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This paper deals with the robust stabilizability and 𝐿
2
disturbance attenuation for a class of time-delay Hamiltonian control systems

with uncertainties and external disturbances. Firstly, the robust stability of the given systems is studied, and delay-dependent
criteria are established based on the dissipative structural properties of the Hamiltonian systems and the Lyapunov-Krasovskii
(L-K) functional approach. Secondly, the problem of 𝐿

2
disturbance attenuation is considered for the Hamiltonian systems subject

to external disturbances. An adaptive control law is designed corresponding to the time-varying delay pattern involved in the
systems. It is shown that the closed-loop systems under the feedback control law can guarantee the 𝛾-dissipative inequalities be
satisfied. Finally, two numerical examples are provided to illustrate the theoretical developments.

1. Introduction

Systems with unknown delayed states are often encountered
in practice, such as communication systems, engineering
systems, and process control systems. For this reason, robust
stability analysis for uncertain time-delay control systems
has attracted a considerable amount of interests in recent
years [1–9].The Lyapunov-Krasovskii (L-K)method is always
employed, and the results are often obtained in the form
of linear matrix inequalities (LMIs). However, robust stabi-
lization of nonlinear systems with time delays has been a
challenging problem. As is well known, the control design
of nonlinear systems is a difficult process. The existence of
time delay in nonlinear systems further degrades the control
performance and sometimes makes the closed-loop stabi-
lization difficult [10–12]. More recently, Mahmoud and El
Ferik obtained some new results on dissipative analysis and
state feedback synthesis for a class of nonlinear systems with
time-varying delays and convex polytypic uncertainties [12].
This class consists of linear time-delay systems subject to
nonlinear cone-bounded perturbations. Hu et al. in [10]
integrated the sliding mode control method with the robust

𝐻
∞

technique and developed a discrete-time sliding mode
controller for a class of time-delay uncertain systems with
stochastic nonlinearities. The nonlinearities are described by
statistical means.

On the other hand, for affine nonlinear systems with dis-
turbances, the 𝐿

2
-gain analysis and the 𝐿

2
disturbance

attenuation are always important issues [13]. Almost all these
studies deal with the existence of solutions to some partial
differential inequality, which reflects the dissipative behavior
of the system under consideration for a certain supply rate
which is called passivity-based control design method. This
kind of method is used to achieve a 𝛾-dissipative inequality
which not only guarantees asymptotic stability but also
renders the 𝐿

2
-gain from disturbance to the penalty signal

less than or equal to a given level 𝛾 > 0. The key to solve
the problem of 𝐿

2
disturbance attenuation is to find a proper

storage function that ensures the 𝛾-dissipative inequality
holding.

As an important class of nonlinear systems, port-con-
trolled Hamiltonian systems (PCH) proposed by [14, 15]
have attracted increasing attentions in the field of nonlinear
control theory [16–18]. The Hamilton function in a PCH
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system is considered as the sum of potential energy (exclud-
ing gravitational potential energy) and kinetic energy in
physical systems, and it can be used as a good candidate
of Lyapunov functions for many physical systems. Due to
this and its nice structure with clear physical meaning, the
PCH system has drawn a good deal of attention in practical
control designs [19–23]. In [21], with a proper penalty signal,
the 𝛾-dissipativity was achieved by making a sufficiently
large damping injection in the design stage. Wang et al.
in [23] proposed an energy-based adaptive 𝐿

2
disturbance

attenuation control scheme for the power systemswith super-
conducting magnetic energy storage (SMES) units. Besides,
Hamiltonian systems with time delay also have been studied
[24–27]. Reference [25] addresses the stabilization problemof
a class ofHamiltonian systemswith state time delay and input
saturation. The problem of 𝐿

2
-disturbance attenuation for

time-delay port-controlled Hamiltonian systems is studied
in [26]. The case that there are time-invariant uncertainties
belonging to some convex bounded polytypic domains is also
considered in [26], and an 𝐿

2
disturbance attenuation control

law is proposed. In practice, dynamic uncertainties often arise
from many different control engineering applications. The
inevitable uncertainties may enter a nonlinear system in a
much more complex way. In addition to polytypic uncer-
tainties, systems may encounter modeling error, parameter
perturbations, and external disturbances. However, to the
best of our knowledge, the analysis and synthesis for time-
delay Hamiltonian systems with parametric perturbations
have not been discussed yet. It is well worth pointing out that
with the help of Hamiltonian realization [28, 29], the control
problem of a large class of time-delay nonlinear systems
with uncertainties can be solved via the Hamiltonian system
framework. Thus, study of time-delay Hamiltonian control
systems with uncertainties and disturbances is a meaningful
topic.

Motivated by the above observations, in this paper we
study a class of time-delay Hamiltonian systems model with
uncertainties and external disturbances. We derive sufficient
condition for which the uncertain time-delay Hamiltonian
system along with the proposed feedback controller is
robustly stable for all admissible uncertainties.The condition
is given in terms of linear matrix inequalities. Furthermore,
the problem of 𝐿

2
disturbance attenuation is examined using

the parametric adaptive methodology for delay-dependent
case. The 𝐿

2
feedback adaptive control law can guaran-

tee that the closed-loop time-delay Hamiltonian system is
asymptotically stable and the 𝐿

2
performance is achieved.

The effectiveness of the proposed methods in this paper is
illustrated by numerical examples.

The paper is organized as follows. Section 2 presents
the problem formulation and some preliminaries. The main
results are proposed in Section 3. Section 4 illustrates the
obtained results by several numerical examples, which is fol-
lowed by the conclusion in Section 5.

Notations. R𝑛 denotes the 𝑛-dimension Euclidean space, and
R𝑛×𝑚 is the real matrices with dimension 𝑛 × 𝑚; ‖ ⋅ ‖ stands
for either the Euclidean vector norm or the inducedmatrix 2-
norm; ‖𝑥‖C = max

𝑡−ℎ⩽𝜑⩽𝑡
‖𝑥(𝜑)‖, where C = C([−ℎ, 0],R𝑛)

denotes the Banach space of continuous functions mapping
the interval [−ℎ, 0] into R𝑛; 𝐿𝑛

2
[0,∞) denotes the set of

all measurable functions 𝑥 : [0,∞) → R𝑛 that satisfy
∫
∞

0
|𝑥(𝑡)|
2
𝑑𝑡 < ∞. C𝑖 denotes the set of all functions with

continuous 𝑖th partial derivatives. The notation𝑋 ⩾ 𝑌 (resp.,
𝑋 > 𝑌) where 𝑋 and 𝑌 are symmetric matrices means
that the matrix 𝑋 − 𝑌 is positive semidefinite (resp., positive
definite); 𝜆max(𝐴) and 𝜆min(𝐴) denote the maximum and the
minimum of eigenvalue of a real symmetric matrix 𝐴. The
notation ∗ represents the elements below the main diagonal
of a symmetric matrix; 𝐴T denotes the transposed matrix of
𝐴; (⋅) and [⋅] denote the derivative of the variable inside the
brackets. What is more, for the sake of simplicity, throughout
the paper, we denote 𝜕𝐻/𝜕𝑥 by ∇𝐻.

2. Problem Statement and Preliminaries

Consider the following class of time-delay Hamiltonian sys-
tems with parametric uncertainties and external distur-
bances:

�̇� (𝑡) = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥, 𝑝)

+ [𝐽
∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
) + 𝑔
1
𝑢 (𝑡) + 𝑔

2
𝜔 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑥
𝜏
:= 𝑥(𝑡 − 𝑑(𝑡)) ∈ C

stands for the delayed state; 𝑢 ∈ R𝑠 is the control input;
𝜔 ∈ 𝐿

𝑚

2
[0,∞) is the disturbance input; 𝐻(𝑥) : R𝑛 → R

is the Hamilton function which satisfies 𝐻(𝑥) ⩾ 0, 𝐻(0) =
0; 𝑝 is an unknown constant vector and denotes the distur-
bance parameter; 𝐽(𝑥, 𝑝), 𝐽∗(𝑥

𝜏
) ∈ R𝑛×𝑛 are skew-symmetric

structure matrices; 𝑅(𝑥, 𝑝), 𝑅∗(𝑥
𝜏
) ∈ R𝑛×𝑛 are positive semi-

definite symmetric matrices; 𝑔
1
and 𝑔

2
are gain matrices of

appropriate dimensions; 𝑔
1
𝑔
T
1
is nonsingular.

The delay 𝑑(𝑡) is a time-varying continuous function
which satisfies

0 ⩽ 𝑑 (𝑡) ⩽ ℎ,

̇𝑑 (𝑡) ⩽ 𝜇 < 1,

(2)

where the bounds ℎ and 𝜇 are known positive scalars.
The initial condition is 𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−ℎ, 0].
Throughout the paper, we suppose that the following

assumptions are satisfied.

Assumption 1. Thematrices 𝑅(𝑥, 𝑝) and 𝑅∗(𝑥
𝜏
) satisfy

𝑅 (𝑥, 𝑝) ⩾ 𝑅, 𝑅
∗
(𝑥
𝜏
) ⩾ 𝑅
∗

, (3)

where 𝑅, 𝑅∗ ⩾ 0 are known constant matrices.

Assumption 1 means that 𝑅(𝑥, 𝑝) and 𝑅
∗
(𝑥
𝜏
) are

unknown, but they are bounded by known nonnegative
constant matrices. To illustrate that this assumption is
reasonable, an example is given below.
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Example 2. Consider two functional matrices

𝑅
1
(𝑥, 𝑝) = (

(1 + 𝑝
2
𝑥
2

1
)
2

+ 𝑥
2

2
𝑥
2

𝑥
2

2
) ,

𝑅
2
(𝑥
𝜏
) = (

2 + 𝑥
2

1
(𝑡 − 𝜏) 0 0

0 sin2 (𝑥
2
(𝑡 − 𝜏)) 0

0 0 0

) ,

(4)

where 𝑝 is unknown constant and 𝜏 is the time delay.

It is easy to find two corresponding matrices

𝑅 = (
1 0

0 1
) ,

𝑅
∗

= (

2 0 0

0 0 0

0 0 0

) ,

(5)

which satisfy 𝑅
1
(𝑥, 𝑝) ⩾ 𝑅 and 𝑅

2
(𝑥
𝜏
) ⩾ 𝑅
∗.

Assumption 3. The Hamilton function𝐻(𝑥) and its gradient
∇𝐻(𝑥) satisfy

(A1) 𝐻(𝑥) ∈ C2,
(A2) 𝜀

1
(‖𝑥‖) ⩽ 𝐻(𝑥) ⩽ 𝜀

2
(‖𝑥‖),

(A3) 𝜖
1
(‖𝑥‖) ⩽ ∇

T
𝐻(𝑥) ⋅ ∇𝐻(𝑥) ⩽ 𝜖

2
(‖𝑥‖),

(A4) 𝜋
1
(‖𝑥‖) ⩽ [(∇𝐻(𝑥))


]
T
⋅ [∇𝐻(𝑥)]


⩽ 𝜋
2
(‖𝑥‖),

where 𝜀
1
, 𝜀
2
, 𝜖
1
, 𝜖
2
, 𝜋
1
, 𝜋
2
all belong toK-class functions.

Remark 4. Assumption 3 not only guarantees the existence of
∇𝐻(𝑥) and [∇𝐻(𝑥)] but also guarantees that 𝐻(𝑥), ∇𝐻(𝑥),
and [∇𝐻(𝑥)] are bounded in terms of 𝑥. We shall note that
the assumption is not very conservative to Hamilton func-
tions and the majority of Hamilton functions in Hamiltonian
systems can easily satisfy these conditions.

Assumption 5. There exists a functionΦ(𝑥) such that

[𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] Δ
𝐻
(𝑥, 𝑝) = 𝑔

1
Φ (𝑥) 𝜃 (6)

holds for all 𝑥 ∈ R𝑛, where 𝜃 ∈ R𝑠 denotes an unknown
parametric vector, Δ

𝐻
(𝑥, 𝑝) = ∇𝐻(𝑥, 𝑝) − ∇𝐻(𝑥, 0).

In what follows, we shall address the problems of robust
stability and the disturbance attenuation of system (1). Specif-
ically, the objective of this paper can be summarized as
follows.

(i) Robust Stability Problem. In the absence of disturbances 𝜔,
develop LMI-based conditions, and find an adaptive control
law of the form

𝑢 = 𝛼 (𝑥, 𝜃) ,
̇̂
𝜃 = 𝜍 (𝑥) (7)

so that the closed-loop system under the control law can be
asymptotically stable.

(ii) 𝐿
2
Disturbance Attenuation Problem. Given a penalty

signal 𝑧 = 𝑞(𝑥) and a disturbance attenuation level 𝛾 > 0,
find an adaptive feedback control law

𝑢 = 𝛽 (𝑥, 𝜃) ,
̇̂
𝜃 = 𝜌 (𝑥) (8)

and a positive storage function 𝑉(𝑥, 𝑥
𝜏
, 𝜃) such that the 𝛾-

dissipation inequality

�̇� (𝑥, 𝑥
𝜏
, 𝜃) + 𝑄 (𝑥, 𝑥

𝜏
) ⩽

1

2
{𝛾
2
‖𝜔‖
2
− ‖𝑧‖
2
} ,

∀𝜔 ∈ 𝐿
𝑚

2
[0,∞)

(9)

holds along the closed-loop systems consisting of (1) and the
feedback law, where 𝑄(𝑥, 𝑥

𝜏
) is a nonnegative definite sym-

metric matrix.
We conclude this section by recalling an auxiliary result

to be used in this paper.

Lemma6 (see [30]). For givenmatrices𝑌 = 𝑌T,𝐷 and𝐸with
appropriate dimensions,

𝑌 + 𝐷𝐹 (𝑡) 𝐸 + 𝐸
T
𝐹
T
(𝑡) 𝐷

T
< 0 (10)

holds for all 𝐹(𝑡) satisfying 𝐹T
(𝑡)𝐹(𝑡) ⩽ 𝐼 if and only if there

exists 𝑐 > 0 such that

𝑌 + 𝑐
−1
𝐷𝐷

T
+ 𝑐𝐸

T
𝐸 < 0. (11)

3. Main Results

3.1. Robust Stabilization. In the absence of external distur-
bances, namely, 𝜔 = 0, and under Assumption 5, system (1)
can be transformed into

�̇� = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ [𝐽
∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
) + 𝑔
1
Φ (𝑥) 𝜃 + 𝑔

1
𝑢.

(12)

In this subsection, we will put forward a robust stabi-
lization result for system (12). Delay-dependent criteria are
developed as follows.

Theorem 7. Consider system (12). Suppose that Assumptions 1
and 3 hold. If there exist matrices

0 < 𝑃
1
= 𝑃

T
1
, 0 < 𝑍

1
= 𝑍

T
1
, 0 < 𝑀

1
= 𝑀

T
1
,

0 ⩽ 𝑋 = 𝑋
T
= (

𝑋
11

𝑋
12

𝑋
13

𝑋
21

𝑋
22

𝑋
23

𝑋
31

𝑋
32

𝑋
33

),

(13)
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any appropriately dimensioned matrices 𝐸, 𝐹, 𝑇, 𝐵
1
, 𝐵
2
, and a

scalar 𝜀 > 0 such that the following conditions hold:

𝐽
∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
) = 𝐸Δ (𝑥

𝜏
) 𝐹 + 𝑇, (14)

Ξ
1
=(

(

−𝑅 − 𝑅
∗ 𝐵

T
1

2
+ ℎ𝑋
12

𝐵
T
2

2
+ ℎ𝑋
13

∗ Φ
22

−
𝐵
T
2

2
+ ℎ𝑋
23

∗ ∗ −𝑀
1
+ ℎ𝑍
1
+ ℎ𝑋
33

)

)

< 0,

(15)

Θ =

(
(
(
(

(

𝑋
11
+ 𝜀
−1
𝐸𝐸

T
𝑋
12

𝑋
13

1

2
𝑇

∗ 𝑋
22

𝑋
23

1

2
𝐵
1

∗ ∗ 𝑋
33

1

2
𝐵
2

∗ ∗ ∗ 𝑍
1
+ 𝜀
−1
𝐹
T
𝐹

)
)
)
)

)

⩾ 0,

(16)

where

Δ
T
(𝑥
𝜏
) Δ (𝑥

𝜏
) ⩽ 𝐼,

Φ
22
= − (1 − 𝜇) 𝑃

1
−
𝐵
1

2
−
𝐵
T
1

2
+ ℎ𝑋
22
,

(17)

then the closed-loop systems under the feedback control law

𝑢 = − 𝑔
T
1
(𝑔
1
𝑔
T
1
)
−1

{ (𝑃
1
+ ℎ𝑋
11
) ∇𝐻 (𝑥) − Φ (𝑥) 𝜃

+ [∇
T
𝐻(𝑥) ⋅ ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥)

× [(∇𝐻 (𝑥 (𝑡)))

]
T
𝑀
1[∇𝐻 (𝑥 (𝑡))]


} ,

̇̂
𝜃 = 𝐾

1
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥)

(18)

is asymptotically stable, where 𝐾
1
> 0 is an adaptive gain

matrix with appropriate dimension.

Proof. Substituting (18) into (12) yields

�̇� = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ [𝐽
∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

+ 𝑔
1
Φ (𝑥) (𝜃 − 𝜃) − (𝑃

1
+ ℎ𝑋
11
) ∇𝐻 (𝑥)

− [∇
T
𝐻(𝑥) ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥) [(∇𝐻 (𝑥 (𝑡)))

]
T

×𝑀
1[∇𝐻 (𝑥 (𝑡))]


,

̇̂
𝜃 = 𝐾

1
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥) .

(19)

Choose a Lyapunov functional described as

𝑉
1
(𝑥, 𝑥
𝜏
, 𝜃) = 𝐻 (𝑥) +

1

2
𝜃
T
𝐾
−1

1
𝜃

+ ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥 (𝜑)) 𝑃

1
∇𝐻(𝑥 (𝜑)) 𝑑𝜑

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

[(∇𝐻 (𝑥 (𝛼)))

]
T

× 𝑍
1[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼𝑑𝛽,

(20)

where 𝜃 = 𝜃 − 𝜃.
Since 𝐻(𝑥) ∈ C2, 𝑃

1
> 0, 𝑍

1
> 0, and (A3) in

Assumption 3 holds, we have the following inequalities:

∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥 (𝜑)) 𝑃

1
∇𝐻(𝑥 (𝜑)) 𝑑𝜑

⩽ ∫

𝑡

𝑡−𝑑(𝑡)


∇
T
𝐻(𝑥 (𝜑)) 𝑃

1
∇𝐻(𝑥 (𝜑))


𝑑𝜑

⩽ 𝜄
𝑝
∫

𝑡

𝑡−𝑑(𝑡)

𝜖
2
(max 𝑥 (𝜑)

) 𝑑𝜑

= ℎ𝜄
𝑝
𝜖
2
(‖𝑥‖C) ,

(21)

where 𝜄
𝑝
= 𝜆max(𝑃1) > 0.

Moreover, according to (A4) in Assumption 3, we have

∫

0

−ℎ

∫

𝑡

𝑡+𝛽

[(∇𝐻 (𝑥 (𝛼)))

]
T
𝑍
1[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼𝑑𝛽

⩽ ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

𝜄
𝑧
𝜋
2
(‖𝑥 (𝛼)‖) 𝑑𝛼 𝑑𝛽

=
1

2
ℎ
2
𝜄
𝑧
𝜋
2
(‖𝑥‖C) ,

(22)

where 𝜄
𝑧
= 𝜆max(𝑍1) > 0.

Combining (21) and (22), from (A2) in Assumption 3, we
obtain

𝑉
1
(𝑥, 𝑥
𝜏
, 𝜃) ⩽ 𝜀

2
(‖𝑥‖) + 𝜅


𝜃


2

+ ℎ𝜄
𝑝
𝜖
2
(‖𝑥‖C) +

1

2
ℎ
2
𝜄
𝑧
𝜋
2
(‖𝑥‖C) ,

(23)

where 𝜅 = 𝜆max(𝐾
−1

1
) > 0.

Let ](‖𝜒‖C) = 𝜀
2
(‖𝑥‖) + 𝜅‖𝜃‖

2

+ ℎ𝜄
𝑝
𝜖
2
(‖𝑥‖C) + (1/

2)ℎ
2
𝜄
𝑧
𝜋
2
(‖𝑥‖C), 𝜒 = [𝑥

T
𝑥
T
𝜏
𝜃
T
]
T
. Obviously, it belongs to

K-class function. So, we obtain

𝜀
1
(
𝜒 (0)

) ⩽ 𝑉1 (𝑥, 𝑥𝜏, 𝜃) ⩽ ] (𝜒
C
) . (24)

According to theNewton-Leibnitz formula, it follows that

∇𝐻 (𝑥) − ∫

𝑡

𝑡−𝑑(𝑡)

[∇𝐻 (𝑥 (𝛼))]

𝑑𝛼 − ∇𝐻 (𝑥

𝜏
) = 0; (25)
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then for anymatrices𝐵
1
and𝐵

2
with appropriate dimensions,

we have

{∇
T
𝐻(𝑥) [𝐽

∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] + ∇

T
𝐻(𝑥
𝜏
) 𝐵
1

+[∇𝐻 (𝑥 (𝑡))]

𝐵
2
}

⋅ [∇𝐻 (𝑥) − ∇𝐻 (𝑥
𝜏
) − ∫

𝑡

𝑡−𝑑(𝑡)

[∇𝐻 (𝑥 (𝛼))]

𝑑𝛼] ≡ 0.

(26)

As is well known, for any positive definite matrix 𝑋 ⩾ 0

and a vector function 𝜂, the following inequality holds:

ℎ𝜂
T
(𝑡) 𝑋𝜂 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
(𝑡) 𝑋𝜂 (𝑡) 𝑑𝛼 ⩾ 0. (27)

Noting that

∇
T
𝐻(𝑥) 𝐽 (𝑥, 𝑝) ∇𝐻 (𝑥)

=
1

2
∇
T
𝐻(𝑥) [𝐽 (𝑥, 𝑝) + 𝐽

T
(𝑥, 𝑝)] ∇𝐻 (𝑥) = 0

(28)

and combining (26) and (27) and using Assumption 1, we can
evaluate the derivative of 𝑉

1
(𝑥, 𝑥
𝜏
, 𝜃) along the trajectory of

the closed-loop system (19) as follows:

�̇�
1
(𝑥, 𝑥
𝜏
, 𝜃)

= ∇
T
𝐻(𝑥) [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥) [𝐽

∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

+ ∇
T
𝐻(𝑥) 𝑔

1
Φ (𝑥) 𝜃 + ∇

T
𝐻(𝑥) 𝑃

1
∇𝐻 (𝑥)

− ∇
T
𝐻(𝑥) (𝑃

1
+ ℎ𝑋
11
) ∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))

]
T
𝑀
1[∇𝐻 (𝑥 (𝑡))]



− (1 − ̇𝑑 (𝑡)) ∇
T
𝐻(𝑥
𝜏
) 𝑃
1
∇𝐻(𝑥

𝜏
)

− 𝜃
T
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥)

+ ℎ[(∇𝐻 (𝑥 (𝑡)))

]
T
𝑍
1[∇𝐻 (𝑥 (𝑡))]



− ∫

𝑡

𝑡−ℎ

[(∇𝐻 (𝑥 (𝛼)))

]
T
𝑍
1[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

⩽ −∇
T
𝐻(𝑥) 𝑅∇𝐻 (𝑥) − ℎ∇

T
𝐻(𝑥)𝑋

11
∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))

]
T
𝑀
1[∇𝐻 (𝑥 (𝑡))]



− (1 − 𝜇) ∇
T
𝐻(𝑥
𝜏
) 𝑃
1
∇𝐻(𝑥

𝜏
)

− ∫

𝑡

𝑡−𝑑(𝑡)

[(∇𝐻 (𝑥 (𝛼)))

]
T
𝑍
1[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

+ ℎ[(∇𝐻 (𝑥 (𝑡)))

]
T
𝑍
1[∇𝐻 (𝑥 (𝑡))]



− ∇
T
𝐻(𝑥) 𝑅

∗

∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥
𝜏
) 𝐵
1
∇𝐻 (𝑥) − ∇

T
𝐻(𝑥
𝜏
) 𝐵
1
∇𝐻(𝑥

𝜏
)

+ [(∇𝐻 (𝑥 (𝑡)))

]
T
𝐵
2
∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))

]
T
𝐵
2
∇𝐻(𝑥

𝜏
)

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥) [𝐸Δ (𝑥

𝜏
) 𝐹 + 𝑇] [∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥
𝜏
) 𝐵
1[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

− ∫

𝑡

𝑡−𝑑(𝑡)

[(∇𝐻 (𝑥 (𝑡)))

]
T

× 𝐵
2[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼 + ℎ𝜂

T
1
𝑋𝜂
1

− ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
1
(𝑡) 𝑋𝜂

1
(𝑡) 𝑑𝛼,

(29)

where 𝜂
1
= [∇

T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻(𝑥(𝑡)))


]
T
]
T
.

Let

𝜂
2

=[∇
T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻 (𝑥 (𝑡)))


]
T
[(∇𝐻 (𝑥 (𝛼)))


]
T
]

T
;

(30)

according to (15)-(16) and using Lemma 6, we get that

�̇�
1
(𝑥, 𝑥
𝜏
, 𝜃) ⩽ 𝜂

T
1
Ξ
1
𝜂
1
− ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
2
Θ𝜂
2
𝑑𝛼 ⩽ 𝜂

T
1
Ξ
1
𝜂
1
.

(31)

Furthermore, since Ξ
1
< 0, according to Assumption 3,

there exists a continuous nondecreasing function 𝜖(‖𝜒‖), 𝜒 =
[𝑥

T
𝑥
T
𝜏
𝜃
T
]
T
such that

�̇�
1
(𝑥, 𝑥
𝜏
, 𝜃) ⩽ −𝜖 (

𝜒 (0)
) .

(32)

According to the Lyapunov-Krasovskii stability theorem,
we can conclude that the closed-loop system (19) consisting
of system (12) and the control law (18) is asymptotically stable.
This completes the proof.

3.2. L
2
Disturbance Attenuation. Inwhat follows, we consider

the 𝐿
2
disturbance attenuation problem of systems (1). Given
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a disturbance attenuation level 𝛾 > 0, choose the following
penalty function:

𝑧 = ℎ (𝑥) 𝑔
T
1
∇𝐻 (𝑥) , (33)

where ℎ(𝑥) ∈ R𝑞×𝑠 is weighing matrix.
For time delay 𝑑(𝑡) satisfying (2), we have the following

result.

Theorem8. Consider system (1). Suppose that Assumptions 1–
5 hold. If there exist matrices

0 < 𝑃
2
= 𝑃

T
2
, 0 < 𝑍

2
= 𝑍

T
2
, 0 < 𝑀

2
= 𝑀

T
2
,

(34)

0 ⩽ 𝑋 = (

𝑋
11

𝑋
12

𝑋
13

𝑋
21

𝑋
22

𝑋
23

𝑋
31

𝑋
32

𝑋
33

), (35)

any appropriately dimensioned matrices 𝐸, 𝐹, 𝑇, 𝐵
3
, 𝐵
4
and a

scalar 𝜀 > 0 such that (14) and the following conditions hold

Ξ
2
=(

(

Φ
11
= −𝑅 − 𝑅

∗

−
1

2𝛾
2
(𝑔
1
𝑔
T
1
− 𝑔
2
𝑔
T
2
)

𝐵
T
3

2
+ ℎ𝑋
12

𝐵
T
4

2
+ ℎ𝑋
13

∗ − (1 − 𝜇) 𝑃
2
−
𝐵
3

2
−
𝐵
T
3

2
+ ℎ𝑋
22

−
𝐵
T
4

2
+ ℎ𝑋
23

∗ ∗ −𝑀
2
+ ℎ𝑍
2
+ ℎ𝑋
33

)

)

< 0,

Θ =

(
(
(
(

(

𝑋
11
+ 𝜀
−1
𝐸𝐸

T
𝑋
12

𝑋
13

1

2
𝑇

∗ 𝑋
22

𝑋
23

1

2
𝐵
3

∗ ∗ 𝑋
33

1

2
𝐵
4

∗ ∗ ∗ 𝑍
2
+ 𝜀𝐹

T
𝐹

)
)
)
)

)

⩾ 0,

(36)

then the 𝐿2 disturbance attenuation problem of system (1) can
be solved by the feedback control law:

𝑢 = − 𝑔
T
1
(𝑔
1
𝑔
T
1
)
−1

{ (𝑃
2
+ ℎ𝑋
11
) ∇𝐻 (𝑥) − Φ (𝑥) 𝜃

+ [∇
T
𝐻(𝑥) ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥)

× [(∇𝐻 (𝑥 (𝑡)))

]
T
𝑀
2[∇𝐻 (𝑥 (𝑡))]


}

− [
1

2
ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥) ,

̇̂
𝜃 = 𝐾

2
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥) ,

(37)

where 𝐾
2
> 0 is an adaptive gain matrix with appropriate

dimension.
Moreover, the 𝛾-dissipation inequality

𝑉
2
(𝑥, 𝑥
𝜏
, 𝜃) + 𝑄 (𝑥, 𝑥

𝜏
) ⩽

1

2
{𝛾
2
‖𝜔‖
2
− ‖𝑧‖
2
} (38)

holds along the trajectories of the closed-loop systems consisting
of (1) and (37), where

𝑄 (𝑥, 𝑥
𝜏
) = −𝜂

T
1
Ξ
2
𝜂
1
+ ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
2
Θ𝜂
2
𝑑𝛼 (39)

with

𝜂
1
= [∇

T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻 (𝑥 (𝑡)))


]
T
]

T
,

𝜂
2

= [∇
T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻 (𝑥 (𝑡)))


]
T
[(∇𝐻 (𝑥 (𝛼)))


]
T
]

T
.

(40)

The storage function is given as

𝑉
2
(𝑥, 𝑥
𝜏
, 𝜃)

= 𝐻 (𝑥) + ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥 (𝜑)) 𝑃

2
∇𝐻(𝑥 (𝜑)) 𝑑𝜑

+ ∫

0

−ℎ

∫

𝑡

𝑡−𝑑(𝑡)

[∇
T
𝐻(𝑥 (𝛼))]



𝑍
2[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼𝑑𝛽

+
1

2
𝜃
T
𝐾
−1

2
𝜃.

(41)
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Proof. Substituting (37) into (1) yields

�̇� = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ [𝐽
∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

− (𝑃
2
+ ℎ𝑋
11
) ∇𝐻 (𝑥) + 𝑔

2
𝜔

− [∇
T
𝐻(𝑥) ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥)

× [(∇𝐻 (𝑥 (𝑡)))

]
T
𝑀
2 [∇𝐻 (𝑥 (𝑡))]



+ 𝑔
1
Φ (𝑥) (𝜃 − 𝜃)

− 𝑔
1
[
1

2
ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥) ,

̇̂
𝜃 = 𝐾

2
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥) .

(42)

Evaluating the derivative of (41) along the trajectory of system
(42) and using (26), (27), and Assumption 1, we get

�̇�
2
(𝑥, 𝑥
𝜏
, 𝜃)

= ∇
T
𝐻(𝑥) [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥) [𝐽

∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

− ℎ∇
T
𝐻(𝑥)𝑋

11
∇𝐻 (𝑥) + ∇

T
𝐻(𝑥) 𝑔

2
𝜔

− [(∇𝐻 (𝑥 (𝑡)))

]
T
𝑀
2[∇𝐻 (𝑥 (𝑡))]



− ∇
T
𝐻(𝑥) 𝑔

1
[
1

2
ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥)

− (1 − ̇𝑑 (𝑡)) ∇
T
𝐻(𝑥
𝜏
) 𝑃
2
∇𝐻(𝑥

𝜏
)

+ ℎ[(∇𝐻 (𝑥 (𝑡)))

]
T
𝑍
2[∇𝐻 (𝑥 (𝑡))]



− ∫

𝑡

𝑡−ℎ

[(∇𝐻 (𝑥 (𝛼)))

]
T
𝑍
2[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

⩽ −∇
T
𝐻(𝑥) 𝑅∇𝐻 (𝑥) − ℎ∇

T
𝐻(𝑥)𝑋

11
∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))

]
T
𝑀
2[∇𝐻 (𝑥 (𝑡))]



− (1 − 𝜇) ∇
T
𝐻(𝑥
𝜏
) 𝑃
2
∇𝐻(𝑥

𝜏
)

+ ℎ[(∇𝐻 (𝑥 (𝑡)))

]
T
𝑍
2[∇𝐻 (𝑥 (𝑡))]



− ∫

𝑡

𝑡−ℎ

[(∇𝐻 (𝑥 (𝛼)))

]
T
𝑍
2[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

+ ∇
T
𝐻(𝑥) [𝐽

∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥
𝜏
) 𝐵
3
∇𝐻 (𝑥)

− ∇
T
𝐻(𝑥
𝜏
) 𝐵
3
∇𝐻(𝑥

𝜏
) +[(∇𝐻 (𝑥 (𝑡)))


]
T
𝐵
4
∇𝐻 (𝑥)

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥) [𝐽

∗
(𝑥
𝜏
) −𝑅
∗
(𝑥
𝜏
)] [∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥
𝜏
) 𝐵
3[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

− [(∇𝐻 (𝑥 (𝑡)))

]
T
𝐵
4
∇𝐻(𝑥

𝜏
)

− ∫

𝑡

𝑡−𝑑(𝑡)

[(∇𝐻 (𝑥 (𝑡)))

]
T
𝐵
4[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼

+ ℎ𝜂
T
1
𝑋𝜂
1

− ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
1
(𝑡) 𝑋𝜂

1
(𝑡) 𝑑𝛼

−
1

2



𝛾𝜔 −
1

𝛾
∇
T
𝐻(𝑥) 𝑔

2



2

− ∇
T
𝐻(𝑥) 𝑔

1
[
1

2
ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥)

+
1

2𝛾
2
∇
T
𝐻(𝑥) 𝑔

2
𝑔
T
2
∇𝐻 (𝑥)

+
1

2
{𝛾
2
‖𝜔‖
2
− ‖𝑧‖
2
}

+
1

2
∇
T
𝐻(𝑥) 𝑔

1
ℎ
T
(𝑥) ℎ (𝑥) 𝑔

T
1
∇𝐻 (𝑥) .

(43)

According to (35), (36), and Lemma 6, we have

�̇�
2
(𝑥, 𝑥
𝜏
, 𝜃) − 𝜂

T
1
Ξ
2
𝜂
1
+ ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
2
Θ𝜂
2
𝑑𝛼 ⩽

1

2
{𝛾
2
‖𝜔‖
2
− ‖𝑧‖
2
} .

(44)

It is obvious that the 𝛾-dissipation inequality (38) holds along
the closed-loop system (42)which consist of (1) and (37).This
completes the proof.

4. Illustrative Examples

In this section, we give some examples to show how to apply
the results proposed in this paper to investigate the robust
stabilization and the 𝐿

2
disturbance attenuation for a class of

time-delay nonlinear control systems with uncertainties and
disturbances.

Let us consider the following 2-dimensional time-delay
nonlinear control systems with parametric uncertainties and
external disturbances:

�̇�
1
(𝑡) = −4𝑥

3

1
(𝑡) − 4𝑥

3

1
(𝑡 − 𝑑 (𝑡)) + 2𝑢,

�̇�
2
(𝑡) = − 2𝑥

3

1
(𝑡) − (2 + 3𝑝 + 𝑝

2
) 𝑥
2
(𝑡) − 2𝑥

3

1
(𝑡 − 𝑑 (𝑡))

− 2𝑥
2
(𝑡 − 𝑑 (𝑡)) − 𝑥

2
(𝑡 − 𝑑 (𝑡)) sin (𝑥

2
(𝑡 − 𝑑 (𝑡)))

+ 3𝑢 + 0.5𝜔,

𝑥
1
(𝑡
0
) = 𝜙
1
(𝑡
0
) , 𝑥

2
(𝑡
0
) = 𝜙
2
(𝑡
0
) , 𝑡

0
∈ [−ℎ, 0] ,

(45)
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where 𝑑(𝑡) is a time varying delay of the system (45); 𝑝 is an
unknown constant, 0 < 𝑝 < 1; 𝜔 is the disturbance input.

The system (45) can be realized into the following Hamil-
tonian system form:

�̇� = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥, 𝑝)

+ [𝐽
∗
(𝑥
𝜏
) − 𝑅
∗
(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
) + 𝑔
1
𝑢 + 𝑔
2
𝜔,

𝑥 (𝑡
0
) = 𝜙 (𝑡

0
) , 𝑡

0
∈ [−ℎ, 0]

(46)

with

𝐽 (𝑥, 𝑝) = (
0 0.5

−0.5 0
) , 𝑅 (𝑥, 𝑝) = (

2 0.5

0.5 2 + 𝑝
) ,

𝐽
∗
(𝑥
𝜏
) = (

0 0.5

−0.5 0
) ,

𝑅
∗
(𝑥
𝜏
) = (

2 0.5

0.5 2 + sin𝑥
2
(𝑡 − 𝑑 (𝑡))

) ,

𝑔
1
= (

2

3
) , 𝑔

2
= (

0

0.5
) ,

𝑥 = (
𝑥
1

𝑥
2

) , 𝜙 = (
𝜙
1

𝜙
2

) ,

(47)

𝐻(𝑥, 𝑝) = 0.5 (𝑥
4

1
+ (1 + 𝑝) 𝑥

2

2
) ,

𝐻 (𝑥
𝜏
) = 0.5 (𝑥

4

1
(𝑡 − 𝑑 (𝑡))) + 𝑥

2

2
(𝑡 − 𝑑 (𝑡)) .

(48)

Let 𝐸 = 𝐹 = ( 1 0
0 1
), 𝑇 = ( −2 0

−1 −2
), Δ(𝑥

𝜏
) = (
0 0

0 − sin𝑥
2
(𝑡−𝑑(𝑡)) ),

𝜃 = (−1−0.5𝑝)𝑝 andΦ(𝑥) = 𝑥
2
. It is easy to verify that system

(46) with the above values satisfies Assumptions 1–5 and the
condition (14) of Theorem 7.

Firstly, we demonstrate the application of Theorem 7 by
using LMI solver [31].

Set 𝜇 = 0.25 and ℎ = 1. Using the LMI control toolbox
of MATLAB, the LMIs in Theorem 7 are solved to find the
following matrices:

𝑃
1
= (

2.3387 −0.0187

−0.0187 2.3387
) , 𝑍

1
= (

0.3770 0.0447

0.0447 0.2949
) ,

𝑀
1
= (

1.0000 0.0000

0.0000 1.0000
) , 𝐵

1
= (

0.7608 0.0232

0.0232 0.7653
) ,

𝑋
11
= (

1.4363 0.0957

0.0957 1.4842
) , 𝑋

12
= (

−0.1565 −0.0155

−0.0155 −0.1583
) ,

𝑋
22
= (

1.3787 0.0070

0.0070 1.3801
) , 𝑋

33
= (

0.5258 −0.0203

−0.0203 0.5359
) ,

𝐵
2
= 𝑋
13
= 𝑋
23
= (

0 0

0 0
) .

(49)

Thus a robust stabilizing controller is obtained as

𝑢 = −3.8229𝑥
2
− 𝑥
2
(�̇�
4

1
+ �̇�
2

2
) (𝑥
4

1
+ 𝑥
2

2
)
−1

− 0.0770𝑥
3

1
− 𝑥
2
𝜃.

(50)
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Figure 1: Responses of state 𝑥.
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Figure 2: Parameter estimation 𝜃.

The simulation with the initial condition 𝑥(0) = 𝜙(0) = [1 −

2]
T is given in Figures 1 and 2. It is clear that under the delay-

dependent conditions, system (46) along with the controller
(50) is asymptotically stable.

Next, we demonstrate the application of Theorem 8. We
will check whether the designed 𝐿

2
disturbance attenuation

controller according to Theorem 8 is effective in stabilizing
the given time-delay Hamiltonian system (46) and has strong
robustness against external disturbances.

Given a disturbance attenuation level 𝛾, choose

𝑧 = ℎ (𝑥) 𝑔
T
1
∇𝐻 (𝑥) (51)

as the penalty function, where ℎ = [0.1 0.1]
T.
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Figure 3: Responses of state 𝑥.
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Figure 4: Parameter estimation 𝜃.

Using the LMI control toolbox, the LMIs in Theorem 8
are solved to find the following matrices with 𝜇 = 0.25, ℎ = 1:

𝑃
2
= (

2.4230 −0.0178

−0.0178 2.4230
) , 𝑍

2
= (

0.3136 0.0426

0.0426 0.2926
) ,

𝑀
2
= (

1.0000 0.0000

0.0000 1.0000
) , 𝐵

3
= (

0.7859 0.0223

0.0223 0.7939
) ,

𝑋
11
= (

1.4799 0.0894

0.0894 1.5238
) , 𝑋

12
= (

−0.1568 −0.0160

−0.0160 −0.1551
) ,

𝑋
22
= (

1.4275 0.0069

0.0069 1.4304
) , 𝑋

33
= (

0.5382 −0.0194

−0.0194 0.5477
) ,

𝐵
4
= 𝑋
13
= 𝑋
23
= (

0 0

0 0
) .

(52)

Then according toTheorem 8, a feedback adaptive controller
can be obtained as

𝑢 = −4.4041𝑥
2
− 𝑥
2
(�̇�
4

1
+ �̇�
2

2
) (𝑥
4

1
+ 𝑥
2

2
)
−1

− 0.0716𝑥
3

1
− 𝑥
2
𝜃.

(53)

To illustrate the effectiveness of the adaptive control law
(53), we carry simulation result with the following choices:
the disturbance signal𝜔 = sin 𝑡; the initial condition is 𝑥(0) =
𝜙(0) = [5 − 5]

T; the disturbance attenuation level is chosen
by 𝛾 = 0.9. The simulation results are shown in Figures 3 and
4, which are responses of the system’s state and the parameter
estimation, respectively. It can be seen from the simulation
that the time-delay system converges to its equilibrium very
quickly under the controller (53).

In general, from the simulations, we can conclude that
the results presented in this paper are very practicable and
effective in stabilization analysis and 𝐿

2
disturbance atten-

uation of time-delay Hamiltonian systems with parametric
uncertainties and external disturbances. What is more, by
using the result presented in this paper, we may solve the
stability and control problem of some classes of time-delay
nonlinear systems which can be realized into Hamiltonian
systems form.

5. Conclusions

In this paper, the robust asymptotical stability and 𝐿
2

disturbance attenuation problem of a class of time-delay
Hamiltonian control systems with parametric uncertainties
and external disturbances have been investigated. Delay-
dependent criteria are established. The proposed adaptive
feedback control law, by which the asymptotic stability and
the 𝐿
2
performance of the close-loop system is guaranteed, is

determined by linear matrix inequalities constraints. Simula-
tions show the effectiveness of the proposed method.
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