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By making use of the techniques of the differential subordination, we derive certain properties of p-valent functions associated

with the Dziok-Srivastava operator.

1. Introduction

Let A(p, k) denote the class of functions of the form
(o)
f@=2"+)a,,z"" (pkeN={1,23.1}), (1)
n=k

which are analytic in the open unit disk U = {z € C : |z]| <
1}. We write A(p, 1) = A(p).

Suppose that f and g are analytic in U. We say that the
function f is subordinate to g in U, or g superordinate to f in
U, and we write f < gor f(z) < g(z) (z € U), if there exists
an analytic function w in U with w(0) = 0 and |w(z)| < 1,
such that f(z) = g(w(z)) (z € U).If g is univalent in U, then
the following equivalence relationship holds true (see [1-3]):

fR)<g(@) = f0)=40), fUcgU). 2
For functions f; € A(p, k) given by

fi@=2"+ Y an, 7 (j=LzpeN), (@)
n=k

we define the Hadamard product (or convolution) of f, and

faby

(f1# )@ =2"+ Y Ay 1022 " = (f, % f1) ().
n=k
(4)

For complex parameters a,,...,a, and b;,...,b, (bj ¢
Z, = {0,-1,-2,..5j = 1,...,s), tlf‘le generalized hyper-
geometric function gFs 1s defined (see [4]) by the following
infinite series:

o) (al)n (aq)n 2"
b52)= 2 03 o)

(@<s+1;gs€e Ny=NU{0};z€U),
€)

where (6),, is the Pochhammer symbol defined, in terms of
the Gamma function T, by

qu (al,...,ai,...,aq;bl,...

©) _rO+n) |1, (v=0),
" r®  |0@+1)--@+n-1), (veN).
(6)
Corresponding a function hp(al, RN PR ,aq;bl, ... bg2)
defined by
hp(al,...,ai,...,aq;bl,...,bs;z)
=zp-qFS(al,...,ai,...,aq;bl,...,bs;z) (zeU),
(7)

Dziok and Srivastava [5] considered a linear operator

H,(ay,...,azby,....b) : A(p,k) — A(p,k)  (8)
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defined by the following Hadamard product:
b;) f(2),

=hp(a1,...,ai,...,

Hp(al,...,aq;bl,...

aq;bl,...,bs;z) x f(z), 9)
(@<s+1;gs€NyzeU).

If f € A(p, k) is given by (1), then we have

Hp(al,...,aq;bl,...,bs)f(z)

0 (10)

=2/ + Y T,a,,2"" (zeU),
n=k

where
(a1), -+ (ag), 1
_ nl 11
e, N

To make the notation simple, we write

Hpgs (a1) f(2) = H, (al, s
It easily follows from (9) or (10) that

b)) f(2). (12)

aq;bl,...

!

2(Hpgs (@) f (2))
=a;H,, (a; +1) f (2) (13)

- (al _P) Hp,q,s (al)f(z)’

It should be remarked that the linear operator H,, ; ((a,) is
a generalization of many other linear operators considered
earlier. In particular, for f € A(p) we have the following
observations:

(i) Hyp (@ b0 f(2) = (P f(2) (@b € Ce ¢ Zy),
where the linear operator I?’b was investigated by

(z €U).

Hohlov [6];
(ii) H,p, (n+p, 1;1) f(z) = D7 f(2) (n € Nyn > —p),
where the linear operator D"*?™" was studied by Goel

and Sohi [7]. In the case when p = 1, D" f(z) is the
Ruscheweyh derivative of f(z) (see [8]);

(i) Hpp (u+ p L+ p+ 1) f(2) = J,5(f)(2) = (p +
8)/2%) [ 7 f(t)dt (8 > —p), where ] , 5 is the gen-

0
eralized Bernardi-Libera-Livingston integral opera-

tor (see [9]);

(iv) Hypy (p+ LLp+ 1= 1) f(2) = Q0P f(2) = (T(p +
1-AM)/T(p+1)2"Dl f(2) (~co <A < p+ 15z € U),
where D7 f(z) is the fractional integral of f of order

—-A when —co £ A < 0 and fractional derivative of
f of order A when 0 < A < p + 1. The extended

fractional differintegral operator D?"D ) was intro-
duced and studied by Patel and Mishra [10]. The
fractional differential operator QQ(ZA"D with 0 < A <
1 was investigated by Srivastava and Aouf [11]. The
operator Qi’\’l) = Q;\ was introduced by Owa and
Srivastava [12] (see also [13-15]).
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(v) HP’Z’I(a, Lof(z) = Lp(a,c)f(z) (a € Ri;c € R\
Z,), where the linear operator L,(a,c) was studied
by Saitoh [16] which yields the operator L(a,c)
introduced by Carlson and Shaffer [17] for p = 1;

V) Hip (b LA+ Df(2) = 1),f(z) (A > -Liu > 0),
where I, , is the Choi-Saigo-Srivastava operator [9]
which is closely related to the Carlson-Shaffer [17]
operator L(y, A + 1) f(2);

(vil) Hpp 1 (p+ 1L, in + p)f(z) = In,pf(z) (n e Zsn >
—p), where the operator I, , was considered by Liu
and Noor [18];

(viii) HP,Z,I()L + pca)f(z) = I?,(a,c)f(z) (a,c € R\

Zy;A > —p), where If,(a,c) is the Cho-Kwon-
Srivastava operator [19].

In recent years, many interesting subclasses of analytic
functions, associated with the Dziok-Srivastava operator
H, ,s(a;) and its many special cases, were investigated by,
for example, Dziok and Srivastava [5, 20], Gangadharan et al.
[21], Liu and Noor [18], Liu [22], Liu and Srivastava [23], and
others (see also [19, 24-26]). In the present paper, we shall
use the method based upon the differential subordination
to derive inclusion relationships and other interesting prop-
erties and characteristics of the Dziok-Srivastava operator
H,,s(ay).

2. Main Results

Unless otherwise mentioned, we assume throughout the
sequel thata; > 0;a; ¢ Zy (i = 1,...,9);a > O; 4 > 0
and-1<B< A<
Let P[k] denote the class of functions of the form
92) =1+ +c, 2+ o (14)
that are analytic in U, we write P[1] = P. In our present
investigation, we shall require the following lemmas.

Lemma 1 (see [2]). Let h be analytic and convex (univalent)
in U with h(0) = 1 and ¢ € P[k]. If

!

z¢ (2)
Y

@ (z) + <h(z), (15)

then, for y #0 and R(y) > 0,
z
0(2)<q(2) = %ﬂ”‘] PR de <h(z),  (16)
0

and q is the best dominant.

Lemma 2 (see [1]). Let D be a set in the complex plane C
and b be a complex number satisfying R(b) > 0. Suppose
that the function ¥ : C* x U — C satisfies the condition
Y(ix,y) ¢ D for all real x,y < —|b — ix|/2R(b) and for all
z € U. If the functions ¢ € P and R{‘P(go(z),z<p’(z);z)} €D,
then R{p(z)} > 0inU.
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Lemma 3 (see [27]). Let ¢ be analytic in U with ¢(0) = 1 and
¢(2) #0 for all z € U. If there exist two points z,,z, € U such
that

_gal =arg{¢(z))} < arg{$ (2)} < arg{$(2,)} = 252
17)

for some &, and §, (8,,0, > 0) and for all z (|z| < |z,| = |z;]),
then

219 (21) _ _i<61 +52m>)

¢ (z1) 2
, (1)
2,0 (25) .<51 +9, >
=—i m,
¢ (z2) 2
where
1-1b . 0,-6
21+:b:’ b=ztan<ﬁ>. (19)
210
Theorem 4. Letm > 1,y > 0. Let f € A(k, p), then
6]
R { (Hp,q,s (al + l)f(Z))] } < a; +y
(Hpye (1) £ ) a, (20)
(zeU;0<j<p),
implies
() -1/2ym
R (Hp,q,s (a) + 1‘)f(z)) o p-lim
b 1)
(zeU;0<j<p).
The bound 27/™ is the best possible.
Proof. It easily follows from (13) that
(+1)
2(Hps (@) f(2))
()
=a;(H,, ;(a;+1) f(z
1( P9 ( 1 )f( )) (22)
. 6]
- (al -p+t ]) (Hp,q,s (al)f(z)) !
(zeU;0<j<p).
From (20) and (22), we have
(G+1)
H +1
Q {Z( pas (1411 ) } e
(H, g (a1) f (2)) (23)

(zeU;0<j<p).
That is,

1 <Z<Hp,q,s @)™ >
2y (H (@) f (Z))(]) (4)

(z €eU).

3
Let
G\ VA
- ) (Hpgs (2)
gD(Z)=<(pp!1) (p%(;Lf ) ) cew,
(25)
then (24) may be written as
’ I 26
z(logy (2)) < z<log - z) . (26)

By using a well-known result (see [28]) to (26) we obtain that

1
¢ (2) < -2 (27)

or, equivalently,

: -1/2ym
(@—ﬂNHMAmvwﬁ”> '
(28)

p! zP-J

B (1—(10(z)>1/m’

where w is analytic in U, w(0) = 0 and |w(z)| < 1 for z € U.
Since R(£'™) > (R(£))"™ for R(t) > 0and m > 1, (28) yields

: -1/2ym
R< (p= ) (Hpge (@) )" > V

p! zP-J

> (wr 1 1/m>2—1/m U
> ( (1—w(z))> - 0

To see that the bound 2™/" cannot be increased, we consider
the function

(29)

>

(z €U).

p! OZO:(_ZV)n (n+p_j)!zn+p

_ P
9(2) =2 T-A

Since

(- 1) (Hpgs (@) g2)"
p! zP~ -

(1- Z)—ZY, (31)
we easily have that g satisfies (20) and

() -1/2ym
R( (p=)! (Hpge (@) 92)) > i )

p! zP7J

as R(z) = z — 1. This completes the proof of Theorem
4, O



Theorem 5. Let « > 0,y > 1. If f € A(p) satisfies the
following inequality

5)
R <|(1 — ) (Hpge(ar +1) F ()"

(Hp,q,s (a1) f (Z))(j)
(@ +2) £ @)” } LW
(Hp,q,s (a, + 1)f(Z))(])
(0<j<pzel),
then
()
(Hpge (@) f(2)) !

(34)
where 3 € (1, 00) is the positive root of the equation
2(a, —a+1)x" + (B - 2pa—2p) x —a = 0. (35)
Proof. Let

()
MWLYo

(Hp,q,s (al) f (Z))(j)

¢ (z) =

1
B-1
(36)

then ¢(z) is analytic in U and ¢(0) = 1. Differentiating (36)
and using (22), we obtain that

_ (X) (Hp,q,s (al + 1) f (Z))(J)
(Hp,q,s (al) f (z))(J)
o (Hp,q,s (al + 2) f (Z))(]:)
(Hpgs (a1 +1) F ()"

_pa(B-n)

a +1

a(f-1)  z¢ (2)
aj+1 B-(B-1)¢(2)

= w(qo (2).2¢ (Z)),

(a -+ 1) (1) 47

a;+1

¢ (z)

where
(B-1)
a +1
a(f-1) s
a+1 B-(B-1)r
Using (33) and (38), we have

@-ar)(E-n)

a;+1

y(rs)=p-=
(38)

{w(go(z),Z(p’(z)):zeU} cD={zeC:R(z)<y}.
(39)
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Now for all real x, y < —(1 + xz)/2, we have

_a(f-1) _«(B-1) By

R {y (ix, y)} = B

a +1 a +1 B2+(/3—1)2x2
N _(x(ﬁ—l) af(f-1) 1+ x>
2P a; +1 +2(a1+1)ﬁ2+(ﬁ—1)2x2
a(B-1)  a(B-1)
2F- a+1  2B(a +1)
2B(a, +1) ,

(40)

where 3 is the positive root of (35).
Note that for« > 0,y > 1,a; > 0and

h(x)=2(a, —a+1)x*+(Ba-2ya—2y)x—a, (41)
we have h(0) = —a < 0and h(1) = 2a,(1 —y) -2y < 0.
This shows 3 € (0, +00). Hence for each z € U, y(ix, y) ¢ Q.

By Lemma 2, we get R{p(z)} > 0 (z € U), and this proves
(34). O

Theorem 6. Supposethat0 < j < p;a>0and0 < §,,6, <1.
IfF, given by

Foc (2) = (1 —a-aaq +‘xp)Hp,q,s (al)f(z)

(42)
+aaH,, (a; +1) f (2)
satisfies
(7)
T Fl (2) T
—561 < arg{ =y ]» < 582 (zelU), (43)
then
)
T (Hp,q,s (al) f (Z)) T
-5 < arg { ey < 5 (z e U),
(44)
where ), and 1, are the solution of the equations:
81:111+%arctan o (1, + 1) (1_|b|> ,
71 2(1-a+ap) \1+]b]|
45)

62:n2+2arctan o (1, +11,) (1_|b|> ,
h 2(1-a+ap) \1+|b|
where b is given by (19).
Proof. Using (42) and the identity (22), it follows that
() _ . )
Fl(z)= (1-a+aj) (Hp’q,s (a1) f(z))

+az(Hpg (@) £@),
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for 0 < j < p. Putting

)]

(p-4)! (Hp,q,s (a1) f(z))

5 — (zeU). (“7)

¢ (z) =

On differentiating (47) followed by a simple calculation, we
get

Ffj)(z) B p(1-a+ap)
2 (p-j)!

(48)

x{q)(z)+1 zq),(z)} (z € U).

—a+ap

Let i be the function which maps U onto the angular domain
{fwe C: —(n/2)8, < arg{w} < (7/2)8,} with h(0) = 1. By
using (43) in (48), we get

IO e ACRUICHEND

1
Further, an application of Lemma 1 yields R{¢(z)} > 0in U
and hence ¢(z) #0 for z € U.

Suppose there exist two points z;,z, € U such that the
condition (28) is satisfied. Then by Lemma 3, we obtain (18)
under the constraint (19). Therefore, we have

arg {(1-a+ap) g (z,) + azg (z,)}

= ar; z + ar: -0+« +(XM
- g{(P( l)} g{(l P) (P(Zl) }

= —grh +arg {(1 —a+ap)- 2 T ) (]11; WZ)m}

o (11, +11,) m}

2(1-a+ap)
s a(n +1,) 1—|b|
S_5’71_arcmn{2(1—oc+ocp) <1+|b|>}’
arg {(1 -+ ap) ¢ (z,) + azg (2,)}

Z—Enz—arctan o (11, +11,) <1—|b|> ’
2 2(1-a+ap) \1+ ||

which contradicts the assumption (43). This proves the
assertion (44) of the Theorem 6.

For §, = §, = 6, Theorem 6 reduces to the following
corollary. O

T
= —5;11 —arctan

(50)

Corollary 7. Suppose that 0 < j < p and « > 0. If F,, defined
by (42) satisfies

Ffj) (2) T
arg{ =y <E5 (0<8<1;z€eU), (51)

5
then
()
(Hpgs (@) f ()
pgs \"1 4
arg e < (zeU), (52)
wheren (0 < n < 1) is the solution of the equation:
2 an
0 =#n+ —arctan| ——— .
11+ﬂarcan<1_“+ap> (53)
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