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The complex cepstrumvocoder is used tomodify the speaker specific characteristics of the source speaker speech to that of the target
speaker speech. The low time and high time liftering are used to split the calculated cepstrum into the vocal tract and the source
excitation parameters.The obtainedmixed phase vocal tract and source excitation parameters with finite impulse response preserve
the phase properties of the resynthesized speech frame. The radial basis function is explored to capture the nonlinear mapping
function for modifying the complex cepstrum based real and imaginary components of the vocal tract and source excitation of the
speech signal.The state-of-the-artMel cepstrum envelope and the fundamental frequency (𝐹

0
) are considered to represent the vocal

tract and the source excitation of the speech frame, respectively. Radial basis function is used to capture and formulate the nonlinear
relations between theMel cepstrum envelope of the source and target speakers. Mean and standard deviation approach is employed
to modify the fundamental frequency (𝐹

0
). The Mel log spectral approximation filter is used to reconstruct the speech signal

from the modified Mel cepstrum envelope and fundamental frequency. A comparison of the proposed complex cepstrum based
model has beenmade with the state-of-the-artMel Cepstrum Envelope based voice conversionmodel with objective and subjective
evaluations. The evaluation measures reveal that the proposed complex cepstrum based voice conversion system approximate the
converted speech signal with better accuracy than the model based on the Mel cepstrum envelope based voice conversion.

1. Introduction

The voice conversion (VC) system extracts the features of the
source and the target speaker sound’s and formulates the
mapping function to modify the features of the source
speaker sound’s such that the resynthesized speech sound’s as
if spoken by a target speaker [1]. Application of VC includes
the personification of text to speech, design of multispeaker
based speech synthesis system, audio dubbing, karaoke appli-
cations, security related system, the design of speaking aids
for the speech impaired patient, broadcasting, and multime-
dia applications [2–4].TheVC involves the transformation of
speaker specific characteristics such as vocal tract parameters,
source excitation, and long term prosodic parameters with
that of desired speaker parameters [5].The vocal tract param-
eters are relatively more prominent for identifying the
speaker uniqueness than the source excitation [5].

Several methods have been reported in the literature to
characterize the spectrum of the speech frame, namely, For-
mant Frequency (FF), Formant Bandwidth (FBW) [1], Linear
Predictive Coefficients (LPC) [6], Reflection Coefficients
(RC) [7], Log Area Ratio (LAR) [8], Cepstrum Coefficients
[9], Mel cepstrum envelope (MCEP) [10], Wavelet Transform
(WT) [11], and Mel generated spectra [12]. Line Spectral Fre-
quency (LSF) [13, 14] is a direct mathematical transformation
of LPC, which has a special attraction in representing the
vocal tract as it smoothly traces the shape of formants and
antiformants and overcomes the interpolation, quantization,
and stability issues of the LPC. However, LP related features
does not assume nonstationary characteristics of the speech
signal within a frame and therefore fail to analyze the local
speech events accurately [15]. Further, a very accurate
approach STRAIGHT [16] has also been proposed. It needs
enormous computations and therefore, it is inappropriate
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for real time applications. Another approach using Mel Fre-
quency Cepstrum Coefficients (MFCC) have been proposed
[17], which properly model both spectral peaks and valleys.
However, the main toil of MFCC synthesis is to loose pitch
and phase related information [17].

The conventional parametric speech production model
like LPC, real cepstrum [18–20], and Liljencrants-Fant (LF)
[21] models is based on minimum phase model with infinite
impulse response [22]. In fact, a completely different category
of glottal flow estimation relies on the mixed-phase model
of speech [22, 23]. According to this estimation, the speech
signal is composed of both maximum (i.e., anticausal) and
minimum phase (i.e., causal) components. The return phase
of the glottal pulse components and vocal tract impulse
response is part of minimum phase signals, whereas the open
phase of the glottal flow is considered as maximum phase
of the signal [24]. It has been shown in the literature that
the mixed phase models are appropriate for representing the
voiced speech [25]. The real cepstrum with minimum phase
discards the glottal flow information of speech. However, the
complex cepstrum incorporates phase as glottal pulse infor-
mation during speech synthesis [25]. The complex cepstrum
representation of the speech signal allows noncasual model-
ing of short time speech frame, which is actually observed in
natural speech [22–24]. Complex cepstrum perform well in
speech synthesis and speech modeling [25, 26].

For the development of appropriate transformation
model, various mapping functions have been proposed in
the literature such as Vector Quantization (VQ) based code-
book mapping [6] and Gaussian Mixture Model (GMM)
based transformation models [3, 9, 10]. Fuzzy vector quan-
tization [27] and a Speaker Transformation Algorithm using
Segmental Code-book (STASC) have been proposed to
overcome limitations of VQ based model [14]. In addition
Dynamic Frequency Warping (DFW) [28] have also been
used for transformation of the spectral envelope. The GMM
oversmoothing issue is resolved via maximum likelihood
estimators and hybrid methods [29]. The dynamic kernel
partial least square regression technique has also implied
[12] for spectral transformation. In fact, the relation between
the shapes of the vocal tracts of the different speakers are
highly nonlinear, to capture this nonlinearity between the
vocal tracts artificial neural network has been explored in the
literature [10, 11, 14, 18, 30].

In addition to vocal tract, the source excitation contains
vital speaker-specific characteristics [1, 3], so it is necessary to
properly modify the excitation signal to accurately synthesize
the target speaker’s voice [4]. Very few methods have been
discussed in the literature for excitation signal transformation
such as residual copying, but the converted sound seems to
be a third speaker’s voice [31], another method is residual
prediction [3].However, it has the problemof over smoothen-
ing. In order to alleviate the over smoothening problem of
residual prediction, residual selection method, unit selection
method [31], and combination of residual selection and unit
selection have been also explored in the literature [32]. The
Artificial Neural Network model has also applied to modify
the residual signal but time domain residual transformation

loses the correlation in the speech production model which
leads to distortion in speech signal [12].

In this paper, the prominent complex cepstrum vocoder
is employed to model the vocal tract and source excitation of
the speech. The low time and high time lifters are designed
to separate the complex cepstrum into vocal tract and source
excitation parameters with real and imaginary components.
The reasons behind the use of radial basis function (RBF)
based the transformation model are its fast training ability,
desirable computational efficiency, and interpolation prop-
erty. The RBF based mapping function are trained separately
to capture the nonlinear relations for modifying the real and
the imaginary components of cepstrum based vocal tract
and source excitation of the source speaker to that of the
target speaker utterance’s. Similarly, the MCEP parameters
of source speaker’s utterances are also modified according to
the target speaker’s utterances using RBF. The fundamental
frequency between source and target speaker’s utterances is
modified using mean and standard deviation approach [10].
Mel log spectral approximation (MLSA) filter [33] is used
to reconstruct the speech signal from modified MCEP and
fundamental (𝐹

0
).

Finally, the performance of the proposed complex cep-
strum based VC approach is compared with MCEP [34]
basedVC approach.This is done using various objectivemea-
sures such as a performance index (𝑃LSF) [3], formant devia-
tion [14, 30], and spectral distortion [14].The commonly used
subjective measures such as Mean Opinion Score (MOS) and
ABX verify the quality and speaker identity of the converted
speech signal.

This paper is organized as follows. Section 2 describes the
complex cepstrumanalysiswith low time andhigh time lifters
which are used to extract the cepstrum based features of the
vocal tract and excitation based signals. Section 3 explains
the proposed VC system based on complex cepstrum and the
state-of-the-art MCEP based VC system. Radial basis based
spectral mapping is described in Section 4.The experimental
environment, database, and objective measures, such as
performance index, formant deviation, spectrograph, and the
perceptual tests, namely, Mean Opinion Score (MOS) and
ABX, conducted with different human listeners are presented
in Section 5. The last Section gives the overall conclusions of
the paper.

2. Complex Cepstrum Analysis

According to the source-filter model of the human speech
production system, the source signal excites the vocal tract
and it generates the speech signal. The human speech is two-
sided real and asymmetrical in nature. Hence, a mixed phase
Finite Impulse Response (FIR) systemmay be realized which
preserves the phase related information to givemore accurate
synthesized speech. From the signal processing point of view,
the short time speech signal 𝑠(𝑛) can be considered as linear
convolution of the source excitation 𝑔(𝑛) with the impulse
function of the vocal tract V(𝑛). It can be defined as follows:

𝑠 (𝑛) = V (𝑛) ∗ 𝑔 (𝑛) . (1)
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By applying DTFT to the speech signal we obtain

𝑆 (𝜔) =

𝑀

∑

𝑛=−𝑀

𝑠 (𝑛) 𝑒
−𝑗𝜔𝑛
, (2)

where𝑀 is the order of cepstrum, that is, number of one sided
frequencies.The time domain convolution can bemodeled as
spectral multiplication of the vocal tract filter response 𝑉(𝜔)
and source excitation response 𝐺(𝜔) giving the short time
speech spectrum 𝑆(𝜔) as shown,

𝑆 (𝜔) = 𝑉 (𝜔)𝐺 (𝜔) . (3)

Cepstral analysis includes transforming themultiplied source
excitation and vocal tract responses in the frequency domain
into linear combination of the two components in the cepstral
domain. The analysis of the speech signal needs to separate
two components 𝑉(𝜔) and 𝐺(𝜔). In frequency domain
logarithmic representation is used to linearly combine the
components𝑉(𝜔) and𝐺(𝜔).The complex spectrum 𝑆(𝜔) can
be rewritten by performing logarithmic compression

𝑆 (𝜔) = log 𝑆 (𝜔) . (4)

Therefore the log spectrum is further separated into two parts

log 𝑆 (𝜔) = log𝑉 (𝜔) + log𝐺 (𝜔) . (5)

Thus, the log spectrum can be decomposed as addition of
magnitude and phase components

𝑆 (𝜔) = log |𝑆 (𝜔)| + 𝑗 arg 𝑆 (𝜔) . (6)

The imaginary part of the logarithmic spectrum is the
unwrapped phase sequence [23]. Thus, phase information is
no more ignored giving rise to a complex cepstrum. Hence
comprising of a mixed phase system, with a finite impulse
response (FIR) type, which is stable. The cepstrum is defined
as

𝑐 (𝑛) =
1

2𝜋
∫

𝜋

−𝜋

𝑆 (𝜔) 𝑒
𝑗𝜔𝑛
𝑑𝜔, (7)

where 𝑐(𝑛) can be given as

𝑐 (𝑛) =
1

2𝜋
∫

𝜋

−𝜋

log |𝑆 (𝜔)| 𝑒𝑗𝜔𝑛𝑑𝜔

+
1

2𝜋
∫

𝜋

−𝜋

𝑒
𝑗(𝜔+arg(𝑆(𝜔)))𝑛

𝑑𝜔.

(8)

The log spectral components that vary rapidly with frequency
𝜔 are denoted as a high time component log𝐺(𝜔) and the
log spectral components that slowly with frequency 𝜔 are
designated as a low time component log𝑉(𝜔) [20]. Here, 𝑐(𝑛)
is time aliased version, therefore, 𝑀 > 𝑁 condition avoids
aliasing effect;𝑁 is total number of cepstrum samples.

Consider

𝑙
𝑙 (𝑛) = {

1, 0 ≤ 𝑛 < 𝐿
𝑐
,

0, 𝐿
𝑐
≥ 𝑛 ≤ 𝑁,

𝑐V (𝑛) = 𝑙𝑙 (𝑛) 𝑐 (𝑛) ,

𝑙
ℎ
(𝑛) = {

1, 𝐿
𝑐
≤ 𝑛 ≤ 𝑁,

0, elsewhere,

𝑐
𝑒
(𝑛) = 𝑙

ℎ
(𝑛) 𝑐 (𝑛) ,

(9)

where the 𝑐(𝑛) represents complex cepstrum of speech frame,
𝑙
𝑙
(𝑛) is low time lifter, 𝑙

ℎ
(𝑛) is high time lifter. In the de-

convolution stage an appropriate value of lifter index 𝐿
𝑐
is

chosen to separate the two components, namely, the fast
changing excitation parameter 𝑐

𝑒
(𝑛) and the slowly changing

parameters, that is, vocal tract parameter 𝑐V(𝑛). The win-
dowed signal, the complex cepstrum with magnitude, and
phase spectra are shown in Figure 1. The coefficient, 𝑐(0) is
the speech signal energy and the coefficients 𝑐(𝑛) for 𝑛 ≥
1 signifies the magnitude and phase at the quefrency 𝑛 in
the spectrum. The vocal tract cepstrum 𝑐V(𝑛) has coefficients
with significant magnitudes at lower values of 𝑛 and source
excitation cepstrum; 𝑐

𝑒
(𝑛) has relatively lower magnitude

coefficients for higher values of 𝑛. Theoretically, the complex
cepstrum being a mixed phase results in a more accurate
model of the speech signal, when compared to the minimum
phase synthesis filter approach which discard the glottal flow
information content in the cepstrum [18]. The cepstrum
values lower than zero represents the maximum phase (i.e.,
anticausal) response, whereas the values above zero can be
considered as the minimum phase (i.e., causal) response are
shown in Figure 2. Mathematically, it can be modeled as

Minimum Phase = 𝑐min (𝑛)

=

{{

{{

{

0, 𝑛 = −𝑀, . . . , −2, −1,

𝑐 (𝑛) , 𝑛 = 0,

𝑐 (𝑛) + 𝑐 (−𝑛) 𝑛 = 1, 2, . . . ,𝑀,

Maximum Phase = 𝑐max (𝑛) = 𝑐 (𝑛) − 𝑐min (𝑛) ,

𝑐max (𝑛) =
{{

{{

{

𝑐 (𝑛) , 𝑛 = −𝑀, . . . , −2, −1,

0, 𝑛 = 0,

−𝑐 (−𝑛) 𝑛 = 1, 2, . . . ,𝑀.

(10)

The anticausal and casual cepstrum parts with the cor-
responding magnitude and phase spectrum are shown in
Figure 3. It has been observed that the logarithmic compres-
sion involved in the cepstrum analysis helps in obtaining the
mixed phase response for both voiced as well as unvoiced
signals.

3. Voice Conversion Framework

In this section, the complex cepstrum based VC algorithm
is proposed. The MCEP-MLSA based VC algorithm is also
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Figure 1: (a) Speech frame and window, (b) magnitude spectra, (c) complex cepstrum, and (d) phase spectra.
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Figure 2: Complex cepstrum decomposition into maximum and
minimum phase speech components.

developed for comparing the performance with the proposed
algorithm.

3.1. Proposed Complex Cepstrum Vocoder Based VC. The
proposed algorithm is implemented in two distinct phases:
(i) training and (ii) transformation phase, as depicted in
Figure 4. In the training phase, the input speech signal of the
source and target speakers are normalized and silence frames
are removed. The normalized speech frame is represented
using homomorphic decomposition. It takes the advantages
of the logarithmic scaling and the theory of convolution.
The low time portion of the complex cepstrum can be
approximated as a vocal tract impulse response (VT), where
as high time portion of the complex cepstrum is considered

as source excitation (GE) of the speech frame. The length of
the rectangular lifter is chosen with regard to the accuracy
of the vocal tract model and sampling frequency. Thus, the
cepstrum frame is split into vocal tract impulse response
and source excitation of the speech using low time and high
time liftering, respectively. Even if the source and the target
speaker utter the same sentence, the length of their feature
vectors may be different so dynamic time warping is used to
align these feature vectors. The separate RBF based mapping
functions are developed for modifying the cepstrum based
real and imaginary components of the vocal tract and source
excitation of the source speaker according to the target
speaker.

In the transformation phase followed by training phase,
the parallel utterance of the test speaker speech is prepro-
cessed to derive vocal tract and source excitation feature set
based on cepstral analysis. The test feature vectors are pro-
jected to the trained RBF, in order to obtain the transformed
feature vectors. The time domain features are computed by
inverse transforming complex cepstrum based parameters.
The modified speech frame is reconstructed by convolving
the transformed vocal tract and source excitation.The similar
process is adapted for all remaining frames. The overlap
and add method is used to resynthesize speech from mod-
ified speech frames. Finally, the speech quality is enhanced
through the postfiltering, applied to the modified speech.
Figure 4 depicts the training and testing phase details of
the proposed approach. The resynthesized speech from the
complex cepstrum has higher perceptual quality than the
speech signal constructed from the real cepstrum.
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Figure 3: Anticausal and causal cepstrum with corresponding magnitude and phase spectrum.

3.2. Baseline Mel Cepstral Envelope Vocoder Based VC.
Figure 5 depicts a block diagram of a VC system using
baseline features. During the analysis step, the MCEPs are
derived as spectral parameters and the fundamental fre-
quency (𝐹

0
) is derived as excitation parameter for every

5msec [10]. As discussed in the earlier section the feature sets
obtained from the source and target speakers usually differ
in time duration. Therefore, the source and target speaker’s
utterances are aligned using DTW. The feature set captures
the joint distribution of source and target speaker using RBF
to carry out VC.The excitation features (𝐹

0
) use the cepstrum

method to calculate the pitch period for the frame size of
25msec resulting into 25 MCEP features. Mean and standard
deviation statistics are obtained from log(𝐹

0
) and used as

feature set. In the testing phase, the parallel utterances of
test speaker are used to obtain the feature vector with the
procedure similar to that of the training set feature vector. In
order to produce transformed feature vector, the test speaker
feature vector is projected through the trained RBFmodel. In
the synthesis stage, the transformedMCEP and 𝐹

0
are passed

through the MLSA [10, 33, 35] filter. The postfiltering applied
to the transformed speech signal ensures its high quality.

4. Radial Basis Function Based VC

TheRBF is used tomodel the nonlinearity between the source
and the target speaker feature vectors [11]. It is a special case

of feed forward network which nonlinearly maps input space
to hidden space followed by a linear mapping from a hidden
space to the output space.The network represents amap from
𝑀
0
dimensional input space to𝑁

0
dimensional output space

written as 𝑆 : 𝑅𝑀
0
→ 𝑅
𝑁

0
. When a training dataset of input

output pairs [𝑥
𝑘
, 𝑑
𝑘
]; 𝑘 = 1, 2, . . . ,𝑀

0
is applied to the RBF

model; the mapping function 𝐹 is computed as

𝐹
𝑘
(𝑥) = 𝑤

𝑗0
+

𝑚

∑

𝑗=1

𝑤
𝑗𝑘
Φ(
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑑
𝑗

󵄩󵄩󵄩󵄩󵄩
) , (11)

where ‖ ⋅ ‖ is a norm usually Euclidian and computes the
distance between applied input 𝑥 and training data point 𝑑

𝑗

and Φ(‖𝑥 − 𝑑
𝑗
‖) | 𝑗 = 1, 2 . . . , 𝑚 is the set of 𝑚 arbitrary

functions known as radial basis functions. The commonly
considered form ofΦ is Gaussian function defined as

Φ (𝑥) = exp(
󵄩󵄩󵄩󵄩𝑥 − 𝜇

󵄩󵄩󵄩󵄩

2

2𝜎
2
) . (12)

RBF neural network learning process includes training and
generalized phase. The training phase constitutes the opti-
mization of basis function parameters using input dataset to
evaluate 𝑘-means algorithm in an unsupervised manner [11].
In the second phase, hidden-output neurons weight matrix is
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optimized by the least square sense to minimize the squared
error function using the equation

𝐸 =
1

2
∑

𝑛

∑

𝑘

[𝑓
𝑘
((𝑥
𝑛
) − (𝑑

𝑘
)
𝑛
)]
2

, (13)

where (𝑑
𝑘
)
𝑛 is desired value for 𝑘th output unit when input

to the network is 𝑥𝑛. The weight vector is determined as

𝑊 = Φ
𝑇
𝐷, (14)
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where Φ: matrix of size (𝑛 × 𝑗),𝐷: matrix of size (𝑛 × 𝑘), and
Φ
𝑇: transpose of matrixΦ:

(Φ
𝑇
Φ)𝑊 = Φ

𝑇
𝐷,

𝑊 = (Φ
𝑇
Φ)
−1

Φ
𝑇
𝐷,

(15)

where (Φ𝑇Φ)−1Φ𝑇 represents the pseudoinverse of matrix Φ
and𝐷 denotes the target matrix for 𝑑𝑛

𝑘
. The weight matrix𝑊

can be calculated by linear inverse matrix technique and used
for mapping between the source and target acoustic feature
vector.The exact interpolation of RBF is acquainted with two
serious problems, namely, (i) poor performance for noisy data
and (ii) increased computational complexity.These problems
can be addressed bymodifying two RBF parameters.The first
one is the spread factor which is calculated as

𝜎
𝑗
= 2 × avg {󵄩󵄩󵄩󵄩󵄩𝑥 − 𝜇𝑗

󵄩󵄩󵄩󵄩󵄩
} . (16)

The selected spread factor confirms that the individual RBFs
are neither wide nor narrow. The second one is an extra bias
unit which is introduced into the linear sum of activations
at the desired output layer to compensate for the difference
between the mean over the data set of the basis function
activations and the correspondingmean of the targets.Hence,
we achieve the RBF network for mapping as

𝐹
𝑘
(𝑥) =

𝑚

∑

𝑗=0

𝑤
𝑗𝑘
Φ(
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑑
𝑗

󵄩󵄩󵄩󵄩󵄩
) . (17)

In this work RBF neural networks are initialized and best
networks are developed to obtain the mapping between the
cepstral based acoustic parameters of the source and the
target speakers. The trained networks are used to predict
real and imaginary components of the vocal tract and source
excitation of the target speaker’s speech signal. In the baseline
approach, theMCEP based featurematrices of the source and
target utterances with the order of 25 are formed. Radial basis
function is trained to obtain best mapping function.The best
mapping function is obtained using RBF network and used to
predict the MCEP parameters of the target speaker’s speech
signal.

5. Experimental Results

In this paper, theRBFbasedmapping functions are developed
using CMU-ARCTIC corpus.The corpus consists of different
sets of 1132 phonetically balanced parallel utterances of each
speaker, sampled at 16 kHz. The corpus includes two female,
that is, CLB (US Female) and SLT (US Female), and five
different male such as AWB (Scottish Male), BDL (USMale),
JMK (Canadian Male), RMS (US Male), and KSP (Indian
Male) [36]. In this work, we have made use of the parallel
utterances of the AWB (M1), CLB (F1), BDL (M2), and SLT
(F2) with different speaker combinations like M1-F1, F2-M2,
M1-M2 and F1-F2. For each of the speaker pairs 50 parallel
sentences of source and target speakers are used for VC
system training and system evaluations are made using a

separate set of 25 source speaker sentences. The performance
of homomorphic vocoder based VC system is compared with
the state-of-the-art MCEP based VC system using different
objective and subjective measures.

5.1. Objective Evaluation. Theobjective measures provide the
mathematical analysis for determining the similarity index
and quality inspection score between desired (target) and
transformed speech signal. In this work, performance index,
spectral distortion and formant deviation are considered as
objective measures.

The performance index (𝑃LSF) is computed for investigat-
ing the requirement of normalized error for different pairs.
The spectral distortion between desired and transformed
utterances, 𝐷LSF (𝑑(𝑛), 𝑑(𝑛)) and the interspeaker spectral
distortion, 𝐷LSF (𝑑(𝑛), 𝑠(𝑛)) are used for computing the 𝑃LSF
measure. In general, the speaker spectral distortion between
signals 𝑢 and V,𝐷LSF (𝑢, V) is defined as

𝐷LSF (𝑢, V) = [

[

1

𝑁

𝑁

∑

𝑖=1

√
1

𝑃

𝑃

∑

𝑗=1

(LSF𝑖,𝑗
𝑢
− LSF𝑖,𝑗V )

2
]

]

, (18)

where 𝑁 represents the number of frames, 𝑃 refers to a LSF
order, and LSF𝑖,𝑗

𝑢
is the 𝑗th LSF component in the frame 𝑖.The

𝑃LSF measure is given as

𝑃LSF = [1 −
𝐷LSF (𝑑 (𝑛) , 𝑑 (𝑛))

𝐷LSF (𝑑 (𝑛) , 𝑠 (𝑛))
] . (19)

The performance index 𝑃LSF = 1 indicates that the converted
signal is identical to the desired one, whereas 𝑃LSF = 1
specifies that the converted signal is not at all similar to the
desired one.

In the computation of the performance index, four differ-
ent converted samples of M1 to F1, F2 to M2, F1 to F2, and
M1 to M2 combinations are considered. Comparative perfor-
mance between cepstrum based VC algorithm and MCEP
based VC is shown in Table 1. The results specified that the
performance of the complex cepstrum based VC performed
better than MCEP based VC algorithm.

Along with performance index, the different objective
measures, namely, deviation (𝐷

𝑖
), root mean square error

(RMSE), and correlation coefficients (𝜎
𝑥,𝑦

), are also cal-
culated for different speaker pairs. Deviation parameter is
defined as the percentage variation in the actual (𝑥

𝑘
) and

predicted (𝑦
𝑘
) formant frequencies derived from the speech

frames. It corresponds to the percentage of test frames within
a specified deviation. Deviation (𝐷

𝑘
) is calculated as

𝐷
𝑘
=

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦𝑘
󵄨󵄨󵄨󵄨

𝑥
𝑘

× 100. (20)
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Table 1: The performance index of complex cepstrum based VC and MCEP based VC.

Type of conversion

Performance index
Sample 1 Sample 2 Sample 3 Sample 4

Cep. based
VC

MCEP based
VC

Cep. based
VC

MCEP based
VC

Cep. based
VC

MCEP based
VC

Cep. based
VC

MCEP based
VC

M1-F1 0.7679 0.6230 0.7483 0.6356 0.7127 0.6080 0.8350 0.6768
F2-M2 0.7389 0.5781 0.7150 0.6988 0.7780 0.6908 0.7848 0.6845
F1-F2 0.7921 0.6576 0.6908 0.5954 0.6740 0.6209 0.7946 0.6925
M1-M2 0.7023 0.6490 0.6821 0.6012 0.6432 0.5801 0.7852 0.7012

Table 2: Prediction performance of MCEP based for formant frequencies.

Transformation model Formant frequencies % Predicted frame within deviation
2% 5% 10% 15% 20% 25% 50% 𝜇RMSE Υ

𝑋,𝑦

M1-F1

F1 51 74 80 81 83 85 90 4.45 0.7235
F2 45 63 68 78 82 87 89 3.73 0.8182
F3 57 62 79 86 87 89 92 3.34 0.8703
F4 69 79 84 89 88 90 100 2.39 0.8629

F2-M2

F1 36 58 67 74 82 86 90 4.28 0.7190
F2 57 82 86 87 87 89 91 6.30 0.7238
F3 72 77 89 91 92 94 95 5.23 0.7474
F4 66 74 89 90 93 95 100 4.91 0.7957

The root mean square error is calculated as percentage of
average of desired formant values obtained from the speech
segments:

𝜇RMSE =
√∑
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦𝑘
󵄨󵄨󵄨󵄨

2

𝑥
× 100,

𝜎 = √∑

𝑘

𝑑
2

𝑘
, 𝑑
𝑘
= 𝑒
𝑘
− 𝜇,

𝑒
𝑘
= 𝑥
𝑘
− 𝑦
𝑘
, 𝜇 =

∑
𝑘

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦𝑘
󵄨󵄨󵄨󵄨

𝑁
.

(21)

The error 𝑒
𝑘
is the difference between the actual and predicted

formant values.𝑁 is the number of observed formant values
of speech frames. The parameter 𝑑

𝑘
is the error in the

deviation. The correlation coefficient Υ
𝑋,𝑦

is the parameter
which is to be determined from the covariance COV(𝑋, 𝑌)
between the target (𝑥) and the predicted (𝑦) formant values
and the standard deviations 𝜎

𝑋
, 𝜎
𝑌
of the target and the

predicted formant values, respectively. The parameters Υ
𝑋,𝑦

and COV(𝑋, 𝑌) are calculated using

Υ
𝑋,𝑦
=
COV (𝑋, 𝑌)
𝜎
𝑋
𝜎
𝑌

,

COV (𝑋, 𝑌) =
∑
𝑘

󵄨󵄨󵄨󵄨(𝑥𝑘 − 𝑥) (𝑦𝑘 − 𝑦)
󵄨󵄨󵄨󵄨

𝑁
.

(22)

The objective measures, namely, deviation (𝐷
𝑖
), root mean

square error (RMSE), and correlation coefficients (Υ
𝑋,𝑦
)

of M1-F1 and F2-M2 are obtained for MCEP based VC
algorithm and shown in Table 2. Similarly, the Table 3 shows

the measures obtained for proposed VC system. From the
tables it can be observed that the 𝜇RMSE between the desired
and the predicted acoustic space parameters for proposed
model are less than the baseline model. However, every time
RMSE does not give strong information about the spectral
distortion. Consequently, scatter plots and spectral distortion
are employed additionally as objective evaluation measures.
The scatter plots for first, second, third, and fourth formant
frequencies for MCEP based VC and complex cepstrum
based VC models are shown in Figures 6 and 7, respec-
tively. Figures show that complex cepstrum VC based vocal
tract envelope in term of predicted formants closely orient
towards the desired speech frames formants as compared
to MCEP based predicted formants. The clusters obtained
using complex cepstrum based VC are more compact and
diagonally oriented than that using MCEP based VC. As
perfect prediction means all the data points in scatter plot
are diagonally oriented in right side. The compact clusters
obtained for proposed method implies its ability to capture
the formant structure of desired speaker

The transformed formant patterns for a specific frame
of source and target speech signal are obtained using both
complex cepstrum and MCEP based VC models and shown
in Figures 8(a) and 8(b), respectively. Figure 8(a) depicts
that the patterns of particular target signal closely follows
the corresponding transformed signal, whereas Figure 8(b)
shows that the predicted formant pattern closely follows the
target pattern only for lower formants.

Figure 9(a) shows the normalized frequency spectrogram
of desired and transformed speech signals obtained fromM1
to F1 and F2 to M2 of complex cepstrum based VC model.
Similarly, Figure 9(b) shows the spectrogram forM1 to F1 and
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Table 3: Prediction performance of complex cepstrum based for formant frequencies.

Transformation model Formant frequencies % Predicted frame within deviation
2% 5% 10% 15% 20% 25% 50% 𝜇RMSE Υ

𝑋,𝑦

M1-F1

F1 59 80 89 91 91 93 95 4.45 0.7197
F2 52 72 85 88 91 92 95 3.55 0.8149
F3 63 83 90 92 93 95 99 2.65 0.8837
F4 72 86 91 93 95 97 100 2.049 0.8909

F2-M2

F1 38 60 71 78 80 86 90 8.56 0.757
F2 60 82 89 92 92 93 98 3.62 0.790
F3 72 87 92 95 95 95 100 2.93 0.778
F4 70 86 91 96 97 99 100 2.41 0.756
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Figure 6: Desired and predicted formant frequencies for F2 to M2 VC using MCEP based approach (a) first formant, (b) second formant,
(c) third formant, and (d) fourth formant.

F2 toM2 for theMCEP basedVCmodel. It has been observed
that the dynamics of the first three formant frequencies in
both the algorithms are closely followed in the target and the
transformed speech samples.

5.2. Subjective Evaluation. The effectiveness of the algorithm
is also evaluated using listening tests. These subjective tests

are used to determine the closeness between the trans-
formed and target speech sample.Themapping functions are
developed using 50 parallel utterances of the source and
target speakers. Twenty-five different synthesized speech
utterances are obtained from the mapping function for inter-
and intragender speech conversion and corresponding target
utterances are presented to twelve listeners.They are asked to
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Figure 7:Desired and predicted formant frequencies for F2 toM2VCusing the complex cepstrumbased (a) first formant, (b) second formant,
(c) third formant, and (d) fourth formant.
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Figure 8: Target and transformed spectral envelopes of the desired speaker using (a) complex cepstrum based VC and (b) MCEP based VC.
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Figure 9: Spectrogram of the desired and the transformed signal for M1 to F1 ((A) to (C)) and F2 to M2 ((B) to (D)) using (a) complex
cepstrum based VC and (b) MCEP based VC.



12 ISRN Signal Processing

Table 4: MOS and ABX evaluations of complex cepstrum and
MCEP based VC models.

Conversion
data

MOS ABX
Cepstrum
based

MCEP
based

Cepstrum
based

MCEP
based

M1-F1 4.64 4.31 4.55 4.25
F2-M1 4.18 3.92 4.34 4.23
M1-M2 4.07 3.88 4.19 4.06
F1-F2 4.24 3.76 4.36 4.13

evaluate their relative performance in term of voice quality
(MOS) and speaker identity (ABX) with corresponding
source and target speaker speech samples on a scale of 1
to 5, where rating 5 specifies an excellent match between
the transformed and target utterances, rating 1 indicates a
poor match, and the other ratings indicate different levels of
variation between 1 and 5. The ratings given to each set of
utterances are used to calculate theMOS for different speaker
combinations like M1 to F1, M1 to M2, F1 to F2, and F2 to
M2; the results are presented in Table 4. The dissimilarity in
the length of the vocal tract and the intonation patterns of
different genders is themajor reason for variation in theMOS
results for source and target utterances of different genders.
TheABX (A: Source, B: Target, X: Transformed speech signal)
test is also performed using the same set of utterances and
speakers. In the ABX test, the listeners are asked to judge
whether the unknown speech sample X sounds closer to
the reference sample A or B. The ABX is a measure of
identity transformation.The higher value of ABX percentage
indicates that the transformed speech lies in close proximity
of the target utterance. The results of the ABX test are also
shown in Table 4.

6. Conclusion

The VC algorithm comprising of complex cepstrum, that
preserves the phase related information content of the syn-
thesized speech outcome, is presented. Amixed phase system
is designed to yield far better transformed speech signal than
the minimum phase systems. The vocal tract and excitation
parameters of the speech signal are obtained with the help
of low and high time liftering. Radial basis functions are
explored to capture the nonlinear mapping function for
modifying the real and imaginary parts of the vocal tract
and source excitations of the source speaker speech to that of
the target speaker speech. In baseline VC algorithm MCEP
method is used to interpret the vocal tract whereas, the fun-
damental frequency (𝐹

0
) represent the source excitation.

The RBF based mapping function is used to capture the
nonlinear relationship between the MCEP of the source
speaker to that of the target speaker and statistical mean and
standard deviation is used for transformation of fundamental
frequency. The proposed complex cepstrum based VC is
compared with the MCEP based VC using various objective
and subjectivemeasures.The evaluation results reveal that the
complex cepstrumbasedVCperforms slightly better than the

MCEP basedVCmodel in term of speech quality and speaker
identity. The reason may be the fluctuation of MLSA filter
parameters with limited margins in Padé approximation. It
may be unstable momentarily, when the parameters vary
rapidly by contrast the complex cepstrum with finite impulse
response is always stable.
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