Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 273080, 9 pages
doi:10.1155/2010/273080

Research Article

On the Use of Issue Tracking Annotations for
Improving Developer Activity Metrics

Andrew Meneely and Laurie Williams

North Carolina State University, 890 Oval Drive, Engineering Building 2, Room 3272, Campus Box 8206, Raleigh,

NC 27695-8206, USA

Correspondence should be addressed to Andrew Meneely, apmeneel@ncsu.edu

Received 5 September 2010; Revised 2 December 2010; Accepted 31 December 2010

Academic Editor: Giulio Concas

Copyright © 2010 A. Meneely and L. Williams. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Understanding and measuring how teams of developers collaborate on software projects can provide valuable insight into the
software development process. Currently, researchers and practitioners measure developer collaboration with social networks
constructed from version control logs. Version control change logs, however, do not tell the whole story. The collaborative
problem-solving process is also documented in the issue tracking systems that record solutions to failures, feature requests, or other
development tasks. We propose two annotations to be used in issue tracking systems: solution originator and solution approver.
We annotated which developers were originators or approvers of the solution to 602 issues from the OpenMRS healthcare system.
We used these annotations to augment the version control logs and found 47 more contributors to the OpenMRS project than
the original 40 found in the version control logs. Using social network analysis, we found that approvers are likely to score high
in centrality and hierarchical clustering. Our results indicate that our two issue tracking annotations identify project collaborators
that version control logs miss. Thus, issue tracking annotations are an improvement in developer activity metrics that strengthen
the connection between what we can measure in the project development artifacts and the team’s collaborative problem-solving

process.

1. Introduction

The quality of many software products rests on teams of
people who are collaborating with each other. Measuring
how teams of developers collaborate on software projects
can provide valuable insight into the software development
process. One class of metrics, called developer activity metrics,
analyzes the structure of a development team by quantifying
how developers collaborate with each other [1]. Already,
developer activity metrics have been shown to predict
failures [2, 3], predict vulnerabilities [1], and provide insight
on individual projects [4-7].

Many studies using developer activity metrics use version
control change logs to determine who is working on which
part of the system. Version control change logs, however,
do not tell the whole story. While a version control system
records the final solution to an issue, the elements of how
that solution came to be are captured in other artifacts,

such as the issue tracking system. In issue tracking systems,
developers can take a known issue (e.g., a failure or a feature
request) and assign it a “ticket”. Developers can then link
pertinent artifacts to that ticket, such as patches, change sets
in the version control system, error logs, or screenshots. Also
on the ticket is an online discussion of how to resolve the
issue.

Consider the following scenario (taken from http://dev
.openmrs.org/ticket/1171). A large open source project has
an open ticket that needs resolving. A user named Frank then
submits a patch to fix the problem by linking his patch to the
ticket. An online discussion amongst the system’s developers
and users then takes place, which ends in developer Ben
deciding that Frank’s solution is correct. Ben then applies
the changes from Frank’s patch, linking the version control
change set to the ticket. The version control change logs
would show that only Ben has fixed the problem when, in
fact, Frank originated the solution, while Ben approved the

solution. That the two developers collaborated on a solution
ought to be captured in developer activity metrics.

We propose two issue tracking ticket annotations: solu-
tion originators and solution approvers. Intended to “give
credit where credit is due”, these annotations can be used
to augment the logs from version control systems to provide
more accurate information about who contributed to which
parts of the system.

The objective of this research is to improve the infor-
mation gained by measurements of developer collaboration
by introducing and analyzing two issue tracking annotations:
solution originator and solution approver. Our aim is to
evaluate the usefulness of the annotation in terms of
discovering collaborators in a software development project.
We examined the online discussions of 602 tickets from the
OpenMRS (http://openmrs.org/) healthcare web application
issue tracking system, annotating which developers were
originators and/or approvers of the solution to the ticket.

We performed an empirical analysis of how much
information was gained by using issue tracking annotations
in combination with version control change logs. Form-
ing social networks of developers based on our data, we
examined correlations between the annotations and several
social network analysis metrics. Our social network analysis
metrics come from centrality and hierarchical clustering
techniques.

The rest of the paper is organized as follows. Section 2
describes background and related work with respect to
developer activity metrics, centrality, developer networks,
and issue tracking systems. Section 3 describes the developer
network. Section 4 describes our data collection process.
Section 5 describes our analysis and results. Sections 6 and
7 summarize our limitations and conclusions.

2. Background and Related Work

As a project progresses, developers make changes to various
parts of the system. With many changes and many devel-
opers, changes to files tend to overlap: multiple developers
may end up working on the same files around the same
time, indicating that they share a common contribution, or a
connection, with another developer. Some developers end up
connected to many other highly connected developers, some
end up in groups (clusters) of developers, and some tend to
stay peripheral to the entire network.

In this paper, we use network analysis to quantify how
developers collaborate on projects. Network analysis is the
study of characterizing and quantifying network structures,
represented by graphs [8]. In network analysis, vertices of
a graph are called nodes, and edges are called connections.
A sequence of nonrepeating, adjacent nodes is a path, and
a shortest path between two nodes is called a geodesic
path (note that geodesic paths are not necessarily unique).
Informally, a geodesic path is the “social distance” from one
node to another.

“Centrality” metrics are used to quantify the location of a
node relative to the rest of the network. In this study, we use
two measures of node centrality: degree and betweenness.

Advances in Software Engineering

The “degree” of a node is equal to the number of neighbors
a developer has in the network. While the “degree metric”
is based on direct connections to other developers, the
“betweenness” metric is based on a developer’s indirect
connections to the rest of the network. If a developer has
many connections, the betweenness [8] of node # is defined
as the number of geodesic paths that include n. A high
betweenness means a high centrality.

“Clustering” algorithms are techniques for detecting
community structures in social networks. A cluster of nodes
is a set of nodes such that the number of intraset connections
greatly outnumbers the number of interset connections
[8]. A cluster of developers, then, has more connections
within the cluster than to other developers. Furthermore,
since communities can have many layers of subcommunities,
“hierarchical clustering” techniques detect the clusters within
clusters. In this study we use the Girvan-Newman [8]
hierarchical clustering algorithm, which applies centrality
concepts to edges in the network and iteratively generates a
hierarchy of developers according to the number and size of
the clusters they belong to.

Also, we use the term “issue” to include all potential
types of change requests in a system, including failures,
vulnerabilities, feature requests, and tasks. When we refer
to a “ticket,” we are referring to the record of a specific
issue as kept by the issue tracking system. Tickets can
have discussions on them, in a message board fashion. The
solution to a ticket is embodied in a “change set,” which is a
set of changes made to a code base kept track of by the version
control system.

Much work has been done in the area of measuring devel-
oper collaboration on software projects. The applications of
these measurements are particularly diverse, ranging from
failure and vulnerability prediction to studying open source
software projects.

Gonzales-Barahona et al. [6] were the first to propose the
idea of creating developer networks as models of collabo-
ration from version control systems. The authors’ objective
was to present the developer network and to differentiate
and characterize projects. Their work did not include any
integration with issue tracking systems.

Bird et al. [5] used developer networks to examine social
structures in open source projects. Discussing the bazaar-like
development of open source projects, the authors empirically
examine how open source developers self-organize. The
authors use similar network structures as our developer
network to find the presence of subcommunities within open
source projects. In addition to examining version control
change logs, the authors mined email logs to find a commu-
nity structure. The authors conclude that subcommunities
do exist in open source projects, as evidenced by the project
artifacts exhibiting a social network structure that resembles
collaboration networks in other disciplines.

Pinzger et al. [3] proposed a similar structure to the
developer network, called the contribution network. The
contribution network is designed to use version control data
to quantify the direct and indirect contribution of developers
on specific resources of the project. The researchers used
metrics of centrality in their study of Microsoft Windows

Advances in Software Engineering

Vista and found that closeness was the most significant
metric for predicting reliability failures. Files that were
contributed to by many developers, especially by developers
who were making many different contributions themselves,
were found to be more failure-prone than files developed in
relative isolation. The finding is that files which are being
focused on by many developers are more likely to have a
failure than files developed by few developers.

Meneely et al. [2] examined the relationship between
developer activity metrics and reliability. The empirical
case study examined three releases of a large, proprietary
networking product. The authors used developer centrality
metrics from the developer network to examine whether
files are more likely to have failures if they were changed
by developers who are peripheral to the network. The
authors formed a model that included metrics of developer
centrality, code churn (the degree to which a file was changed
recently), and lines of code to predict failures from one
release to the next. Their model’s prioritization found 58%
of the system’s failures in 20% of the files, where a perfect
prioritization would have found 61%. The study did not
include integration with issue tracking systems.

Sarma et al. [9] built a tool, called Tesseract, to visualize
developer connections within a software project. Designed
to build a useful summary of what they call the “network
of artifacts” in each software project, Tesseract gathers its
information from version control change logs, source code
dependency graphs, issue tracking tickets, and developer
communication logs. In this particular study, they estab-
lished that Tesseract was both a usable and useful tool
according to the user studies and interviews they conducted.

Nagappan et al. [10] created a logistic regression model
for failures in the Windows Vista operating system. The
model was based on what they called “Overall Organiza-
tional Ownership” (OOW). The metrics for OOW included
concepts like organizational cohesiveness and diverse contri-
butions. The authors found that more edits made by many
noncohesive developers lead to more problems post release.
The OOW model was able to predict with 87% average
precision and 84% average recall. The OOW model bears a
resemblance to the contribution network by Pinzger et al. [3]
in that both models attempt to differentiate healthy changes
in software from the problematic changes.

Meneely and Williams [1] applied developer activity
metrics to security data in examining aspects of the saying
“Many eyes make all bugs shallow” (known as Linus’ Law
[11]). Using both developer networks and the contribution
networks proposed by Pinzger et al. [3], the authors
examined several metrics related to developer collaboration,
including a clustering metric applied to developer networks.
The authors found that files changed by nine or more
developers were 16 times more likely to have at least
one vulnerability than files changed by fewer than nine
developers. Their analysis did not include data from issue
tracking systems, only from version control change logs.

Lastly, our original proposal for extending developer
networks using issue tracking annotations included an
analysis of the OpenMRS system [7].

3
FIGURE 1: Resulting developer network from Table 1.
TaBLE 1: Example developer contributions.

Developer Contributions
Alex File A
Ken File A, File B
Randy File A
Ichiro File B

The developer network from Table 1 is shown in Figure 1.

3. Extending Developer Networks

The developer network is designed to represent the complex
structure of development in terms of people. The idea is
to infer “who is working with whom” by examining “who
is working on the same code” In our developer network,
developers are represented as nodes, and edges exist between
two nodes where two developers made contributions to the
same source code file within one month. As a result, the
developer network is an undirected, unweighted, and simple
graph.

In prior research [1-3, 5, 6, 10], the existence of a
“contribution” to a given source code file was gathered from
only version control change logs. We will refer to such a
structure as a “developer network” (or “regular” developer
network).

For example, suppose that we have the contribution table
found in Table 1.

In Figure 1, developer Ken has a degree of three. Ken
also has a betweenness of five since he is on five of the
geodesic paths (three originating from himself). Ichiro has
a betweenness of three, while Randy and Alex have a
betweenness of four. More examples of developer networks
and their usage can be found in other works [1, 2, 5, 9].

In this study, we extend the notion of contributions
beyond version control change logs to originators and
approvers of solutions in issue tracking systems. Thus, if a
person was found to be the originator or approver of the
solution to a ticket, that person would be marked as making
a contribution to the source code files in the final commit
(more information can be found in Section 4).

Therefore, we will refer to the developer network
gathered from version control logs and our issue tracking
annotations as the extended developer network.

For this study, we annotated tickets manually by exam-
ining issue tickets post hoc, as described in Section 4.
However, this data could be gathered earlier and with less
labor if the issue tracking system supports a “solution
approver” and a “solution originator” field on the ticket.
If issue tracking systems allowed for our two annota-
tions, the developers on each ticket could decide who
are the solution originators and solution approvers and
could form an extended developer network automatically.
To our knowledge, no such field exists in issue tracking
systems such as Bugzilla (http://www.bugzilla.org/) or Trac
(http://trac.edgewall.org/).

4. Collecting Annotations

The developers of the OpenMRS project use Trac for their
issue tracking system and Subversion (http://subversion
.tigris.org/) (SVN) for their version control system. By
default, Trac will link a coded change set in SVN to a ticket if
the developer uses the hash mark (#) and the ticket number
in the Subversion commit message. While this feature is
optional, we found that the OpenMRS developers were
meticulous about linking change sets to tickets when the
issue was resolved. OpenMRS had over 1900 tickets logged
during the time that we studied, of which 602 resulted in a
change set to resolve the issue.

We manually examined the discussions of those 602
tickets to annotate who on the ticket were the approver and
originator of the solution to the issue. We used the following
steps for each ticket.

(1) Read the ticket’s description to understand the prob-
lem.

(2) Read the online discussion directly on the ticket.

(3) Read any discussions in separate forums (e.g., mail-
ing list) linked from the ticket.

(4) Read the SVN comments left by the person who
committed the solution to version control.

(5) Compare the patches attached to the ticket to the
solution committed to SVN and determine which
patches were used in the issue’s solution.

(6) Based on the information gained in steps (1)-(4),
decide who the originators are and who the approvers
are.

The first author and an additional researcher executed
the latter six steps independently. Both researchers then
compared annotations and resolved each disagreement in
annotation.

We considered a person to be an originator if

(i) a person submitted a patch that was a major part of
the solution to the issue, or

(ii) a person introduced code (e.g., wrote code directly
into the ticket’s message board), and that code was
used in the solution, or

Advances in Software Engineering

(ii1) the committer of the solution attributed someone on
the ticket in their Subversion commit message.

We considered a person to be an approver if

(i) the person changed the ticket status to “approved”, or

(ii) the person, in the course of the discussion, made the
final decision as to what ought to be done in the code
(but did not necessarily enact the change in the code),
or

(iii) the person applied the patch and closed the ticket.

One ticket could have multiple originators and multiple
approvers. Not included in our annotations are people who
made contributions to the ticket discussion but did not
participate in the final solution. Furthermore, a person could
be both an originator and an approver to a solution if they
created a public ticket and then resolved it themselves. Lastly,
a person could be neither an originator nor an approver but
still make contributions to the code if they only committed
code directly to version control system without participating
in any solutions to public tickets. We call these people
“contributors”.

If a person was an originator or approver, they were
recorded as making a contribution to the code affected by the
solution at the time the solution was applied in addition to
the original committer to the version control system. With
the records of contributions from contributors, approvers,
and originators, the developer network was calculated as
described in Section 2. As a result of this construction,
originators and approvers of the same ticket are always
connected to each other. This automatic connection matches
the notion of a collaboration connection since originators
and approvers are collaborating on a solution.

5. Evaluation

In this section, we examine whether information about
developer collaboration can be gained by analyzing two
issue tracking annotations: solution originator and solution
approver. First, in Section 5.1, we examine the developers
found by applying issue tracking annotations. Next, in
Sections 5.2 through 5.5, we evaluate the following scientific
hypotheses.

Hi: Approvers have a higher developer network centrality
than nonapprovers.

H,: Originators have a higher developer network centrality
than nonoriginators.

Hs: Central developers in regular developer networks are
also central in extended developer networks.

Ha: Approvers belong to more clusters than nonapprovers.

5.1. Analyzing Information Gained from Annotations. First,
we must ask if our anecdotal observations of SVN logs are
true: do the originator and approver annotations provide
more information that was not gained from analyzing the
version control change logs? Perhaps the commits from the

Advances in Software Engineering

TaBLE 2: Approvers in regular and extended developer networks.

TABLE 4: Approver centralities.

Only in regular Only in

DN extended DN Total
Nonapprover 24 (60%) 39 (82%) 63 (72%)
Approver 16 (40%) 8 (18%) 24 (27%)
Total 40 (100%) 47 (100%) 87 (100%)

TasLE 3: Originators in regular and extended developer networks.

TN entedin | Toul
Nonoriginator 13 (32%) 7 (15%) 20 (23%)
Originator 27 (68%) 40 (85%) 67 (77%)
Total 40 (100%) 47 (100%) 87 (100%)

version control system are enough to identify the entire
structure of the team.

A visual comparison of the developer network and
extended developer network can be found in Figure 2 (shown
in the appendix). The developer network more than doubled
in size when including annotations. The developer network
turned out to have 40 developers, while the extended
developer network had 87 developers. As a result, our
annotations identified 47 developers who did not make SVN
commits but contributed to a solution adopted into the
project.

Furthermore, the majority of the 47 developers found
only in the extended network were originators and not
approvers. Tables 2 and 3 show how the developer counts
break down in terms of annotations in each network. Had
one used a developer network from only version control
logs, one might conclude that the development team is 40%
approvers, when in fact there are fewer approvers (27%).

The high rate of nonapprovers is found only in the
extended network (cell highlighted in gray). Also, Table 3
shows a high rate of originators found only in the extended
network (cell highlighted in gray).

Additionally, the complexity of the network structure
increased dramatically. Figure 2 (shown in the appendix)
visually demonstrates the difference between the two net-
works rather starkly. Both networks have the same layout; so
developers in both networks are in the same location in each
diagram.

Therefore, when comparing the regular developer net-
work to the extended developer network, the number of
contributors to solutions adopted by the OpenMRS project
more than doubles in size because many originators and
nonapprovers are being accounted for.

5.2. Approver Centrality. Developer network centrality is a
measure of how directly and indirectly a developer is to the
rest of the network. When a developer has a high centrality,
then he or she has worked on files with many other people.
In previous work [2], we found that developer centrality can
be used for predicting failures in files.

Nonapprover Approver MWW
Metric pp PP P-value Power
mean mean
<.01%
Degree 6.0 16.9 Yes 0.81
Betweenness 2.7 132.6 Yes 0.99

Furthermore, we observed that developers we annotated
as solution approvers tended to be people who were well-
known and knowledgeable enough to be trusted with
approving solutions to problems. Therefore, we hypothe-
size that developer centrality is correlated with being an
approver.

Hi: Approvers have a higher developer network centrality
than nonapprovers.

We evaluate H; by evaluating the following null and
alternative hypotheses.

Hi(o): Approvers have the same developer network centrality
as nonapprovers.

In this paper, we use two measures of centrality:
degree and betweenness (defined in Section 2). We used
the Mann-Whitney-Wilcoxon (MWW) test (at P < .05)
to examine the differences in centrality between approvers
and nonapprovers. We chose the nonparametric MWW
because it does not assume that developer centralities are
normally distributed. To evaluate which group has the higher
centrality, we compared the means. Since we are evaluating
multiple hypotheses, we used a Bonferroni correction; so we
check our P-values against .01 instead of the traditional .05.
Lastly, we perform a power analysis to ensure that our sample
groups are large enough and compare the results against the
traditional 8. Table 4 shows our results.

For both metrics, the approvers had a higher developer
centrality than nonapprovers; thus we reject the null hypoth-
esis Hj(o). Therefore, central developers of the extended
developer network are also approving solutions to the issue
tickets. Figure 3 (shown in the appendix) visually illustrates
that the approvers are generally well-connected developers in
the network.

5.3. Originator Centrality. Centrality is related not only to
how many connections a developer has, but also to whom a
developer is connected (e.g., if a developer is connected to
a very central developer, she becomes more central herself).
Since originators and approvers on the same ticket are
automatically connected to each other, then if approvers are
central, then originators are also central. Thus, we examine
the following hypothesis.

Hy: Originators have a higher developer network centrality
than nonoriginators.

The null version of this hypothesis is as follows.

Hoy(): Originators have the same developer network centrality
as nonoriginators.

O Developer

(a)

Advances in Software Engineering

O Developer

@ Developer
only in extended network

(b)

FIGURE 2: (a) Regular developer network and (b) extended developer network of the same layout.

We applied the same analysis as in the previous section.
Our results are in Table 5.

Again, for both metrics, the originators had a higher
centrality than nonoriginators; thus we reject the null
hypothesis Hy ().

One may also notice that the difference in both between-
ness and degree is not as drastic as with approvers in
Table 4. This result also aligns with our motivation for
this hypothesis: originators are central because they are
connected to approvers, who are also central.

5.4. Developer Networks and Extended Developer Networks.
Although we concluded in Section 5.1 that annotating the
issue tracking system provides valuable information, this
situation is not always feasible. Issue tracking annotations
require either participation by the development team or
manual inspection post hoc (as in this study). But, the reg-
ular developer network may resemble the extended network
enough to still be useful.

One resemblance between the two networks could be
the relative developer centralities. That is, are the central
developers of the developer network central to the extended
developer network? Thus, we test the following hypothesis.

Hs: Central developers in regular developer networks are
also central in extended developer networks.

The null version of this hypothesis is as follows.

Hi): Central developers in regular developer networks are
not necessarily central in extended developer networks.

TaBLE 5: Originator centralities.

Nonoriginator Originator M
Metric 8 8 P-value Power
mean mean
<.01?
Degree 2.7 10.9 Yes 1.0
Betweenness 1.2 49.7 Yes 1.0

For this analysis, we use the nonparametric Spearman
rank correlation coefficient between the developer central-
ities. We use a statistical test based on rank because the
scales of developer centrality differ. For example, a degree
of 10 may be considered high in one network and low in
another. Centralities of developers that were only in the
extended developer network were excluded from this test.
We report the correlation coefficient, along with its statistical
significance, in Table 6.

These correlations are fairly strong, indicating that
developer centrality of an extended network is good estima-
tors of the developer centrality of an extended network. Thus,
we reject hypothesis Hj ().

With these correlations, we investigated further into
whether or not the developer centrality from a regular
developer network is correlated with being an approver or
not. We used the Mann-Whitney-Wilcoxon test again to see
if there are any differences in the centrality of the regular
developer network between approvers and nonapprovers.
Our results for approvers can be found in Table 7.

Advances in Software Engineering

Y

[/

Q Contributor
@ Approver

TaBLE 6: Correlation between centralities of regular and extended
developer network.

A~

[

)

@ originator
Approver and originator

FiGure 3: Extended developer network with annotations.

TasLE 8: Originator centralities from regular developer network.

.. .. MWW
. Nonoriginator ~Originator
. Spearman between Metric P-value Power
Metric P-value < .01? mean mean
regular and rxtended <.01?
Degree 0.67 Yes Degree 2.15 6.2 No 1.0
Betweenness 0.85 Yes Betweenness 0.5 17.3 Yes 1.0

TABLE 7: Approver centralities, regular developer network.

Nonapprover Approver M
Metric pp pp P-value Power
mean mean
<.01%
Degree 1.9 9.5 Yes 1.0
Betweenness 0.3 29.2 Yes 1.0

For both metrics, developer centrality from the regular
developer network was higher for approvers than for nonap-
provers.

We also investigated whether or not central developers
in the regular developer network are also originators. Our
results can be found in Table 8.

While not enough empirical evidence exists to say that
the Degree measurements were different for originators,
there is enough statistical evidence to say that the Between-
ness was different for originators.

As with our results in Sections 5.2 and 5.3, the differences
in centralities were not as great for the originators as the
differences for the approvers. This result provides more
evidence that approvers are the most central developers,
and originators are central because they are connected to
approvers.

5.5. Are Approvers in More Clusters? Expert experience [11]
and empirical studies [4—6] have shown that open source
communities (e.g., Linux (http://www.linux.org/), Apache

TaBLe 9: Cluster ranks of approvers and nonapprovers from
extended developer networks.

Approvers Nonapprovers MWZV éjl_;’ alue Power
Mean
cluster 28.3 42.1 Yes 0.86
rank

(http://httpd.apache.org/), and PosgreSQL (http://www
.postgresql.org/)) tend to self-organize into smaller
subcommunities in large development efforts. However,
with many small subcommunities, developers must also
coordinate all of those development efforts.

One of the techniques for detecting communities in
social networks is the Girvan-Newman hierarchical clus-
tering algorithm (described in Section 2). The output of
the Girvan-Newman algorithm is a hierarchy of developers
according to the number and size of the clusters they belong
to.

We hypothesize that if a developer has enough authority
in the project to be a solution approver, then that developer
also belongs to more clusters. Thus, we evaluate the following
hypothesis.

Hy: Approvers belong to more developer subcommunities
than nonapprovers.

The null version of this hypothesis is as follows.

Ha(o): Approvers belong to as many developer subcommunities
as nonapprovers.

We perform our evaluation by running the Girvan-
Newman hierarchical clustering algorithm on both our
annotated developer network and regular developer network.
For each developer in the network, we assign an integer
rank (which we call cluster rank) according to the output
of the clustering algorithm. A rank of one indicates that the
developer is in more clusters than any other developer.

To evaluate whether being approver is statistically
associated with having a high cluster rank, we used the
Mann-Whitney-Wilcoxon test between approvers and non-
approvers in the extended developer network. We also report
the mean rank of each population. Our results can be found
in Table 9.

The difference in cluster ranks between approvers and
nonapprovers was statistically significant. Therefore, we
reject the null hypothesis Hy(g) that approvers are as likely
to be in multiple developer subcommunities than nonap-
provers.

Interestingly, the lowest rank we observed for an approver
was 56. In that situation, the approver only approved one
ticket that was closely related to her own work. Other
low-ranking approvers were in similar situations where the
authority for approving a ticket was (implicitly or explicitly)
given to them based on the scope of the work itself. These
results indicate that the authority to approve a few tickets
may not be related to the overall authority of the project.

Advances in Software Engineering

6. Discussion

In this section, we discuss some of the ramifications of our
results, including relation to prior work and to future work.

6.1. Are Regular Developer Networks Invalidated? Our results
from Tables 2 and 3 in Section 5.1 show that the version
control change logs do not reflect the entire OpenMRS
developer community, and that the issue tracking system
does contain information about more developers. These
results, however, do not contradict nor invalidate previous
studies relying only on version control change logs. Our
findings in Section 5.4 show that regular developer networks
closely resemble the extended developer network in terms of
developer centrality.

Instead, the results of this paper shed more light on who
central developers are in open source projects: they tend to
be people who are contributing solutions to code that other
people are also working on. In the past, experts [11] have
observed this concept from experience. While open source
communities might be perceived as crowds of people all
coding at once, most open source communities have a core
group of developers who must guide the direction of the
project one issue ticket at a time.

6.2. Why Not Include All Comments? We do not recommend
applying all of the comment entries from the issue tracking
system to the developer network. In examining the issue
tracking system, we found many unrelated comments in the
discussion. For example, sometimes people would comment
on a ticket with similar (but not identical) issue. That
issue would be forked into a new ticket and is unrelated
to the original ticket. Or, some people would not provide
helpful, constructive comments that would lead to a tangible
contribution to the issue. In our analysis, we specifically
chose the originator and approver annotations as noise-
reducing mechanisms. Using many e-mail archives or other
collaboration artifacts also has this kind of problem.

The process of annotating a historical record, however,
is manual and can be labor-intensive. One approach is to
apply text mining or other machine learning techniques
to automatically identify approvers and originators on a
ticket; however such a technique would also be noisy. We
believe that the open source community should employ a
convention of attributing the originator and approver of a
given solution to a ticket.

The Linux kernel (http://git.kernel.org/) is one such
community that curates its own data with respect to origi-
nators and approvers. Their version control system separates
the concepts of “committer” and “author” for a given source
code change, which was the inspiration for our “originator”
annotation. Furthermore, the Linux kernel community has
the convention of having a “Signed-off by” field in their
version control commit comments that closely resembles our
notion of “approver”.

Advances in Software Engineering

7. Limitations

The scope of this study is only on the technical practice of
providing coded solutions (via version control or patches).
Many other non-developers exist in open source projects that
are not being captured by the development artifacts we are
studying.

Additionally, our analysis only includes one case study
of an open source project. We chose the OpenMRS project
as a production-level system with an active community;
so we believe that OpenMRS is a good representative of
the open source development community. Our techniques
would need to be applied to other software development
projects to achieve more generality. Also, the manual process
of annotating issues could introduce errors in our data set.
To mitigate this factor, we had both researchers perform
the annotation separately and then resolve any differences.
Lastly, the results of this study are correlations; so we cannot
claim any causal direction. For example, we do not know if
being a central developer causes being an approver, or vice
versa.

8. Conclusion

The objective of this research is to improve the information
gained by measurements of developer collaboration by
introducing and analyzing two issue tracking annotations:
solution originator and solution approver. We found that
applying issue tracking annotations revealed more develop-
ers than found in the version control logs. The additional
results of our study are as follows.

(i) Approvers have a higher developer network centrality
than nonapprovers.

(ii) Originators have a higher developer network central-
ity than nonoriginators.

(iii) Developer networks without issue tracking annota-
tions resemble developer networks with issue track-
ing annotations in terms of developer centrality.

(iv) Approvers belong to more developer subcommuni-
ties than nonapprovers.

While using annotations captures more information
about developer collaboration, we found that regular devel-
oper networks are still accurate representations of the
development community. This result indicates that a devel-
oper network can be used as an estimate for developer
collaboration and is, therefore, useful in situations where
annotations are not available. Our results are an improve-
ment in developer activity metrics that strengthens the
connection between what we can measure in the project
development artifacts and the team’s collaborative problem-
solving process.

Appendix

See Figures 2 and 3.

Acknowledgments

The authors thank Mackenzie Corcoran for her contribu-
tions to the data collection. This research is supported by the
Army Research Office managed by the North Carolina State
University Secure Open System Initiative (SOSI). They also
thank the OpenMRS development community for opening
their data sets to be analyzed.

References

[1] A. Meneely and L. Williams, “Secure open source collabo-
ration: an empirical study of Linus’ law,” in Proceedings of
the 16th ACM Conference on Computer and Communications
Security (CCS ’09), pp. 453-462, Chicago, Ill, USA, November
2009.

[2] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predict-
ing failures with developer networks and social network anal-
ysis,” in Proceedings of the 16th ACM International Symposium
on the Foundations of Software Engineering (SIGSOFT *08), pp.
13-23, Atlanta, Ga, USA, November 2008.

[3] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-
module networks predict failures?” in Proceedings of the 16th
ACM International Symposium on the Foundations of Software
Engineering (SIGSOFT ’08), pp. 2-12, Atlanta, Ga, USA,
November 2008.

[4] C. Bird, A. Gourley, P. Devanbu et al., “Mining email social
networks in postgres,” in Proceedings of the 3rd International
Workshop on Mining Software Repositories (MSR 06), pp. 185—
186, Shanghai, China, 2006.

[5] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu,
“Latent social structure in open source projects,” in Pro-
ceedings of the 16th ACM International Symposium on the
Foundations of Software Engineering (SIGSOFT ’08), pp. 24—
35, Atlanta, Ga, USA, November 2008.

[6] J. M. Gonzales-Barahona, L. Lopez-Fernandez, and G. Robles,
“Applying social network analysis to the information in CVS
repositories,” in Proceedings of the International Workshop on
Mining Software Repositories (MSR °05), pp. 1-8, Edinburgh,
UK, 2005.

[7] A. Meneely, M. Corcoran, and L. Williams, “Improving
developer activity metrics with issue tracking annotations,” in
Proceedings of the Workshop on Emerging Trends in Software
Metrics (WETSoM ’10), pp. 75-80, Cape Town, South Africa,
2010.

[8] U. Brandes and T. Erlebach, Network Analysis: Methodological
Foundations, Springer, Berlin, Germany, 2005.

[9] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb,
“Tesseract: interactive visual exploration of socio-technical
relationships in software development,” in Proceedings of
the 31st International Conference on Software Engineering
(ICSE °09), pp. 23-33, May 2009.

[10] N. Nagappan, B. Murphy, and V. R. Basili, “The influence
of organizational structure on software quality: an empirical
case study,” in Proceedings of the 30th International Conference
on Software Engineering (ICSE ’08), pp. 521-530, Leipzig,
Germany, May 2008.

[11] E. S. Raymond, The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary,
O’Reilly and Associates, Sebastopol, Calif, USA, 1999.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

