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Abstract The Riemann tensor is the cornerstone of general
relativity, but as is well known it does not appear explicitly in
Einstein’s equation of gravitation. This suggests that the lat-
ter may not be the most general equation. We propose here for
the first time, following a rigorous mathematical treatment
based on the variational principle, that there exists a gen-
eralized 4-index gravitational field equation containing the
Riemann curvature tensor linearly, and thus the Weyl tensor
as well. We show that this equation, written in n dimensions,
contains the energy-momentum tensor for matter and that
of the gravitational field itself. This new 4-index equation
remains completely within the framework of general relativ-
ity and emerges as a natural generalization of the familiar
2-index Einstein equation. Due to the presence of the Weyl
tensor, we show that this equation contains much more infor-
mation, which fully justifies the use of a fourth-order theory.

1 Introduction

The Riemann curvature tensor of general relativity Ri jkl can
be split into the Weyl conformal tensorCi jkl , and parts which
involve only the Ricci tensor R jl and the curvature scalar R.
Because of the properties of the Weyl tensor, its contraction
vanishes, gikCi jkl = 0, and thus the information it contains
(namely the information as regards the gravitational field in
vacuum) is not present in the famous Einstein equation.

The aim of this paper is to find a generalized gravitational
field equation explicitly containing the Riemann curvature
tensor linearly. For this purpose, we have implemented a
rigorous mathematical treatment with a classical variational
principle using a generalized Lagrangian containing Ri jkl ,
R jl and R.

The paper is organized as follows:

a e-mail: frederic.moulin@ens-paris-saclay.fr

In Sect. 2 we generalize the Einstein–Hilbert Lagrangian
of general relativity by introducing new scalars constructed
from Ri jkl and R jl .

In Sects. 3 and 4 we apply the principle of least action to
this Lagrangian and obtain the generalized 4-index Einstein
equation written with the total energy-momentum tensor,
Ti jkl = T (M)

i jkl + T (F)
i jkl , where T (M)

i jkl is the energy-momentum

tensor for matter, and T (F)
i jkl the energy-momentum tensor for

the gravitational field itself. We show that the tensor contrac-
tion of this new generalized version of the Einstein equation
restores the usual 2-index general relativity equation.

In Sect. 5 we impose total energy-momentum conserva-
tion, and show that the generalized equation can be written
with the double-dual Riemann tensor ∗R∗

i jkl . In the last part,
the cosmological constant is also introduced.

2 Lagrangian formulation

We want that the new equation of general relativity neces-
sarily contains the Riemann tensor linearly, and thus be a
fourth-order tensor equation with the same index symme-
tries as Ri jkl . To be as general as possible, this equation must
also contain fourth-order tensors constructed from the Ricci
tensor R jl and from the scalar curvature R. To apply the
principle of least action, we must first define a very general
gravitational action, S(G), written with the Lagrangian, L(G),
including all these various terms linearly:

S(G) = − 1

2χc

∫
L(G)(Ri jkl , R jl , R)

√−g dΩ (1)

where χ = 8πG/c4 is the Einstein constant.

2.1 Riemann tensor symmetries

The Riemann tensor symmetries are well known in the con-
text of general relativity; antisymmetry on the first two
indices, antisymmetry on the last two indices and symme-
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try obtained by exchanging the first pair with the second pair
[1,2]:

Ri jkl = −R jikl = −Ri jlk = Rkli j . (2)

The Ricci tensor, which comes from the contraction of the
Riemann tensor R jl = gik Ri jkl , is therefore symmetric on
its two indices, and the scalar curvature R = g jl R jl , obvi-
ously does not have any symmetry. To construct two fourth-
order tensors from R jl and R, and having exactly the same
symmetries as the Riemann tensor, we shall naturally take a
combination involving metric tensors. It is easy to check that
the combinations (gik R jl − g jk Ril + g jl Rik − gil R jk) and
(gikg jl R − gil g jk R) are unique and obey exactly the same
symmetries as in (2). For convenience in what follows, we
define the tensor gi jkl = gikg jl − gil g jk , and we note that

gik R jl − g jk Ril + g jl Rik − gil R jk = gi jkp R
p
l + gi jpl R

p
k,

(3)

gikg jl R − gil g jk R = gi jkl R. (4)

These combinations of metric tensors are often found in many
well-known references [1–6], and it is therefore these specific
fourth-order tensors we will use in our calculations.

2.2 Lagrangian terms

The Einstein–Hilbert Lagrangian of the general relativity is
purely gravitational and is defined by the scalar curvature
[1,2]:

L(G) = R. (5)

However, it is well known that to obtain Einstein’s familiar
2-index equation by a least action principle, we have to per-
form the calculations using an action including a Lagrangian
written with the Ricci tensor, L(G) = gik Rik :

S(G) = − 1

2χc

∫
R
√−g dΩ

= − 1

2χc

∫
gik Rik

√−g dΩ. (6)

In this paper, we remain within the familiar framework of
general relativity, and so it is also physically equivalent to per-
form the calculations using a generalized action constructed
from the three interesting tensors, (2), (3) and (4):

S(G) = − 1

2χc

∫
gikg jl [

a1Ri jkl + a2
(
gi jkp R

p
l

+ gi jpl R
p
k
) + a3 gi jkl R

] √−g dΩ (7)

where a1, a2, a3 are three arbitrary parameters that can be
determined by contraction and identification with Eq. (6):

a2 = (1 − a1)

(n − 2)
, a3 = − (1 − a1)

(n − 1)(n − 2)
. (8)

Here, we have used the following mathematical relationships
for the tensorial contractions:

g jl Ri jkl = Rik, (9)

g jl(gi jkp R
p
l + gi jpl R

p
k) = (n − 2)Rik + gik R, (10)

g jl(gi jkl R) = (n − 1)gik R, (11)

gikg jl Ri jkl = R, (12)

gikg jl(gi jkp R
p
l + gi jpl R

p
k) = 2(n − 1)R, (13)

gikg jl(gi jkl R) = n(n − 1)R, (14)

with g jl g jl = δ
j
j = n in a n-dimensional space.

The two relations (8) therefore, allow us to write a gener-
alized Lagrangian in a form that involves only one parameter
a (with a = a1):

L(G) = gikg jl
[
aRi jkl + (1 − a)

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

− (1 − a)

(n − 1)(n − 2)
gi jkl R

]
. (15)

This new Lagrangian is a natural generalization, and we can
verify that the contraction with gikg jl naturally restores the
Einstein–Hilbert Lagrangian, L(G) = R, whatever the values
of a and n. This Lagrangian is therefore physically compati-
ble with the general theory of relativity and a 4-index Einstein
equation will be obtained in the next chapter by a variational
principle using Eq. (15).

3 Principle of least action

It is well known that the total action S is the sum of a purely
gravitational Einstein–Hilbert action S(G), and a matter-field
action S(MF) which describes any matter and fields living on
the space-time [1]:

S = S(G) + S(MF) = − 1

2χc

∫
L(G)

√−g dΩ

+ 1

c

∫
L(MF)

√−g dΩ. (16)

In order to obtain the gravitation field equation, we should
vary the total action with respect to the metric:
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δS = δS(G) + δS(MF) = − 1

2χc
δ

∫
L(G)

√−g dΩ

+ 1

c
δ

∫
L(MF)

√−g dΩ. (17)

The variation of S(MF) is given by

δS(MF) = 1

c
δ

∫
L(MF)

√−g dΩ

= 1

2c

∫
Tjl δg

jl√−g dΩ

= 1

2c

∫
Ti jkl g

ikδg jl √−g dΩ (18)

where Tjl is the familiar total energy-momentum tensor
defined in [1],

Tjl = 2√−g

δ ( L(MF)

√−g )

δg jl
, (19)

and Ti jkl a generalized 4-index total energy-momentum ten-
sor such that

Tjl = gik Ti jkl . (20)

The variation of S(G) is obtained by using the lagrangian (15):

δSG = − 1

2χc
δ

∫
L(G)

√−g dΩ

= − 1

2χc
δ

∫
gikg jl

[
aRi jkl + (1 − a)

(n − 2)

(
gi jkp R

p
l

+ gi jpl R
p
k
) − (1 − a)

(n − 1)(n − 2)
gi jkl R

]√−g dΩ

= − 1

2χc

∫ [
gikg jl

[
a δRi jkl + (1 − a)

(n − 2)
δ
(
gi jkp R

p
l

+ gi jpl R
p
k
) − (1 − a)

(n − 1)(n − 2)
δ(gi jkl R)

]√−g

+
[
aRi jkl + (1 − a)

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

− (1 − a)

(n − 1)(n − 2)
gi jkl R

] [
2 gikδg jl√−g

+ gikg jlδ
√−g

] ]
dΩ. (21)

It is not so easy to directly calculate the variations of the
different terms in the last line, and so we first demonstrate
some useful mathematical relations:
g jlδRi jkl using (9):

g jlδRi jkl = δ
[
g jl Ri jkl

] − δg jl Ri jkl

= δRik − δg jl Ri jkl , (22)

g jlδ(gi jkp R p
l + gi jpl R p

k) using (10):

g jlδ(gi jkp R
p
l + gi jpl R

p
k) = δ

[
g jl(gi jkp R

p
l + gi jpl R

p
k)

]
− δg jl(gi jkp R

p
l + gi jpl R

p
k)

= (n − 2)δRik + δ(gik R)

− δg jl(gi jkp R
p
l + gi jpl R

p
k),

(23)

g jlδ(gi jkl R) using (11):

g jlδ(gi jkl R) = δ
[
g jl(gi jkl R)

] − δg jl(gi jkl R)

= (n − 1)δ(gik R) − δg jl(gi jkl R), (24)

δ
√−g = −1/2 g jl δg jl √−g [1], and using gi jkl gik = (n−

1)g jl we can write

δ
√−g = − 1

2(n − 1)
gi jkl g

ikδg jl √−g. (25)

Equations (22), (23), (24), (25) allow one to rewrite δS(G)

(21) in the form

δS(G) = − 1

2χc

∫ [
aRi jkl+ (1−a)

(n−2)

(
gi jkp R

p
l+gi jpl R

p
k
)

− (n − 2a)

2(n − 1)(n − 2)
gi jkl R

]
gikδg jl√−g dΩ

+
∫

gikδRik
√−g dΩ. (26)

We note that the terms containing δ(gik R) have been sim-
plified by themselves. The terms containing gikδRik result
in an integral of a covariant divergence and hence by the
Stokes theorem are equal to a boundary contribution at infin-
ity, which we can set to zero by making the variation vanish
at infinity [5,6]:

∫
gikδRik

√−g dΩ = 0.
Using Eqs. (18) and (26), the variation of the total action,

δS, thus becomes

δS = δS(G) + δS(MF)

= − 1

2χc

∫ [
aRi jkl + (1 − a)

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

− (n − 2a)

2(n − 1)(n − 2)
gi jkl R − χTi jkl

]
gikδg jl√−g dΩ.

(27)

123



878 Page 4 of 8 Eur. Phys. J. C (2017) 77 :878

4 Generalized 4-index Einstein equation

4.1 Fourth-order equation

Since the expression for the variation of the total action δS
(27) should hold for any variation δg jl , we must have

gik
[
aRi jkl + (1 − a)

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

− (n − 2a)

2(n − 1)(n − 2)
gi jkl R − χTi jkl

]
= 0. (28)

In general, for arbitrary Ti jkl , the expression in the paren-
thesis is not equal to zero, and we cannot simply exclude
the contraction factor gik . However, it is always mathemati-
cally possible to choose a particular energy-momentum ten-
sor Ti jkl which has the same number of components and the
same symmetries as Ri jkl , and which acts as a source term,
allowing us to write the sought-after generalized 4-index Ein-
stein equation:

aRi jkl + (1 − a)

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

− (n − 2a)

2(n − 1)(n − 2)
gi jkl R = χ Ti jkl . (29)

We can easily check that the result of the tensorial contrac-
tion of this equation gives the famous Einstein equation of
general relativity, whatever the values of a and n (surprising
as it may seem):

R jl − 1

2
g jl R = χ Tjl . (30)

This is of course an important result for checking our calcula-
tions, where we point out that we did not use Einstein’s equa-
tion in any intermediate calculations to obtain the generalized
equation (29). This first result also shows us unambiguously
that the 2-index Einstein equation (30) has the same form in
any space-time of dimension n, which is also an important
result.

To the best of our knowledge, this new 4-index gravita-
tional field equation, obtained by means of a rigorous math-
ematical treatment using the variational principle, is written
here for the first time. Due to the presence of the Riemann
tensor, and therefore the Weyl tensor, we will show later that
Eq. (29) contains, as expected, more information than Eq.
(30).

4.2 Fourth-order Einstein tensor

Equation (29) can also be written in a more compact form:

Gi jkl = χ Ti jkl (31)

where we introduced here a new fourth-order tensor:

Gi jkl = aRi jkl + (1 − a)

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

− (n − 2a)

2(n − 1)(n − 2)
gi jkl R. (32)

We can verify that

gikGi jkl = R jl − 1

2
g jl R = G jl (33)

where we recognize here the famous 2-index Einstein tensor
G jl . The fourth-order tensor Gi jkl , containing the Riemann
tensor, the Ricci tensor and the scalar curvature, can therefore
be considered as a generalization of G jl .

4.3 Weyl tensor

The fourth-order Einstein tensor, Gi jkl , depends partly on
the mathematical parameter a and can therefore be split in
two distinct parts of which only one depends on a:

Gi jkl = aCi jkl + Bi jkl (34)

and we can write by identification with (32)

Ci jkl = Ri jkl − 1

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

+ 1

(n − 1)(n − 2)
gi jkl R, (35)

Bi jkl = 1

(n − 2)

(
gi jkp R

p
l + gi jpl R

p
k
)

− n

2(n − 1)(n − 2)
gi jkl R. (36)

We recognize here the Weyl tensor Ci jkl written in n dimen-
sions [3–7], and a new, hitherto unknown tensor Bi jkl . It is
easy to check that the tensorial contractions of (35) and (36)
give

gikCi jkl = 0, (37)

gik Bi jkl = R jl − 1

2
g jl R. (38)

This last result clearly show us that some of the information
contained in the generalized equation (31) is not recovered
in the 2-index Einstein equation (30). This is the part of the
Weyl tensor.

4.4 Two part decomposition of total energy-momentum
tensor Ti jkl

It is well known that Einstein himself, in agreement with
major consensus among famous physicists (see [1,3,8,9] for
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example), has emphasized that the gravitational field must
also have an energy-momentum tensor, as do all other phys-
ical fields. In this paper, the 4-index tensor Ti jkl , which
describes any matter present plus the gravitational field con-
tained in space-time, can be simply and naturally divided into
two parts:

Ti jkl = T (M)
i jkl + T (F)

i jkl (39)

where T (M)
i jkl represents the generalized energy-momentum

tensor of the matter content, and T (F)
i jkl the energy-momentum

tensor of the gravitational field itself [10]. With (34) and (39)
the generalized equation (31) becomes

aCi jkl + Bi jkl = χ
(
T (F)
i jkl + T (M)

i jkl

)
. (40)

4.5 Energy-momentum tensor of the matter T (M)
i jkl

By rearranging the Einstein equation (30), it is possible to
rewrite the Ricci tensor R jl and the scalar curvature R in the
form

R jl = χ

(
Tjl − 1

(n − 2)
g jlT

)
(41)

R = − 2

(n − 2)
χ T, (42)

which we now substitute into (36), obtaining

Bi jkl =χ

[
1

(n − 2)

(
gi jkpT

p
l + gi jpl T

p
k
)

− 1

(n − 1)(n − 2)
gi jkl T

]
. (43)

Equations (38) and (43) together indicate that the tensor Bi jkl
is directly linked to the energy-momentum tensor of the mat-
ter content present in the standard theory of general relativity
by means of the tensor Tjl . The right-hand side of (43) rep-
resents a 4-index energy-momentum tensor for matter, and
in our theory there is only one tensor that can play this role,
namely T (M)

i jkl :

T (M)
i jkl = 1

(n − 2)

(
gi jkpT

p
l + gi jpl T

p
k
)

− 1

(n − 1)(n − 2)
gi jkl T, (44)

which allows us to write

Bi jkl = χ T (M)
i jkl . (45)

The energy-momentum tensor for matter T (M)
i jkl acts as a

source term for Bi jkl , and it is not difficult to check that

gikT (M)
i jkl = Tjl ,

g jlT (M)
i jkl = Tik,

T (M)
i jkl = −T (M)

j ikl = −T (M)
i jlk = T (M)

kli j . (46)

In addition, one can easily check that the tensorial contraction
of Eq. (45) gives Einstein’s equation (30).

4.6 Energy-momentum tensor of the gravitational field
T (F)
i jkl

With Eq. (40), simplified by (45), we find a simple connection
between the energy-momentum tensor for the free gravita-
tional field T (F)

i jkl , and the Weyl tensor Ci jkl :

aCi jkl = χ T (F)
i jkl . (47)

T (F)
i jkl acts as a source term for the Weyl tensor, and the prop-

erties of Ci jkl imply that

gikT (F)
i jkl = 0,

g jlT (F)
i jkl = 0,

T (F)
i jkl = −T (F)

j ikl = −T (F)
i jlk = T (F)

kli j . (48)

The tensorial contraction of Eq. (47) is equal to zero. The
two tensors,Ci jkl and T (F)

i jkl , are logically linked because they
only concern the free gravitational field in vacuum, and it is
precisely this part which is not present in the standard theory
of general relativity. The information contained in Eq. (47)
is not contained in the 2-index Einstein equation, and for this
reason a fourth-order theory is fully justified.

For a vanishing Ricci tensor, R jl = 0, the Riemann cur-
vature tensor is equal to the Weyl tensor, Ri jkl = Ci jkl , and
it is well known that the latter describes the free gravitational
field in vacuum and provides curvature to space-time [6,7]. A
flat space-time implies that there is no matter with T (M)

i jkl = 0,

no field with T (F)
i jkl = 0, and likewise Ri jkl = 0, as can be

seen from the generalized Einstein equation (29).
The total energy-momentum tensor, Ti jkl = T (M)

i jkl +T (F)
i jkl ,

gives the most complete description of the medium with
respect to its effect on the geometry. It describes both the
state of matter and the state of the gravitational field in vac-
uum, but it appears to be very non-trivial to find the form of
the tensor T (F)

i jkl . The determination of this tensor, however,
and therefore the form of Eq. (47), would allow us to find
important solutions concerning the contribution of the grav-
itational field itself. The tensor T (F)

i jkl naturally takes its place
in the new generalized 4-index equation, and we shall show
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in the next chapter that Ti jkl obeys total energy-momentum
conservation.

4.7 Energy-momentum conservation

In the preceding chapters the parameter, a, has been treated
as a mathematical parameter with no particular meaning. We
will now show that a takes on a particular physical value
in the context of covariant conservation of the total 4-index
energy-momentum tensor:

∇i T
i
jkl = ∇i

(
T (F)i

jkl + T (M)i
jkl

)
= 0 (49)

where ∇i is the covariant derivative operator.
With the definition of the generalized Enstein tensor (32),

and using the usual metric compatibility ∇i g jl = 0, we can
write

∇i G
i
jkl =∇i

[
aRi

jkl + (1 − a)

(n − 2)

(
δik R jl − g jk R

i
l + g jl R

i
k

− δil R jk
) − (n − 2a)

2(n − 1)(n − 2)
(δik g jl − δil g jk)R

]

= a∇i R
i
jkl + (1 − a)

(n − 2)

(∇k R jl − g jk∇i R
i
l

+ g jl∇i R
i
k − ∇l R jk

)

− (n − 2a)

2(n − 1)(n − 2)

(
g jl∇k R − g jk∇l R

)
.

We make use of the contracted Bianchi identities, [3,5]:
∇i Ri

jkl = ∇k R jl −∇l R jk and ∇i Ri
k = 1/2 ∇k R to deduce

∇i G
i
jkl = − 1 + a(n − 3)

(n − 2)

[
∇l R jk − ∇k R jl

+ 1

2(n − 1)

(
g jl∇k R − g jk∇l R

)]

= − 1 + a(n − 3)

(n − 2)
C jkl (50)

where we identify here the Cotton tensor C jkl [11,12].
Imposing energy conservation thus gives us the physical

value of a:

∇i G
i
jkl = 0 ⇒ ∇i T

i
jkl = 0 ⇒ a = − 1

(n − 3)
. (51)

5 Generalized equation with a = −1/(n− 3)

5.1 Double-dual Riemann tensor ∗R∗
i jkl

In the case where energy is conserved, taking a = −1/(n −
3), the generalized 4-index Einstein equation of general rel-
ativity (29) becomes

1

(n − 3)

[
− Ri jkl + gi jkp R

p
l + gi jpl R

p
k − 1

2
gi jkl R

]

= χTi jkl (52)

where we recognize here the double (Hodge) dual Riemann
tensor [2,13]:

∗R∗
i jkl =1

4
ei jpq R pqrseklrs

= − Ri jkl + gi jkp R
p
l + gi jpl R

p
k − 1

2
gi jkl R (53)

with ei jkl the Levi-Civita tensor.
The general equation (52) can thus be written simply as

∗R∗
i jkl = χ (n − 3) Ti jkl . (54)

It is not difficult to check that the tensorial contraction of
this equation again yields the Einstein equation (30), with
gik∗R∗

i jkl = (n−3)(R jl− 1
2 g jl R), and that (54), as expected,

also satisfies total energy-momentum conservation:

∇i
∗R∗i

jkl = 0, (55)

∇i T
i
jkl = ∇i (T

(F)i
jkl + T (M)i

jkl) = 0. (56)

According to (45) and (47), it is also possible to write Eq.
(54) in terms of two parts:

Ci jkl = −χ(n − 3) T (F)
i jkl , (57)

Bi jkl = χ T (M)
i jkl . (58)

As we have already seen, these two equations are not coupled;
they are independent, and their solutions found individually
must be added to satisfy total energy-momentum conserva-
tion. As an analogy in classical mechanics, for example, it is
akin to the kinetic energy and the potential energy that derive
from different relations, but which must finally be added to
have conservation of the total mechanical energy.

5.2 Particular solution of the equation Bi jkl = χ T (M)
i jkl

In the very important case of a centrally symmetric field in
vacuum, that is, outside of the masses producing the field,
T (M)
i jkl = 0, it is possible to solve Eq. (58), for n = 4:

Bi jkl (n=4) = 1

2
(gi jkp R

p
l + gi jpl R

p
k) − 1

3
gi jkl R = 0.

(59)

If we use spherical space coordinates (r, θ, φ), then the gen-
eral expression for ds2 is

ds2 = A(r)c2dt2 − B(r)dr2 − r2dθ2 − r2sin2θdφ2.

(60)
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To get the differential equations of gravitation with the func-
tions A(r) and B(r), we must first calculate the components
of the tensor Bi jkl (n=4). Using a familiar method, it is not
difficult (but it involves a long computation) to obtain the
following independent relations:

B0101 = − 1

6

[
A

′′ − A
′2

2A
− A

′
B

′

2B
+ AB

′

r B

+ 4AB

r2 − A
′

r
− 4A

r2

]
, (61)

B0202 = r2

12B

[
A

′′ − A
′2

2A
− A

′
B

′

2B
− 5AB

′

r B

− 2AB

r2 − A
′

r
+ 2A

r2

]
, (62)

B1212 = − r2

12A

[
A

′′ − A
′2

2A
− A

′
B

′

2B
+ AB

′

r B

− 2AB

r2 + 5A
′

r
+ 2A

r2

]
, (63)

B2323 = − r4 sin2 θ

3AB

[
A

′′ − A
′2

2A
− A

′
B

′

2B
− AB

′

2r B

+ AB

r2 + A
′

2r
− A

r2

]
. (64)

By combining these differents equations, we finally obtain a
well-known solution, the standard Schwarzschild metric for
the space-time [1,2]:

A(r) = 1

B(r)
= 1 + rg

r
, (65)

ds2 =
(

1 + rg
r

)
c2dt2 −

(
1 + rg

r

)−1
dr2

− r2dθ2 − r2 sin2 θdφ2. (66)

This is not surprising because Eq. (59) contains only the Ricci
tensor and the scalar curvature, and therefore we expect to
find the same solutions as those obtained with the Einstein
equation (a favorable omen). Equation (58), however, goes
much further because it may allow us to find the exact solu-
tions for any dimension n of the space-time.

Because the generalized Eq. (54) is contracted to obtain
the original Einstein equation, only standard solutions are
present in the familiar 2-index general theory of relativity,
but lacking are the solutions of Eq. (57) giving the contri-
bution of the gravitational field itself in vacuum. The next
step in our future research will be to determine precisely the
mathematical composition of the energy-momentum tensor
T (F)
i jkl in order to obtain solutions to Eq. (57), but this appears

to be a very difficult task.

5.3 Cosmological constant

It is interesting to verify that Eq. (54) can be deduced from
a principle of least action using the Lagrangian (15) written
with a = −1/(n − 3):

L(G) = 1

(n − 3)
gikg jl

[
− Ri jkl + gi jkp R

p
l + gi jpl R

p
k

− 1

(n − 1)
gi jkl R

]
. (67)

We will work again within the framework of general rel-
ativity, where the cosmological constant Λ is introduced
into the Lagrangian by an additional term [5]: −2Λ. In
the same way as in (14), this term can be rewritten as
−2Λ = −2/n(n − 1) gikg jl (gi jkl Λ). The principle of least
action applied to this term modifies Eq. (54), giving us

∗R∗
i jkl + (n − 3)

(n − 1)
gi jkl Λ = χ (n − 3) Ti jkl . (68)

Contracting the latter equation indeed restores Einstein’s
standard equations with the cosmological constant [5,6]:

R jl − 1

2
g jl R + g jlΛ = χ Tjl . (69)

6 Conclusion

In this paper we have rigorously demonstrated, by using the
principle of least action, that there exists a much more general
equation than that of Einstein. This new 4-index equation
explicitly and linearly includes the Riemann tensor and hence
the Weyl tensor as well as the energy of the gravitational
field T (F)

i jkl . The contraction of this equation restores the usual
2-index Einstein equation. The paper highlights two main
results:

– the first result is given by the equation, Bi jkl = χ T (M)
i jkl ,

which could allow us to find the exact solutions for any
n dimension space;

– the second important result is given by the equation
Ci jkl = −χ(n−3) T (F)

i jkl , connecting the Weyl tensor and
the energy-momentum tensor of the gravitational field in
vacuum.

The next step in our research will be to determine pre-
cisely the composition of the energy-momentum tensor T (F)

i jkl
in order to obtain more general solutions including the con-
tribution of the gravitational field energy itself.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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