"

N 26500 (G02 = H01) + 1B
20 -vs 20—

% *
26550110

* % % %
N o (@710 + by0 = S011)

"

chc
4 G010

Y2

2¢.ar
+ ©00%020

2y, -

* *
110101

2y - '

2C500 %0
+ 007002

N+tys—"

oy (<o
. Qo1 (o

23—

* * %
_a101) + 110002

Y1

* *
C110%11

2y3 -y,

* * * * *
+ 0206101 + o1 (Boxo + €11)

Y2tVs— N

+ 26550 (G0 = bo1)

2y, —-n )2

>

2y, -7

* *
9115101

* *
260200002

Y217Ys— N

23— 12

o (o
4 fou (%o

)2)

20 ar
S00%11

* * *
-by) + Q026110
b
23 -1

Y2TVs— N

* *
oy (b
L o1 Vo

+ 5011( 110 C101)

)2)

* * *
+C101)_|_ 2¢0b101

2!

Nn+Ev-n
(52)

We make a further change z = w + Q(w) = h,(w), where
Q = (Q;,Q,,Q;) is homogeneous cubic polynomial, so that

(48) becomes

w = [Dh, ()] -2

=(I1-DQ+0(

IDQP)) -



*
Yy + ayp W Ws

*
VoW, + by wpws

* 2 *
Y3Ws + QW3 + €W W,

3
Q- ZQlejwj
J;l
+ 1,Q - ZQZjijj
J';l
15Qs5 - ZIQ3ijwj
=

+L(w)+0(w'),
(53)
where Q; = aQi/awj, i,j = 1,2,3 and L has the form as

before. In order to eliminate some possibly cubic terms, we
consider the equations below

3
YiQi — ZQz‘jijj +L;(w)=0, i=12,3. (54)
=1

Suppose that fori = 1,2,3,

_ 3 3 3 2 2 2
Qi = gy w + gpw, + q;W; + W W, + GisWiWs + G W)

2 2 2
+ 47 W W5 + gigW, Ws + GigWr W5 + ;oW WrWs.
(55)

By inserting these representations into (54), we can solve as
before

€ 3 € 3 € 3
Q = 11 w’ + 12 w? + 13 w?
2y 3 —n 35— n
€ 2 2
+ —2—wiw; + —Cw,w)
Y1 tYs p)
€13 2
B _ L W3
Y217Vs— N
e 2
Y2+ 2y5 =1
e
+—10 W, w,Wws,
Y21%s
€ 3, € 3 € 3
Q, = 21 w? + 222 w? 23 w?
Kl ) Y2 Nl
e 2 € 2
+ 2w, + —2——wiw,
2y, )ty
€ 2 € 2
+ ¢wlw3 + ¢w2w3
Nt2-1 Y2t Vs
€
+ w, w,w;,
Y1 tYs
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€ 3 € 3
Q3=3 31 w1+3 32 w?
Y1=%s Y= V3
€ 2 € 2
+ ¢wlw2 + iw1w3
)+, Y3 2y
€ 2 € 2
LS SR S
Y1 +2Y, Vs Y1 tVs
€ 2 e 2
+ 28 5 3 w,ws.
2y, Y2+Ys
(56)
Hence, system (53) becomes now
P * 2 2
Wy = YWy + a5, W W5 + €W W, + e;W,Ws
4
+0 (|w1,w2,w3| ),
P b* 2 2
Wy = YW, + b)) W W3 + €W W, + €39W, W5
(57)

4
+0 (|w, wy, ws),
A * 2 * 3
W3 = P3Ws + Coop W3 + €W W) + E33W5 + €30 W W) Ws
4
+0 (Jwy, wy, ws[*),
where w and all of the coefficients are complex. Finally
making the change w = Tx and then taking the real parts

of x and the coefficients of all terms of the resulting system,
we can get a cubic real normal form of the form (7) with

a, = }1 (2101 + Boyy — o1y )
by = 7 (@ + B - o),
1, ~
a=3 (G0 + G20) >
dl = Gooz»
a = m [/\1 (55500 + 5850 — dg20 ~ Brgo
+ 485008030 + 4br00by20 + 3110
X (@00 + @o0) + 3119 (?’200 + T?ozo))
~ 2300by00 + 220b020
+a110 (200 + o20) ?’110 (T’zoo + T?ozo)]
M
8(AM3+9)

X [(5020 — Oy + 13110)2 + (_5110 + Eozo - Ezoo)z]
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1
8[(2, - A,)" +4]

X (‘2 ((5011 + 5101) (G00 — G20)
+ (_5101 + Z’011) 5110)
+(24; - 1,) ((_5101 + Eou) (G200 — G20)

- (5011 + E101) 5110)) >

1
b =
2T g2+ 1)

X (_/\1 (65’20017200 = 6d050b020 + 3b110 (bzoo + bozo)
= (= - 2 2 72
=30 (T + aozo)) + Gy + 3y + 300

72 - = = _
+ Op0 + 485008020 + 42000020 — bi10 (@200 + @n20)

—ay1o (Ezoo + l;ozo)) 3 (/\23+ 9)
1

X ((5020 — Gy + 77110)2 + (_5110 + Eozo - Ezoo)z)

1
82, - 1,)" +4]

x ((2)‘1 -A5) ((5011 + 5101) (G200 — G20)
+ (_5101 + 5011) E110)
+2 ((_‘7101 + Eon) (G200 — G20)

- (5011 +?’101)5110))’
o= 1
P 2[(2h -4 + 1]

x((24,- 1)
x (@o0a (200 + Bryo) + ooz (2Bozo + @110 )
+ oo (2820 + @110) = booz (2200 + Br1o) )
+&u (A2 ((@on + oy ) (Broy = Boar ) = (=100 + Bony )
X (@01 = @) )
+2 (@1 + bion ) (@01 — 1)

+ (_5101 + 77011) (?’101 - Eou)))

1 -
+ —— (Miooz + booz) (@101 = ona) »
/\%+1(1 ) 101 1

1
) (21, -1,)" +1]

b;

X ((‘7002 (25020 - EIIO) + Eooz (ZEZOO - ‘7110))
-(22,-1y)

x (5002 (25200 - 5110) - 5002 (25020 - 5110)))

+ m (2 ((‘7011 +EIOI) (5101 _5011)

- (_5101 + bon) (@01 - 5011))
-4, ((5011 + 5101) (@01 =~ @on1)

+ (_aIOI + 17011)

x (EIOI _Eou))) + ﬁ

x (5002 - /\179002) (G101 = Gon1) »

A - ~
G = m [5011 (bzoo + bozo)

+Ci01 (@200 + 20 * Gio1 — Go11) ]

+.__;1£___
4(A2+4)

(@10 (onr + 2101 — By )
+ (28,01 = boyy — oy )
x (S0 = G20))

5 G (i oy =)

— (@11 + 2byoy — o)

X (00 = G20) ) >

2, - A,
2[(24, - 1,)" +1]

x (250025101 — GoozCo11 + boozaon)

1
) (22, -2))" +1]

x (50025011 - 2l~70025101 + Eoozgon) .
(58)

Then, by the equations in (36), we finally get the rela-
tionship between the coeflicients of the system (2) and of the
normal form (7).
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4. Examples

4.1. An Example about the Existence of a Limit Cycle in
Three-Dimensional Lotka-Volterra Systems. In this section,
we construct a concrete example of three-dimensional Lotka-
Volterra systems according to Theorem 1. It is shown that this
system undergoes nonisolated zero-Hopf bifurcation.

We consider the following three-parameter Lotka-
Volterra system in the first octant R>. Consider

d—x—x(—vx+vy+vz—v)

dt ’

d

d—}t/=y(—2vx—2vy—vz+5v),
dz z 3 2 2
Ez 2—1/2(—.76(61/ +6vie+ 10v7ue

+6vue® + 3vule’ + u283)
-y (—61/3 —2V%ue + 2vue” + vu'e” + u2€3)
+z (61/3 + 2V + 4v2us)
+ (—61/3 + 4% + 4 ue + Svue®
+avile + 2u283)) >
(59)

where 0 < ¢ < 1, v > 0 and u are bounded parameters.

First of all, we need to change the system (59) to the form
of system (2) as in [14]. It can be checked that the point (1, 1, 1)
is zero-Hopf equilibrium of system (59). We do the change of
variables X = x - 1,Y = y — 1,and Z = z — 1 to obtain

X

d—:v(1+X)(—X+Y+Z),

dt

Y L a+Y)(2X-2Y -2),

dt

dz _1+Z (—X (61/3 +6v%e + 10v7ue + 6vue’
dt 21?2

+3vte + u283)
-Y (—61/3 —2v%ue + 2vue® + viler + uzs3)
+ Z (61/3 + 2V + 4v2us)) .
(60)

The Jacobian matrix of system (60) at (0, 0, 0) has eigenvalues
&, eu + vi and eu — vi with v > 0. According to [14], in order
to obtain the real Jordan normal form of system (60) at the
origin, we do the linear transformation

U, Pu P P13 X
Vil=(py 1 O Y |, (61)
w, P31 P 1 Z

where p;; = —(usz+3wz+31/1,us+51/2)/(1/(1/+s)),p12 = —(-v*+
vue + ve + ue?)/(v(v + €)), P13 = 2v/(v+e), py = Bv+
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&)/ (v+e), psy = —(6v7 +6vue+u’e?)/2v7, and ps, = —ue(2v+
ue)/2v*. Then, in the new variables (U,, V;, and W,) system
(60) becomes

du .

L =ueU + W+ Y a UVIWS,

dt i+j+k=2

dav. P

—dtl = —wU, +ueVy+ Y burUVIWS,  (62)
i+j+k=2

dW. R

d_tl =W+ ) U VW,

it+jrk=2
where gy, b, and ¢, have the following expressions:

ag = 21lv+ (=11 +90u) e + O (82) ,
Gy = 3v+ (24— 17u) e + O (&%)
Ay = — 18v— (36U +30)e+ O (82) ,
Ay = 29v + <13—6 + 93u> £+ O(ez) ,
g = —30v—(60u+72)e+O(e),
Gy = —9Iv—(22u+40)e+ 0O (82),
by = —6v+22e+ O(sz) ,
boyy = —12v—(6u+15) e+ O(sz) ,
bo= —9v—-24e+ O(sz) ,
by = —6V+8£+O(82),
boso = 4v + (—? + 15u> e+ O(ez) ,

booy = 126 + O (sz) ,

€0 = 36v+ (42 + 102u) e + O (&%) ,
2
oy = —27v—- (123 +54u) e + O (),
2
6011=30v+(10+105u)s+0(s),
oo = —6v— (60 +16u) e+ O (),
2
oy = —18v— (57 +36u)e + O (<),

Copo = (36 -32u)e+ 0O (82) .
(63)
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Next, we need to calculate the partial coefficients of the

normal form of system (63). We can get @, Eijk, and G by
(36), and then by the formulas of (58) we have

21 1
a, = Z+;(12+24u)s+0(82),

1 2
a, =90 — — (5875 + 6244u) e+ O (&),
2 16v ( ) ( )
a; = 45— 97740v

3
— = (121 — 264u + 31860 + 299790uv) e + O (&%),
14

C1=—3—E(1+2u)8+o(82)’
v

657

3
+ = (-3263 + 226u) e + O (&),
4 8v

(64)

3
dy=-18-=(19+ 12u)e + O (&%),
v
9 (65)
dy = -756 — = (436 + 351u) e + O ().
v

By Theorem 1, we have the following conclusion.

Theorem 3. For any given g, > 0, suppose that =7/(24+7¢,) <
u < 0, and then for 0 < € < g, (59) has a periodic orbit near
the origin, which is unstable.

Proof. In this example, it is easy to see that §; = 1,8, = 1/u.

From (64) and (10) we can get ¢, = 071 < 0, thus, in order to
satisfy (18), we need
~ 24 1 4 —-37 4+ 108u
d, 8,0, = 2 L, 437108 6 2) 50,
7 u 49 %

(66)

For any given ¢, > 0, suppose that —=7/(24 + 7¢;) < u < 0.1t

can be checked that d, — 8,8, > 0 for 0 < & < ¢&,. Then, by
Theorem 1, (59) has a periodic orbit near the origin. Next, we
consider the stability of the periodic orbit.

From (64), we can also get

A 49+ 280u+ 960u” 16
- 49u? 343

(67)
, T259 - 502u + 3672u°

uy

+O(£2) > 0,

when -7/(24 + 7¢;) < u < 0 holds, where A is given by (20).
So none of the conditions (a), (b), or (¢) in Theorem 1 holds;
further, we know that the periodic orbit is unstable. O

Remark 4. From (63), we can find out that system (59) does
not satisfy the conditions mentioned in [14]. Thus, we cannot
use the results in [14] to study the existence of a limit cycle in
(59).

1

4.2. An Example about the Existence of an Invariant Torus.
For convenience, we give an example about the existence of
an invariant torus in a system, which has the form of (2). We
consider the following system in the first octant R>:

du, 5

5 2 2
= 22U, - 2V, 43U — 2V,
dt 24572 T g 2T

+3W] = 15U,V, + 2U,W, + 5V, W,,

de 5 5 2 2 2
22 = U, - =gV, +9U% - 5V + 6W.
dt 24 % 242 2 2 2

+U,V, — 4V, W,,

(68)

dw,
dt

= eW, — 4U; + 8V, + 3W; +510U,V,

— TU,W, - 5V,W,,

where 0 < & < 1.
According to Section 3, we have

a, =6,
116136 1409296
, =— + e
25 125

L0(2),
180576 2081376
a; = + £
25 125

+O(82),
_8

¢ = 5 (69)
117936 3953376
= o - e+ 0O (82) ,
25 125
2

d, = R
! 5

N 870048 +O(82).
25 125

Let A, = 1666324684/40625 and A, = 1731664/3125. Then,
we have the following theorem.

11232
2 =

Theorem 5. For any given 0 < & < A, — A,, there exists an
g > 0 such that for 0 < € < &), (68) has a unique invariant
torus near the origin, which is unstable.

Proof. By (69) and (29), we can obtain

14892 17537928 B 9271080632

5, = o(e),
°= 7125 375 3125 (<)
13251 216458 3772653
Ay = + e+ ’+0 (83) ,
50 1875 12500
, 248104 70129552 1217815988 , 5
0= — - £ — +0 (s ) .
1625 14625 40625
(70)

Thus, for 0 < e < 1, A > 0. Further, we can get

159012
125

Aoy ()H)—ﬁ}@ =- 8—(A1—€1)82+O(83),
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159012 2 3
AgA, = - 25 e—Ase +O(s),
159012 96935282 , 3
AO(bO (/\1):_ 125 3125 +O(£ )’

(71)

where ¢, (1,) and ¢(A,) are defined in Theorem 2, and here
A, =eand A, = —(24/5)¢. By some easy calculations, we can
obtain that for 0 < & < A, — A, inequality A y¢p; (A,) — &A% <
AgA, < Aydy(A;) holds. Thus, by Theorem 2 we can get the
result in this theorem. O
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