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Fault diagnosis of power systems is an important task in power system operation. In this paper, fuzzy reasoning spiking neural
P systems (FRSN P systems) are implemented for fault diagnosis of power systems for the first time. As a graphical modeling
tool, FRSN P systems are able to represent fuzzy knowledge and perform fuzzy reasoning well. When the cause-effect relationship
between candidate faulted section and protective devices is represented by the FRSN P systems, the diagnostic conclusion can be
drawn by means of a simple parallel matrix based reasoning algorithm.Three different power systems are used to demonstrate the
feasibility and effectiveness of the proposed fault diagnosis approach. The simulations show that the developed FRSN P systems
based diagnostic model has notable characteristics of easiness in implementation, rapidity in parallel reasoning, and capability
in handling uncertainties. In addition, it is independent of the scale of power system and can be used as a reliable tool for fault
diagnosis of power systems.

1. Introduction
Along with the unceasing development of electric power
industry, the scale of power system is expanding constantly,
and the complexity of network structure is increasing con-
tinuously. Under this situation, the occurrence of a fault will
have great influence upon the normal operation of a power
system. Unfortunately, fault is inevitable during the operation
of power system. When fault events occur, it is imperative to
isolate the faulted section or sections from the healthy part
of the power system and limit the impact of power supply
interruption to a minimum as soon as possible. To achieve
this goal, the fast and accurate identification of the faulted
section or sections is of great significance and is the main
issue of the fault diagnosis of power systems.

The fault diagnosis of power systems is a process that
identifies a faulted section or sections using a set of oper-
ational information of protective relays (PRs) and circuit
breakers (CBs) available from the supervisory control and
data acquisition (SCADA) systems. The process is difficult
and complicated. The complexity will increase significantly
when involving failed and/ormalfunctioned PRs and/or CBs,
multiple faults, or even a concurrence of them. It is because

of these contingencies that the fault information has the
characteristics of incompleteness and uncertainty. To solve
this serious issue, various approaches have been proposed,
including expert systems (ES) [1–3], artificial neural networks
(ANNs) [4–9], Bayesian networks (BNs) [10–12], Petri nets
(PNs) [13–17], Cause-Effect nets (CE-Nets) [18, 19], and
analytic optimization model (AOM) [20–25]. ES use a rule-
based knowledge base and a reasoning engine to identify
the faulted sections. Although they are a relatively early
and widely used approach for fault diagnosis, some inherent
drawbacks, such as maintenance difficulties, slow response
time, and weak fault tolerance, exist in them. Compared to
ES, ANNs have a better fault tolerance and faster response
time, but they behave following an opaque black box device
model which functioning is unknown by the dispatchers. In
addition, extracting numerous representative training sam-
ples and determiningANNs’ structure parameters are tedious
and tough jobs. In contrast to ANNs, BNs can explicitly
represent the causalities between faulted section and the
operations of protective devices.However, extracting training
samples is still required to determine the structure param-
eters. Although PNs and CE-Nets do not need the training
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procedure, they have their own disadvantages. For example,
PNs only have two types of nodes (place and transition)
making PNs not able to represent the causalities perfectly and
directly. Forward reasoning strategy cannot enable CE-Nets
to visually represent all possible combinations of main, pri-
mary backup, and secondary backup protection operations
for reasoning a fault. Additionally, CE-Nets’ fault tolerance
remains to be improved. With regard to the AOM, other
than the graphic based approaches, it constructs an analytic
model according to the operating principles of protection
system to reflect the difference between the expected and
the practical states of protective devices and then obtains
the diagnostic results via minimizing the difference with
the help of different optimization methods. However, the
construction of satisfactory analytic models and the design of
competent optimizationmethods are twomajor challenges to
AOM.

Spiking neural P systems (SN P systems), which were
firstly introduced in [26] in the framework of membrane
computing [27], are a new class of distributed and parallel
computing devices.They are inspired by the neurophysiolog-
ical behavior of neurons sending electrical impulses (spikes)
along axons to other neurons. An SN P system can be viewed
as a set of neurons placed in the nodes of a directed graph
whose arcs represent the synaptic connections among the
neurons. The flow of information stream is realized by pulse
potentials encoded by spikes (contained in neurons and
denoted in what follows by the symbol 𝑎). This stream can
be sent from presynaptic to postsynaptic neurons according
to specific rules. Since the introduction, various SN P systems
have been proposed, one of which is fuzzy SN P systems (FSN
P systems) [28, 29]. The FSN P systems were proposed to
represent fuzzy knowledge andmodel dynamic fuzzy reason-
ing process. However, the models in [28, 29] are too simple
to perform fuzzy reasoning in parallel through matrix based
operation. For conquering this shortage, the authors of [30]
proposed a more systematic and comprehensive FSN P sys-
tem, that is, fuzzy reasoning SN P systems (FRSN P systems),
and developed a parallel fuzzy reasoning algorithm through
matrix based operation according to neuron’s dynamic firing
mechanism. The FRSN P systems can visually represent
fuzzy production rules of a fuzzy knowledge base and
effectivelymodel the corresponding dynamic fuzzy reasoning
behavior.

Based on the aforementioned prominent features, this
paper attempts to apply the FRSN P systems to the fault
diagnosis of power systems. The contribution of this paper
includes three folders.

(1) To our knowledge, there have been no reports about
implementing the FRSN P systems for solving fault
diagnosis of power systems. Thus, the first and most
important contribution is to implement the FRSN P
systems for fault diagnosis of power systems for the
first time and study how they solve this important
problem.

(2) A diagnostic framework based on the FRSNP systems
is developed. This framework is able to make the

FRSN P systems based diagnostic model have good
flexibility and extensibility.

(3) The operation statistics coupled with experience are
used to tackle the uncertainties of PRs and CBs. They
are able to realistically reflect the uncertainties among
the PRs, CBs, and power system sections and thus
make the developed FRSNP systems based diagnostic
model more practical.

The structure of the paper is organized as follows. Sec-
tion 2 describes the fault diagnosis of power systems problem.
Section 3 recalls the definition of FRSN P systems and their
matrix based reasoning algorithm. The proposed FRSN P
systems based diagnostic framework and diagnostic models
are elaborated, and some key issues in implementation of
FRSN P systems for fault diagnosis of power systems are
discussed in Section 4. In Section 5, the FRSN P systems
based diagnosis approach is verified through three different
applications, and Section 6 concludes this paper.

2. Problem Description

Because of nature disturbing or man-made influence, power
systems are threatened by the occurrence of faults during
the operation. When a fault occurs in a power system, the
well-designed protection system quickly detects the fault and
activates its PRs to trip the corresponding CBs to clear the
fault. In the clearance process, there are uncertainties regard-
ing the protective devices, such as failed, malfunctioned
operation of PRs and/or CBs. To guarantee that the faulted
section is completely isolatedwithin a given amount of setting
time, multiprotection configuration is adopted. In general,
protection system consists of main protection and backup
protection. When a fault occurs on a section, the section’s
main protection is firstly activated to isolate the fault. If the
main protection fails, the backup protection must operate
to eliminate the fault. In order to illustrate the concept of
fault diagnosis, a simple power system [31] shown in Figure 1
is presented as a study case. Suppose that a fault, shown in
Figure 1(a), occurs on line L1 and causes the actions of main
PRs L1Amand L1Cm to trip the circuit breakers CB1 andCB2,
respectively. If CB1 succeeds in opening while CB2 fails, the
local backup of L1Cm, that is, the primary backup PR L1Cp,
operates to trip CB2 to isolate the fault. And if CB2 is not
tripped again, the remote backups of L1Cm and L1Cp, that
is, the secondary backup PRs L2Bs and L3Ds, operate to trip
the circuit breakers CB3 andCB6, respectively, to successfully
clear the fault. For the bus section, the fault clearance process
is somewhat simpler. As shown in Figure 1(b), if a fault occurs
on bus C, its ownmain PR Cmwill operate to send a signal to
trip the circuit breakers CB2, CB4, andCB5. If some problems
result in the failure of the main protection, the secondary
backup protection will operate. For example, if Cm operates
while CB5 fails to open, the secondary backup PR L3Ds will
operate to successfully trip the circuit breaker CB6, and the
fault is cleared. These fault information, that is, the alarms of
the operated protective devices, will then be transmitted to
the SCADA system. From the SCADA system, these available
alarms are exploited to identify the faulted section or sections.
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Figure 1: A simple power system. m: main protective relay; p: primary backup protective relay; s: secondary backup protective relay. (a) Line
L1 fault; (b) bus C fault.

3. Fuzzy Reasoning Spiking Neural P Systems

3.1. Definition

Definition 1. A FRSN P system of degree 𝑚 ⩾ 1 [28, 30] can
be defined as a 6-tuple

Π = (𝐴,𝑁𝑝, 𝑁𝑟, syn, 𝐼, 𝑂) , (1)

where

(1) 𝐴 = {𝑎} is the singleton alphabet (the object 𝑎 is called
spike);

(2) 𝑁𝑝 = {𝜎𝑝1, 𝜎𝑝2, . . . , 𝜎𝑝𝑚} is called proposition neuron
set, where 𝜎𝑝𝑖 is its ith proposition neuron associated
with a fuzzy proposition in a fuzzy knowledge base,
1 ≤ 𝑖 ≤ 𝑚. Each proposition neuron 𝜎𝑝𝑖 has the form
𝜎𝑝𝑖 = (𝛼𝑝𝑖, 𝜃𝑝𝑖, 𝜆𝑝𝑖, 𝛽𝑝𝑖, 𝑏𝑝𝑖, r𝑝𝑖), where

(a) 𝛼𝑝𝑖 ∈ [0, 1] and it is called the (potential)
value of spike contained in neuron 𝜎𝑝𝑖. It is used
to express fuzzy truth value of ith proposition
neuron.The initial truth value is denoted by 𝛼0

𝑝𝑖
;

(b) 𝜃𝑝𝑖 is an integer and represents the number of
spikes received by ith proposition neuron. The
initial number of spikes received is denoted by
𝜃
0

𝑝𝑖
;

(c) 𝜆𝑝𝑖 is an integer and represents the number of
spikes required by firing ith proposition neuron;

(d) 𝛽𝑝𝑖 ∈ [0, 1] and represents fuzzy truth value
exported by ith proposition neuron after firing;

(e) 𝑏𝑝𝑖 ∈ {0, 1} and represents the number of spikes
exported by ith proposition neuron after firing;

(f) r𝑝𝑖 is a firing/spiking rule contained in ith
proposition neuron, of the form 𝐸/𝑎

𝑥
→ 𝑎
𝑦,

where 𝑥, 𝑦 ∈ [0, 1];

(3) 𝑁𝑟 = {𝜎𝑟1, 𝜎𝑟2, . . . , 𝜎𝑟𝑛} is called rule neuron set,
where 𝜎𝑟𝑖 is its 𝑖th rule neuron associated with a fuzzy

production rule in a fuzzy knowledge base, 1 ≤ 𝑖 ≤ 𝑛.
𝑁𝑟 contains two types of rule neurons, “AND” type
neuron and “OR” type neuron. Each rule neuron 𝜎𝑟𝑖

has the form 𝜎𝑟𝑖 = (ℎ𝑟𝑖, 𝑔𝑟𝑖, 𝛼𝑟𝑖, 𝜃𝑟𝑖, 𝜆𝑟𝑖, 𝛽𝑟𝑖, 𝑏𝑟𝑖, 𝛾𝑟𝑖, r𝑟𝑖),
where

(a) ℎ𝑟𝑖, 𝑔𝑟𝑖 ∈ {0, 1}. If the 𝑖th rule neuron is an
“AND” type neuron, ℎ𝑟𝑖 = 1, 𝑔𝑟𝑖 = 0; otherwise,
ℎ𝑟𝑖 = 0, 𝑔𝑟𝑖 = 1;

(b) 𝛼𝑟𝑖 ∈ [0.1] and it is called the (potential) value of
spike contained in neuron 𝜎𝑟𝑖. The initial truth
value is denoted by 𝛼0

𝑟𝑖
;

(c) 𝜃𝑟𝑖 is an integer and represents the number of
spikes received by 𝑖th rule neuron. The initial
number of spikes received is denoted by 𝜃0

𝑟𝑖
;

(d) 𝜆𝑟𝑖 is an integer and represents the number of
spikes required by firing 𝑖th rule neuron;

(e) 𝛽𝑟𝑖 ∈ [0, 1] and represents fuzzy truth value
exported by 𝑖th rule neuron after firing;

(f) 𝑏𝑟𝑖 ∈ {0, 1} and represents the number of spikes
exported by 𝑖th rule neuron after firing;

(g) 𝛾𝑟𝑖 ∈ [0, 1] and represents confidence factor of
𝑖th production rule associated with rule neuron
𝜎𝑟𝑖;

(h) r𝑟𝑖 is a firing/spiking rule contained in 𝑖th rule
neuron, of the form 𝐸/𝑎

𝑥
→ 𝑎
𝑦, where 𝑥, 𝑦 ∈

[0, 1];

(4) syn ⊆ (𝑁𝑝 × 𝑁𝑟) ∪ (𝑁𝑟 × 𝑁𝑝) indicates synapses
between both proposition neurons and rule neurons.
Two binary matrices 𝑈 = {𝑢𝑖𝑗}𝑚×𝑛

and 𝑉 = {V𝑖𝑗}𝑚×𝑛,
where 𝑢𝑖𝑗 and V𝑖𝑗 ∈ {0, 1}, are used to represent syn.
𝑢𝑖𝑗 = 1 if there is a directed arc (synapse) from
proposition neuron 𝜎𝑝𝑖 to rule neuron 𝜎𝑟𝑗; otherwise
𝑢𝑖𝑗 = 0. V𝑖𝑗 = 1 if there is a directed arc (synapse) from
rule neuron 𝜎𝑟𝑗 to proposition neuron 𝜎𝑝𝑖; otherwise
V𝑖𝑗 = 0. Note that there are no synapse connections
between any two proposition neurons or between any
two rule neurons;
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(5) 𝐼 and 𝑂 are input neuron set and output neuron set,
respectively.

In the FRSN P systems, each proposition neuron cor-
responds to a proposition either in the antecedent part or
consequent part of a fuzzy production rule, and each rule
neuron corresponds to the category of antecedent part of
a fuzzy production rule. Each neuron (proposition neuron
or rule neuron) contains only one spiking (firing) rule, of
the form 𝐸/𝑎

𝑥
→ 𝑎

𝑦, where 𝐸 = 𝑎
𝑧 is called the firing

condition and 𝑧 is the number of input synapses from other
neurons to the neuron. The firing condition 𝐸 = 𝑎

𝑧 indicates
that if the neuron receives 𝑧 spikes the spiking rule can be
applied; otherwise the rule cannot be enabled until 𝑧 spikes
are received. For a neuron𝜎𝑖, if the firing rule𝐸/𝑎

𝑥
→ 𝑎
𝑦 can

be applied, it means that its pulse value 𝑥 > 0 is consumed
(removed), and then it produces a spike with value 𝑦. Once
the spike with value 𝑦 is excited from neuron 𝜎𝑖, all neurons
𝜎𝑗 with (𝑖, 𝑗) ⊆ syn will immediately receive the spike.

3.2. Matrix Based Reasoning Algorithm. The parallel reason-
ing process of FRSN P systems is implemented by a matrix
execution algorithm. In order to describe the execution
algorithm logically and concisely, the following operators and
functions are used:

(1) ⊕ : 𝐶 = 𝐴⊕𝐵, where𝐴, 𝐵, and𝐶 are all 𝑟×𝑠matrices;
such that 𝑐𝑖𝑗 = max{𝑎𝑖𝑗, 𝑏𝑖𝑗};

(2) ⊗ : 𝐶 = 𝐴 ⊗ 𝐵, where 𝐴, 𝐵, and 𝐶 are 𝑟 × 𝑠,
𝑠 × 𝑡, 𝑟 × 𝑡 matrices, respectively; such that 𝑐𝑖𝑗 =

max1≤𝑘≤𝑠{𝑎𝑖𝑘, 𝑏𝑘𝑗};
(3) ⊙ : 𝐶 = 𝐴 ⊙ 𝐵, where 𝐴, 𝐵, and 𝐶 are 𝑟 × 𝑠,

𝑠 × 𝑡, 𝑟 × 𝑡 matrices, respectively; such that 𝑐𝑖𝑗 =

min1≤𝑘≤𝑠{𝑎𝑖𝑘, 𝑏𝑘𝑗};

(4) 𝛽 = fire(𝛼, 𝜃, 𝜆), where 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑟)
T, 𝛼 =

(𝛼1, 𝛼2, . . . , 𝛼𝑟)
T, 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑟)

T, and 𝜆 =

(𝜆1, 𝜆2, . . . , 𝜆𝑟)
T. The function is defined as follows:

𝛽𝑖 = {

𝛼𝑖, if 𝜃𝑖 = 𝜆𝑖

0, if 𝜃𝑖 < 𝜆𝑖,

(2)

where 𝑖 = 1, 2, . . . , 𝑟;
(5) 𝛽 = update(𝛼, 𝜃, 𝜆), where 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑟)

T, 𝛼 =

(𝛼1, 𝛼2, . . . , 𝛼𝑟)
T, 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑟)

T, 𝜆 =

(𝜆1, 𝜆2, . . . , 𝜆𝑟)
T. The function is defined as follows:

𝛽𝑖 =

{
{

{
{

{

0, if 𝜃𝑖 = 0

𝛽𝑖 + 𝛼𝑖, if 0 < 𝜃𝑖 < 𝜆𝑖

0, if 𝜃𝑖 = 𝜆𝑖,

(3)

where 𝑖 = 1, 2, . . . , 𝑟.

(6) 𝐷 = diag(𝑏), where 𝐷 = {𝑑𝑖𝑗}𝑟×𝑟
is a 𝑟 × 𝑟 diagonal

matrix and 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑟). For 1 ≤ 𝑖 ≤ 𝑟, 𝑑𝑖𝑖 = 𝑏𝑖,
while 𝑑𝑖𝑗 = 0 for 𝑖 ̸= 𝑗.

Then the matrix based reasoning algorithm for FRSN P
systems can be described as follows [30].

Input. Parameter matrices 𝑈 = {𝑢𝑖𝑗}𝑚×𝑛
, 𝑉 = {V𝑖𝑗}𝑚×𝑛, Γ =

diad{𝛾𝑟1, 𝛾𝑟2, . . . , 𝛾𝑟𝑛}, 𝐻 = diad{ℎ𝑟1, ℎ𝑟2, . . . , ℎ𝑟𝑛}, 𝐺 = diad
{𝑔𝑟1, 𝑔𝑟2, . . . , 𝑔𝑟𝑛}, 𝜆𝑝 = diad{𝜆𝑝1, 𝜆𝑝2, . . . , 𝜆𝑝𝑚}

T, 𝜆𝑟 =

diad{𝜆𝑟1, 𝜆𝑟2, . . . , 𝜆𝑟𝑛}
T, and initial inputs 𝛼

0

𝑝
=

(𝛼
0

𝑝1,
𝛼
0

𝑝2
, . . . , 𝛼

0

𝑝𝑚
)

T, 𝜃0
𝑝
= (𝜃
0

𝑝1,
𝜃
0

𝑝2
, . . . , 𝜃

0

𝑝𝑚
)

T, where diad{}
stands for the diagonal matrix.

Output. The fuzzy truth values of propositions associated
with the neurons in 𝑂.

Step 1. Let 𝛼0
𝑟
= (0, 0, . . . , 0)

T, 𝜃0
𝑟
= (0, 0, . . . , 0)

T.

Step 2. Let 𝑙 = 0.

Step 3. (1) Process the firing of proposition neurons as
follows:

𝛽
𝑙

𝑝
= fire (𝛼𝑙

𝑝
, 𝜃
𝑙

𝑝
, 𝜆𝑝) , 𝑏

𝑙

𝑝
= fire (1, 𝜃𝑙

𝑝
, 𝜆𝑝) ,

𝐵
𝑙

𝑝
= diag (𝑏𝑙

𝑝
) ,

𝛼
𝑙

𝑝
= update (𝛼𝑙

𝑝
, 𝜃
𝑙

𝑝
, 𝜆𝑝) , 𝜃

𝑙

𝑝
= update (𝜃𝑙

𝑝
, 𝜃
𝑙

𝑝
, 𝜆𝑝) .

(4)

(2)Compute the truth values of rule neurons and the number
of received spikes.

𝛼
𝑙+1

𝑟
= 𝛼
𝑙

𝑟
⊕ [(𝐻 × ((𝐵

𝑙

𝑝
× 𝑈)

T
⊙ 𝛽
𝑙

𝑝
))

+ (𝐺 × ((𝐵
𝑙

𝑝
× 𝑈)

T
⊗ 𝛽
𝑙

𝑝
))] ,

𝜃
𝑙+1

𝑟
= 𝜃
𝑙

𝑟
+ [(𝐵

𝑙

𝑝
× 𝑈)

T
× 𝑏
𝑙

𝑝
] .

(5)

(3) Process the firing of rule neurons as follows:

𝛽
𝑙+1

𝑟
= fire (Γ × 𝛼

𝑙+1

𝑟
, 𝜃
𝑙+1

𝑟
, 𝜆𝑟) , 𝑏

𝑙+1

𝑟
= fire (1, 𝜃𝑙+1

𝑟
, 𝜆𝑟) ,

𝐵
𝑙+1

𝑟
= diag (𝑏𝑙+1

𝑟
) ,

𝛼
𝑙+1

𝑟
= update (𝛼𝑙+1

𝑟
, 𝜃
𝑙+1

𝑟
, 𝜆𝑟) ,

𝜃
𝑙+1

𝑟
= update (𝜃𝑙+1

𝑟
, 𝜃
𝑙+1

𝑟
, 𝜆𝑟) .

(6)

(4) Compute the truth values of proposition neurons and the
number of received spikes as follows:

𝛼
𝑙+1

𝑝
= 𝛼
𝑙

𝑝
⊕ [(𝑉 × 𝐵

𝑙+1

𝑟
) ⊗ 𝛽
𝑙+1

𝑟
] ,

𝜃
𝑙+1

𝑝
= 𝜃
𝑙

𝑝
+ [(𝑉 × 𝐵

𝑙+1

𝑟
) × 𝑏
𝑙+1

𝑟
] .

(7)

Step 4. If 𝜃𝑙+1
𝑝

= (0, 0, . . . , 0)
T, 𝜃𝑙+1
𝑟

= (0, 0, . . . , 0)
T (stopping

criteria), reasoning results are obtained; otherwise, 𝑙 = 𝑙 + 1,
and go to Step 3.
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Figure 2: Developed diagnostic framework based on FRSN P systems.

4. Implementing FRSN P Systems for Fault
Diagnosis of Power Systems

4.1. Diagnostic Framework. The developed diagnostic frame-
work for fault diagnosis of power systems using FRSN P
systems is shown in Figure 2. It can be seen that this
framework mainly consists of three modules: one to identify
the candidate faulted sections, one to construct the diagnostic
models, and one to calculate the faulted confidence level. For
the first module, because all the faulted sections undoubtedly
locate in the outage area, the candidate faulted sections
can therefore be identified via a real-time network topology
determination method [32] which is based on both static
data and real-time data derived from the SCADA systems.
By using this method, the number of sections that needs
to be diagnosed will decrease dramatically and thus reduce
the subsequent computational burden. As for the third
module, that is, calculation of the faulted confidence level
of candidate faulted sections, the matrix based reasoning
algorithm described in Section 3.2 can performwell. Another
module, that is, the second module, is the most important
module and is discussed in the next subsection. Note that

the construction of this module only uses the static data,
that is, the network topology and protection configuration.
Consequently, thismodule can be constructed in advance and
stored in files. And it can be easily modified according to the
change of static data.

4.2. Diagnostic Model and Simulation Parameters Setting. A
proper diagnostic model is prerequisite and critical to the
sound diagnostic performance. It should be able to represent
the causalities between faults and the actions of protective
devices explicitly, which is beneficial to reasoning and under-
standing. Moreover, it can tackle the incompleteness and
uncertainty of fault information well. In order to illustrate
in detail, two FRSN P systems based diagnostic models
associated with the fault scenarios of the line L1 and the bus C
described in Section 2 are constructed and shown in Figure 3.
Note that the developed diagnostic models are constructed
adopting a backward reasoning strategy [15]. This strategy
has three advantages. First, it can facilitate executing the
matrix based reasoning algorithm of FRSN P systems and
can instantly and directly obtain the corresponding faulted
confidence level once the algorithm is finished. Second, the
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Figure 3: FRSN P systems based diagnostic models by means of SCADA data. (a) For the fault scenario of line L1; (b) for the fault scenario
of bus C.

Table 1: Operation statistics of main protections of China state grid in 220 kV and above power systems from 2004 to 2009.

Year 2004 2005 2006 2007 2008 2009 Average
Line

Total faults 29411 29291 26047 24685 36865 12347 26441
Correct diagnosed faults 29181 29234 26030 24666 36855 12345 26385.17
Diagnostic accuracy/% 99.22 99.81 99.93 99.92 99.97 99.98 99.79

Bus
Total faults 90 120 112 122 159 89 115.33
Correct diagnosed faults 77 114 102 118 156 88 109.17
Diagnostic accuracy/% 85.56 95.00 91.07 96.72 98.11 98.88 94.65

diagnostic model is constructed for each section of a given
power system, which reduces the scale of the model. Third,
the “AND-OR” structure with the help of FRSN P systems is
able to represent all possible combinations of main, primary
backup, and secondary backup protection operations for
reasoning a fault.

In Figure 3(a), 𝜎𝑝1, 𝜎𝑝2, . . . , 𝜎𝑝20 are proposition neurons,
where 𝜎𝑝1, 𝜎𝑝2, . . . , 𝜎𝑝10 are input neurons and represent
the protective devices associated with the line L1; 𝜎𝑝20 is
an output neuron and represents the proposition “a fault
occurs on the line L1.” Considering the fault information
has characteristics of incompleteness and uncertainty, fuzzy
technology is employed to describe the truth degrees of the
operation status of protective devices. If the operation of
a protective device is actually observed from the SCADA
system, the proposition will have a truth degree value 𝛼0

𝑝𝑖
=

0.90; otherwise, the propositionwill have a truth degree value
𝛼
0

𝑝𝑖
= 0.10.
The neurons 𝜎𝑟1, 𝜎𝑟2, . . . , 𝜎𝑟10 in Figure 3(a) are rule

neurons, where 𝜎𝑟1, 𝜎𝑟2, . . . , 𝜎𝑟8 are “AND” type rule neurons
and 𝜎𝑟9, 𝜎𝑟10 are “OR” type rule neurons. Each rule neuron
is associated with a confidence factor 𝛾𝑟𝑖 to represent the

confidence level of the production rule. In order to faithfully
reflect the practical operation level of protective devices, the
operation statistics [33, 34] of the state grid of China from
year 2004 to year 2009 are used and shown in Table 1. All
these statistics are the operation level of main protections and
obtained from 220 kV and above power systems. Since these
statistics do not contain the operation information of backup
protections, their operation levels are set via experience. In
normal situation, the possibility of tripping main protections
is higher than that of backup protections, and the possibility
of tripping the primary backup protections is higher than that
of the second backup protections [14]. In this context, the
operation levels of primary backup and secondary backup are
set as 0.85 and 0.80, respectively. Therefore, the confidence
factors 𝛾𝑟1, 𝛾𝑟2, 𝛾𝑟3, 𝛾𝑟4, 𝛾𝑟5, and 𝛾𝑟6 are given the values of
0.85, 0.9979, 0.9979, 0.85, 0.80, 0.80, respectively.The rest rule
neurons 𝛾𝑟7, 𝛾𝑟8, 𝛾𝑟9, 𝛾𝑟10 are given the same value 1.0.

For the diagnostic model in Figure 3(b), the related
parameters can be set by the sameway. For example, the confi-
dence factors 𝛾𝑟1, 𝛾𝑟2, 𝛾𝑟3, 𝛾𝑟4, 𝛾𝑟5, 𝛾𝑟6, 𝛾𝑟7, 𝛾𝑟8, 𝛾𝑟9, and 𝛾𝑟10

are given the values of 0.9465, 0.9465, 0.9465, 0.80, 0.80, 0.80,
1.0, 1.0, 1.0, and 1.0, respectively.
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4.3. Reasoning Process. After constructing the diagnostic
model and setting the necessary simulation parameters, the
matrix based reasoning algorithm can be used to pursue the
faulted confidence level. Take the fault scenario of line L1 in
Figure 1(a) as an example, according to the definition of FRSN
P system, the relevant matrices and vectors associated with
Figure 3(a) are as follows:

𝑈 =

[

[

[

[

[

[

[

[

[

[

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

]

]

]

]

]

]

]

]

]

]

T

,

𝑉 =

[

[

[

[

[

[

[

[

[

[

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

]

]

]

]

]

]

]

]

]

]

T

,

𝐻 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐺 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Γ =

[

[

[

[

[

[

[

[

[

[

0.85 0 0 0 0 0 0 0 0 0

0 0.9979 0 0 0 0 0 0 0 0

0 0 0.9979 0 0 0 0 0 0 0

0 0 0 0.85 0 0 0 0 0 0

0 0 0 0 0.80 0 0 0 0 0

0 0 0 0 0 0.80 0 0 0 0

0 0 0 0 0 0 1.0 0 0 0

0 0 0 0 0 0 0 1.0 0 0

0 0 0 0 0 0 0 0 1.0 0

0 0 0 0 0 0 0 0 0 1.0

]

]

]

]

]

]

]

]

]

]

,

𝜆𝑝 = (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)
T
,

𝜆𝑟 = (2 2 2 2 2 2 2 2 2 3)

T
.

(8)

The initial inputs are

𝛼
0

𝑝
= (0.10 0.90 0.90 0.90 0.10 0.90 0.90 0.90 0.90 0.90

0 0 0 0 0 0 0 0 0 0)
T
,

𝜃
0

𝑝
= (1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0)

T
.

(9)
Let

𝛼
0

𝑟
= (0 0 0 0 0 0 0 0 0 0)

T
,

𝜃
0

𝑟
= (0 0 0 0 0 0 0 0 0 0)

T
.

(10)

According to the matrix based reasoning algorithm
described previously, the reasoning steps will result in the
following.

(1) The first reasoning step

𝛼
1

𝑝
= (0 0 0 0 0 0 0 0 0 0 0

0.0850 0.8981 0.0998 0.0850 0.720 0.720 0 0 0 0)
T
,

𝜃
1

𝑝
= (0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0)

T
,

𝛼
1

𝑟
= (0 0 0 0 0 0 0 0 0 0)

T
,

𝜃
1

𝑟
= (0 0 0 0 0 0 0 0 0 0)

T
.

(11)

(2) The second reasoning step

𝛼
2

𝑝
= (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.720 0.8981 0 0)

T
,

𝜃
2

𝑝
= (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0)

T
,

𝛼
2

𝑟
= (0 0 0 0 0 0 0 0 0 0.0998)

T
,

𝜃
2

𝑟
= (0 0 0 0 0 0 0 0 0 2)

T
.

(12)

(3) The third reasoning step

𝛼
3

𝑝
= (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.720 0)

T
,

𝜃
3

𝑝
= (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)

T
,

𝛼
3

𝑟
= (0 0 0 0 0 0 0 0.8981 0 0)

T
,

𝜃
3

𝑟
= (0 0 0 0 0 0 0 1 0 0)

T
.

(13)

(4) The fourth reasoning step

𝛼
4

𝑝
= (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.720)

T
,

𝜃
4

𝑝
= (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

T
,

𝛼
4

𝑟
= (0 0 0 0 0 0 0 0 0 0)

T
,

𝜃
4

𝑟
= (0 0 0 0 0 0 0 0 0 0)

T
.

(14)
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Figure 4: Subnetwork of IEEE 118-bus power system. R and S denote the power receiving and sending ends of a line, respectively.

(5) The fifth reasoning step

𝜃
5

𝑝
= (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

T
,

𝜃
5

𝑟
= (0 0 0 0 0 0 0 0 0 0)

T
.

(15)

Thus, since the system reaches the stopping criteria, it
exports its reasoning result; that is, the truth value of the
proposition 𝜎𝑝20 is 0.720. A candidate faulted section with
a faulted confidence level greater than 0.5 is regarded as a
faulted section. So the conclusion is that a fault occurs on the
line L1 with a confidence level 0.720.

For the fault scenario of bus C in Figure 1(b) and its
diagnostic model in Figure 3(b), the same construction
and reasoning way can be used to pursue the diagnostic
conclusion. The conclusion is that a fault occurs on the bus
C with a confidence level 0.720.

5. Applications and Discussion

In this section, three different power systems are employed to
illustrate and validate the effectiveness of the proposed fault
diagnosis approach.

5.1. Applications and Results

5.1.1. Application 1. The first test system, which is adopted
from [35] and shown in Figure 4, is a subnetwork from
the IEEE 118-bus system. It is employed to test single fault,
involving failed protective devices and incorrect tripping
signal.This system consists of 28 sections (13 buses: B77, B82∼
B92, B96, and 15 lines: L1∼L15), 103 protective relays, and 30
circuit breakers. In this scenario, line L7 is in maintenance

Table 2: Observed SCADA data for application 1.

Sequence number Observed signal
1 Main protective relay B85m
2 Secondary backup protective relay L3Rs
3 Secondary backup protective relay L4Rs
4 Circuit breaker CB3
5 Circuit breaker CB4
6 Circuit breaker CB6
7 Circuit breaker CB8
8 Circuit breaker CB15

Table 3: Candidate faulted sections and diagnostic results for
application 1.

Candidate faulted sections Faulted
confidence level Faulted section

Bus B85 0.720 Yes
Line L2 0.0998 No
Line L3 0.0998 No
Line L4 0.0998 No

and out of service. During the operation, a fault occurs, and
the observed fault data from the SCADA system are listed in
Table 2. According to the observed fault data, the candidate
faulted sections can be identified and listed in Table 3. After
identifying the candidate faulted sections, their FRSN P
systems based diagnosticmodels can be quickly recalled from
the storage files. A representative diagnosticmodel associated
with bus B85 is shown in Figure 5. According to Figure 5,
the relevant structure matrices and vectors associated with
the diagnostic models can be obtained. With all preparations
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Figure 5: FRSN P systems based diagnostic model for application 1.

completed, the matrix based reasoning algorithm is executed
on the diagnostic models and able to immediately achieve
the diagnostic results. The diagnostic results are summarized
in Table 3. Consequently, bus B85 is a faulted section with
confidence level 0.720. The fault scenario is detailed as
follows: a fault occurs on bus B85 and the main protective
relay B85m operates to send a signal to trip circuit breakers
CB4, CB5, CB7, and CB15. CB4 and CB5 succeed in opening,
whileCB5 andCB7 fail.The corresponding secondary backup
protective relays L3Rs and L4Rs then operate to successfully
trip their associated circuit breakers CB6 and CB8 to clear
the fault. For the observed signal CB3, it is an incorrect
tripping signal whichmay be caused by communication error
or malfunction.

5.1.2. Application 2. This fault scenario is adopted from [19].
The related power systemandobserved data from the SCADA
system are shown in Figure 6 and Table 4, respectively.
The fault scenario is mainly used to verify the capability
in handling multiple faults with failed and malfunctioned
devices. With the help of the observed data, the candidate
faulted sections can be immediately identified and listed in
Table 5. A representative FRSN P systems based diagnostic
model is shown in Figure 7. The diagnostic results are
summarized in Table 5. It can be seen from the results that
two faults occur on sections L29 and L30. The detailed fault
clearance process is that a fault on section L30 causes L30’s
ownmain protective relays L30-23m and L30-24m to operate,
thus successfully tripping circuit breakers CB60 and CB59,
respectively. Meanwhile, another fault occurring on section

Table 4: Observed SCADA data for application 2.

Sequence number Observed signal
1 Main protective relay L29-23m
2 Main protective relay L29-27m
3 Main protective relay L30-23m
4 Main protective relay L30-24m
5 Primary backup protective relay L29-23p
6 Primary backup protective relay L29-27p
7 Secondary backup protective relay L25-20s
8 Circuit breaker CB50
9 Circuit breaker CB57
10 Circuit breaker CB58
11 Circuit breaker CB59
12 Circuit breaker CB60

Table 5: Candidate faulted sections and diagnostic results for
application 2.

Candidate faulted sections Faulted
confidence level Faulted section

Bus BUS23 0.0947 No
Bus BUS24 0.0947 No
Bus BUS27 0.0947 No
Line L25 0.0998 No
Line L29 0.8981 Yes
Line L30 0.8981 Yes
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Figure 7: FRSN P systems based diagnostic model for application 2.

L29 leads to the operations of main protective relays L29-
23m and L29-27m. However, the operations fail to open the
circuit breakers CB57 and CB58. It is because of this failure
that the corresponding primary protective relays L29-23p and
L29-27p operate to successfully trip CB57 and CB58 and
then clear the fault. With regard to the signal L25-20s, it is
a malfunctioned data which results in the tripping of circuit
breaker CB50.

5.1.3. Application 3. To further confirm the validity of the
proposed fault diagnosis approach, another power system in
Figure 8 is tested. This system, adopted from [15], is a 14-bus
system consisting of 14 buses (B01∼B14) and 20 lines (L0102∼
L1413).Theprotection configuration consists of 134 protective

relays and 40 circuit breakers. Numerous fault scenarios con-
taining single andmultiple faults involving failed and/ormal-
functioned protective devices are investigated. Table 6 lists
some typical scenarios with the corresponding diagnostic
results. Among these scenarios, the first four are single fault
cases. In scenario 1, all protective relays and circuit breakers
operate correctly. The following two scenarios are designed
based on scenario 1. Scenario 2 is designed to investigate
the failure of protective device (CB1314), and scenario 3 is
designed to investigate the malfunction of protective device
(L1413m). Scenario 4 is designed to simultaneously investi-
gate the failure (L1213m, L1312m) and malfunction (L0613s)
of protective devices. From Table 6, it can be seen that the
proposed fault diagnosis approach is able to diagnose single
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Figure 8: 14-bus power system.

Table 6: Typical fault scenarios and the corresponding diagnostic results for application 3.

Scenario Observed signal Faulted section/confidence level
1 B13m, CB1306, CB1312, CB1314 B13/0.8519
2 B13m, L1413s, CB1306, CB1312, CB1413 B13/0.720
3 B13m, L1413m, CB1306, CB1312, CB1314 B13/0.8519
4 L1213p, L1312p, L0613s, CB0613, CB1213, CB1312 L1213/0.765

5 B04m, B09m, CB0402, CB0405, CB0407, CB0409,
CB0904, CB0907, CB0910, CB0914 B04/0.8519, B09/0.8519

6 B14m, L1314m, L1413m, L0914s, CB0914, CB1314, CB1413 B14/0.720, L1314/0.8981

7 B11m, L0907m, L0914m, L0407s, L0807s, L0910s, L1110s,
CB0910, CB0907, CB0910, CB0914, CB1106, CB1110

B10/0.720, B11/0.8519
L0709/0.720

fault scenarios with failure and/or malfunction of protective
devices. The last three scenarios are multiple faults cases. In
scenario 5, all protective devices operate correctly, and no
false data is present. In scenario 6, a circuit breaker (CB1409)
fails to open, and the fault is cleared by the corresponding
secondary backup protective devices. The next fault scenario
is more complex. It is coupled with many protective devices
failing to work properly. Although multiple faults case puts
forward higher demand on fault tolerant capability of fault
diagnosis approach, it can be seen from Table 6 that the
proposed approach can still enjoy excellent diagnostic effect.

5.2. Discussion. FRSN P systems are a novel visual model
for representing fuzzy reasoning rules. In this work, they are
employed to diagnose the faulted section(s) of power systems.
It can be summarized from the diagnostic results that

(1) since the FRSN P systems based diagnostic model is
constructed for each section of a given power system,
its scale is independent of the scale of the power
system but dependent on the connection schemes
between the section and its adjacent lines;

(2) the matrix based reasoning algorithm of FRSN P
systems is able to obtain the diagnostic results by at
most five reasoning steps (five steps for line, four steps
for bus). Moreover, the number of reasoning steps is

not connectedwith the breadth of the FRSNP systems
based diagnostic model, but with the depth;

(3) compared with the main existing fault diagnosis app-
roaches, the proposed approach presents the benefits:

(a) Compared with ES, it needs no heavy proce-
dures of knowledge acquisition and knowledge
base maintenance. Because the scale of the
developed FRSN P systems based diagnostic
model is constructed for each section of a given
power system, so it has better flexibility versus
the change of the power system’s topology.
Additionally, it is able to handle uncertainty
problems and thus has better fault tolerant
capability, and its response time is very short.

(b) Compared with ANNs, it does not require the
construction of a comprehensive training data
and the execution of a complicated training
process, so it has neither a problem of conver-
gence nor a tedious determination of network’s
dimension andweights. Besides, it can explicitly
represent the causalities between the sections
and the actions of protective devices and thus
help dispatchers to understand and analyze the
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fault evolution and clearance processes. Fur-
thermore, it has better flexibility versus the
change of the power system’s topology.

(c) Compared with BNs, it does not require the
construction of a comprehensive training data
and the execution of a complicated training
process; thus it has no problem of convergence.

(d) Compared with PNs, on the surface, PNs and
FRSNP systems are similar. Both PNs and FRSN
P systems have the characteristics of graphic
discrete event representation and parallel infor-
mation reasoning. However, the FRSN P sys-
tems possess more different types of versatile
neurons, including proposition neuron, “AND”
type rule neuron and “OR” type rule neuron.
While Petri nets only contain place and tran-
sition. In this context, FRSN P systems have
better flexibility and extensibility. Besides, these
versatile neurons of the FRSN P systems are able
to represent the “AND-OR” causalities among
the PRs, CBs, and power system sections more
explicitly and visually for dispatchers. Thus, it is
doubtlessly in favor of dispatchers’ comprehen-
sion, analysis, and summary on the fault evolu-
tion and clearance processes. In addition, these
two models have other essential differences
which have been discussed in detail in [36].

(e) Compared with CE-Nets, the backward rea-
soning strategy enables the FRSN P systems
based diagnostic model to visually represent all
possible combinations of main, primary backup
and secondary backup protection operations for
reasoning a fault. In addition, it has better fault
tolerant capability.

(f) ComparedwithAOM, it does not need to design
an elaborate mathematical model for modeling
the operation logic of protective devices. Addi-
tionally, the solution methods for AOM are also
avoided; thus there is no concern regarding the
convergence problem.

6. Conclusion and Future Work

This paper has proposed a novel approach based on FRSN
P systems for fault diagnosis of power systems. FRSN P
systems possess the characteristics of graphic discrete event
representation, dynamic firing mechanism, and parallel rea-
soning. They are capable of representing information con-
taining uncertainty and performing fuzzy reasoning through
matrix operation. Three different applications are used to
verify the feasibility and effectiveness of the proposed fault
diagnosis approach. The diagnostic results demonstrate that
this approach is able to diagnose different single andmultiple
faults coupled with failed and/or malfunctioned protective
devices. Since it requires only simple matrix operation and
has good fault tolerance, the proposed approach is very
suitable for integration and management with the existing

SCADA systems and is used as a reliable tool for fault diag-
nosis of power systems. Additionally, because the developed
FRSN P systems based diagnostic model can be constructed
in advance, and stored in files, and can obtain the diagnostic
results by no more than five reasoning steps, it is especially
suitable for online application. In future, how to realize
the online application and how the FRSN P systems based
diagnostic model adapts to the change of power system’s
topology are our further research work.
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[27] G. Păun, “Computing with membranes,” Journal of Computer
and System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[28] T.Wang, J.Wang,H. Peng, andH.Wang, “Knowledge represen-
tation and reasoning based on FRSN P system,” in Proceedings
of the 9thWorld Congress on Intelligent Control and Automation
(WCICA ’11), pp. 849–854, Taipei City, Taiwan, 2011.

[29] J. Wang, L. Zou, H. Peng, and G. Zhang, “An extended spiking
neural P system for fuzzy knowledge representation,” Inter-
national Journal of Innovative Computing, Information and
Control, vol. 7, no. 7, pp. 3709–3724, 2011.
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