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Abstract Motivated by the violation of Lorentz invariance
in quantum gravity, we study black hole solutions in grav-
ity’s rainbow in the context of Einstein gravity coupled with
various models of nonlinear electrodynamics. We regard an
energy dependent spacetime and obtain the related metric
functions and electric fields. We show that there is an essen-
tial singularity at the origin which is covered by an event hori-
zon. We also compute the conserved and thermodynamical
quantities and examine the validity of the first law of ther-
modynamics in the presence of rainbow functions. Finally,
we investigate the thermal stability conditions for these black
hole solutions in the context of canonical ensemble. We show
that the thermodynamical structure of the solutions depends
on the choices of nonlinearity parameters, charge, and energy
functions.

1 Introduction

One of the dreams of physicists is finding a consistent quan-
tum theory of gravity. Although there are a lot of attempts
to conjoin gravity and quantum theories, there is no com-
plete description of quantum gravity. On the other hand, it
has been shown that the violation of Lorentz invariance is
an essential primitive rule to construct a quantum theory of
gravity. The Lorentz invariance violation may be expressed
in the form of modified dispersion relations [1–5]. Indeed,
regarding various approaches of quantum gravity, there is
evidence which shows that the Lorentz symmetry might be
violated in the ultraviolet limit [6–10], and then it only holds
in the infrared limit of the quantum theory of gravity. Since
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the standard energy-momentum dispersion relation enjoys
the Lorentz symmetry, it is expected to modify this rela-
tion in the ultraviolet limit. In fact, it has been observed that
such a modification to the standard energy-momentum rela-
tion occurs in some models based on string theory [1], the
spin network in loop quantum gravity (LQG) [2], spacetime
foam [4], the discrete spacetime [5], Horava–Lifshitz gravity
[11,12], ghost condensation [13], non-commutative geome-
try [3,14], and doubly special relativity.

In doubly special relativity, there are two fundamental
constants; the velocity of light and the Planck energy. In this
theory, it is not possible for a particle to attain an energy
and velocity larger than the Planck energy and the veloc-
ity of light, respectively. The doubly special relativity has
been generalized to curved spacetime, and this doubly gen-
eral theory of relativity is called gravity’s rainbow [15,16].
In gravity’s rainbow, the energy of the test particle affects
the geometry of spacetime. It means that gravity has differ-
ent effects on the particles with various energies. Hence, the
geometry of spacetime is represented by a family of energy
dependent metrics forming a rainbow of metrics. The grav-
ity’s rainbow can be constructed by considering the following
deformation of the standard energy-momentum relation:

E2 f 2(ε) − p2g2(ε) = m2, (1)

where ε = E/EP and EP is the Planck energy. The func-
tions f (ε) and g(ε) are called rainbow functions and they
are phenomenologically motivated. The rainbow functions
are required to satisfy

lim
ε→0

f (ε) = 1, lim
ε→0

g(ε) = 1. (2)

where this condition ensures that we have the standard
energy-momentum relation in the infrared limit. It is worth-
while to mention that the spacetime is probed at an energy
E , and by definition this cannot be greater than the Planck
energy EP. It means that if a test particle is used to probe
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the geometry of spacetime, then E is the energy of that test
particle, and so E cannot become larger than EP [17]. It is
worth mentioning that such a justification is based on the
standard model of particle physics. In other words, if a par-
ticle is described by the standard model, the upper limit of
the Planck energy is enforced and energy functions will have
to satisfy mentioned condition, whereas in trans-planckian
physics such a condition could be violated. It means that the
particle probing spacetime could acquire energies larger than
the Planck energy. Such a property has been considered and
employed in a number of papers [18–23]. This consideration
requires modifications in the structure of the energy functions
as well. However, we will conduct our study with considera-
tion of the standard model and the mentioned conditions for
energies that the particle could acquire. Now, it is possible to
define an energy dependent deformation of the metric ĝ [17],

ĝ = ημνeμ(E) ⊗ eν(E), (3)

where

e0(E) = 1

f (ε)
ê0, ei (E) = 1

g(ε)
êi , (4)

in which the hatted quantities refer to the energy independent
frame.

In recent years, the effects of gravity’s rainbow have been
investigated in the context of black hole thermodynamics
in the literature [24–27]. The modification in the thermody-
namics of black rings and other black objects in the con-
text of gravity’s rainbow has been investigated in [28,29].
In addition, the hydrostatic equilibrium equation in Einstein
gravity’s rainbow has been obtained and the maximum mass
of neutron stars has been investigated in Ref. [30]. As we
consider black holes in gravity’s rainbow, the energy E cor-
responds to the energy of a quantum particle in the neighbor-
hood of the event horizon, which is emitted in the Hawking
radiation [24,31–34]. On the other hand, gravity’s rainbow
holds the usual uncertainty principle [35,36]. It is possible to
translate the uncertainty principle �p ≥ 1/�x into a bound
on the energy E ≥ 1/�x , in which E can be interpreted as
the energy of a particle emitted in the Hawking radiation. It
has been shown that the uncertainty in the position of a test
particle in the vicinity of the horizon should be equal to the
event horizon radius [24,31–34]

E ≥ 1/�x ≈ 1/r+, (5)

where E is the energy of a particle near the horizon, which
is bounded by the Planck energy EP and cannot increase to
arbitrary values. This bound on the energy modifies temper-
ature and entropy of the black hole in gravity’s rainbow [24].

Now, we present various motivations for considering non-
linear electrodynamics. As we know, most physical sys-
tems are inherently nonlinear in nature and nonlinear field
theories are appropriate tools to investigate such systems.

The main reason to consider the nonlinear electrodynamics
(NED) comes from the fact that these theories are consider-
ably richer than the Maxwell theory and in special cases they
reduce to the linear Maxwell field. In addition, some limita-
tions of the Maxwell field, such as radiation inside specific
materials [37–40] and the description of the self-interaction
of virtual electron–positron pairs [41–43], motivate one to
regard NED [44,45]. Also, taking into account the NED, one
can remove both the big bang and the black hole singularities
[46–51]. One can find regular black hole solutions of Einstein
gravity in the presence of a suitable NED [46,47,52–55].
Moreover, the effects of NED become indeed very important
in superstrongly magnetized compact objects, such as pulsars
and neutron stars [56–58]. In addition, horizonless magnetic
solutions in the presence of different nonlinear electromag-
netic fields have been investigated in the literature [59,60].
Besides, an interesting property which is common to all NED
models is the fact that black object solutions coupled to the
NED models enjoy the zeroth and first laws of thermody-
namics.

It is well known that the electric field of a point-like charge
has a divergency in the origin. To remove this singularity,
about 80 years ago Born and Infeld introduced an interesting
kind of NED which is known as Born–Infeld (BI) nonlinear
electrodynamics (BINED) theory [61,62]. Then Hoffmann
tried to couple the NED with gravity [63]. The gravitational
fields coupled to BINED have been investigated for static
black holes [64–69], rotating black objects [70–74], worm-
holes [75–78], and superconductors [79–84]. Also, BINED
has acquired a new impetus, since it naturally arises in the
low-energy limit of the open string theory [85–90]. Recently,
two different BI type models of the NED with logarithmic
[52] and exponential forms [91] have been introduced, which
can also remove the divergency of the electric field near
the origin. The logarithmic NED (LNED), like BI theory,
removes the divergency of the electric field, while the expo-
nential NED (ENED) does not cancel the divergency, but
its singularity is much weaker than that in the Maxwell the-
ory. Black object solutions coupled to LNED and ENED
have been studied in the literature (e.g., see [78,92,93]).
Despite the BI type models, another example of NED is
power Maxwell invariant (PMI) field [94–100]. The basic
motivation of regarding PMI theory comes from the fact that
it is interesting to modify Maxwell theory in such a way that
its corresponding energy-momentum tensor will be confor-
mally invariant. Taking into account the traceless energy-
momentum tensor of electrodynamics, one should regard a
conformally invariant Maxwell field which is a subclass of
PMI theory.

In this paper, we will study the thermal stability of black
holes in gravity’s rainbow and see how the presence of rain-
bow functions modifies the stability conditions and phase
transition of black holes. Thermodynamical aspects of black
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holes have been among the most interesting subjects since the
pioneering work of Hawking and Beckenstein [101–103].
The analogy between geometrical properties of the black
holes and thermodynamical variables presents a deep insight
into relations between the physical properties of gravity and
classical thermodynamics. Due to this fundamental relation,
it is believed that a consistent theory of quantum gravity could
be derived through the use of the thermodynamics of black
holes. One of the important subjects of black hole thermody-
namics is thermal stability. In thermal stability the positiv-
ity of the heat capacity determines whether the black holes
are thermally stable. In addition, the divergency of the heat
capacity is where a black hole meets a second order phase
transition [104,105]. Recently, it was shown that divergen-
cies of the heat capacity also coincide with phase transitions
that are observed in extended phase space [106].

The outline of the paper is as follows. The next section is
devoted to the introduction of the field equations and their
related metric functions. In Sect. 3, conserved and thermody-
namic quantities will be obtained and the validity of the first
law of thermodynamics will be examined. Then the stabil-
ity of the solutions and the phase transition are investigated
through the canonical ensemble. This paper will finish with
some final remarks.

2 Field equations and metric function

The metric describing gravity’s rainbow is constructed by
considering the effects of energy of a particle. In other words,
using doubly general relativity and parameterizing spacetime
with the ratio of ε = E/Ep, one can construct a rainbow
spacetime. Interestingly, this metric contains specific restric-
tion with regard to mentioned ratio which will be stated later.
Considering mentioned method for building up metric, one
can have the rainbow metric in the following form in four
dimensions:

dτ 2 = −ds2 = � (r)

f (ε)2 dt2 − 1

g (ε)2

(
dr2

� (r)
+ r2d�2

k

)
,

(6)

where d�2
k represents the line elements of 2-dimensional

hypersurfaces with the constant curvature 2k and the volume
V2 in the following form:

d�2
k =

⎧⎨
⎩

dθ2 + sin2 θdϕ2 k = 1,

dθ2 + sinh2 θdϕ2 k = −1,

dθ2 + dϕ2 k = 0,

(7)

in which a 2-dimensional hypersurface with plane, spherical,
and hyperbola symmetries are, respectively, denoted by k =
0, k = 1, and k = −1.

Our goal is to obtain rainbow solutions in Einstein gravity
with cosmological constant in the presence of NED. So the
total Lagrangian for this system is

L total = LE − 2� + L(F), (8)

in which the Lagrangian of Einstein gravity is LE = R, and
� refers to the cosmological constant. The last term in Eq.
(8) is the Lagrangian of NED, which we consider to be of the
following form:

L(F) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4β2
(

1 −
√

1 + F
2β2

)
, BINED,

β2
[
exp
(
− F

β2

)
− 1
]
, ENED,

−8β2 ln
(

1 + F
8β2

)
, LNED,

(−F)s , PMI,

(9)

where β and s are nonlinearity parameters, the Maxwell
invariant is F = FabFab in which Fab = ∂a Ab−∂b Aa is the
electromagnetic field tensor, and Ab is the gauge potential.
It is worthwhile to mention that in essence BINED, ENED,
and LNED are categorized under a same branch and they are
called BI type models of NED. The series expansion of BI
type models for large values of nonlinearity parameter yields
similar results: the first term is Maxwell invariant which is
related to Maxwell theory of electromagnetic field, the sec-
ond term is quadratic Maxwell invariant coupled with non-
linearity parameter and some factors which depend on theory
under consideration (for explicit forms of the expansion see
Ref. [91]). On the other hand, PMI has a different struc-
ture and properties comparing to BI type models. In order to
recover the Maxwell field, one should set s = 1.

Now, we are in a position to obtain field equations. Apply-
ing the variational principle to the Lagrangian (8), one can
find

∇a

(√−gLF Fab
)

= 0, (10)

�gab + G(E)
ab = 1

2
gabL(F) − 2LF FacF

c
b , (11)

where LF = dL(F)
dF and G(E)

ab = Rab − 1
2gabR.

Next, due to our interest in electrically charged black holes
in gravity’s rainbow, we consider a radial electric field of
which the related gauge potential is

Ab = h (r) δtb. (12)

Using Eqs. (6), (9), and (10), we obtain the following
differential equations:

rβ2H ′ − 2 f (ε)2g(ε)2H3 + 2β2H = 0, BINED,

rβ2H ′ + 4r f (ε)2g(ε)2H2 + 2β2H = 0, ENED,

(4rβ2 + r f (ε)2g(ε)2H2)H ′ (13)

+ 8Hβ2 − 2 f (ε)2g(ε)2H3 = 0, LNED,

2H + (2rs − 1) H ′ = 0, PMI,
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in which H = H (r) = dh(r)
dr , and the prime denotes deriva-

tion with respect to the radial coordinate. It is a matter of
calculation to show that

H (r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q
r2�

, BINED,

q
r2 exp

(− 1
2 Lw

)
, ENED,

2β2r2

q f (ε)2g(ε)2 (� − 1) , LNED,

q

r
2

2s−1
, PMI,

(14)

where Lw =LamberW
(

4q2 f (ε)2g(ε)2

β2r4

)
, �=

√
1+ q2 f (ε)2g(ε)2

β2r4 ,

and q is an integration constant related to the electric charge.
In order to have a well-defined solution with a PMI source,
we should consider the PMI parameter, s, larger than 1/2
(s > 1/2).

By employing Eqs. (6), (11), and (14), one can find the
metric function for gravity’s rainbow in the presence of the
mentioned NED,

� (r) = k − m

r
− �r2

3g(ε)2 + ϒ, (15)

with

ϒ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2β2r2

3g(ε)2 [1 − F1] , BINED,

β2r2

6g(ε)2

[
8
√

�2−1
5

(
L

3
2
wF3 + 5(1+Lw)

4
√
Lw

)
− 1

]
, ENED,

4β2r2(�−1)

3g(ε)2

[
5 − ln

(
2

�+1

)
(�−1)

+ 4 (� − 1)F2

]
, LNED,

− r2(2s−1)2

(4s−6)g(ε)2

(
−

√
2(2s−3)q f (ε)g(ε)
(2s−1)r2/(2s−1)

)2s
, PMI,

whereF1 = 2F1
([−1

2 , −3
4

]
,
[ 1

4

]
, 1−�2

)
,F2 = 2F1

([ 1
2 , 1

4

]
,[

5
4

]
, 1 − �2

)
, and F3 = 2F1

(
[1] ,

[ 9
4

]
, Lw

4

)
are the hyper-

geometric functions, and also m is an integration constant
related to the total mass of the solutions.

3 Conserved and thermodynamic quantities

Considering the obtained solutions for different models of
NED, this section is devoted to the calculation of the con-
served and thermodynamical quantities and to the study of
the effects of gravity’s rainbow. Then we are going to expand
our study to the stability of the solutions in a canonical ensem-
ble.

Due to the fact that the employed metric only contains one
temporal Killing vector, one can use the concept of surface
gravity for calculating the temperature on the event horizon
(r+), which leads to

T = 1

2π

√∇μχν∇μχν = 1

4π

g(ε)

f (ε)

d�(r)

dr
|r=r+ , (16)

where the dependency on the rainbow functions indicates
that the temperature is modified. Considering Eqs. (15) and
(16), one can find

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kr2+g(ε)2−2r4+�+2β2r4+(1−F1+)−4q2 f (ε)2g(ε)2F2+
4π f (ε)g(ε)r3+

, BINED,

[
kg(ε)2−r2+

(
�+ β2

2

)]
+ 4βq f (ε)g(ε)L

3/2
w+

15(1+Lw+)

[
(Lw+−5)F3+− 4

9 Lw+F4+ 5
4

(
1+ 3

L2
w+

)]

4π f (ε)g(ε)r+ ,
ENED,

⎡
⎣β2 ln

(
1+�+

2

)
−�+ kg(ε)2

r2+
− (�2+−1)

2

r+

(
8F5

45�+ + 2β2

9(�2+−1)

[
(7+5�+)

(1−�+)�+ +2F2+
])

+
(

β2r4+
(

5�2+− 6
�+

)
+1

)

3(1−�+)r5+

⎤
⎦r2+

π f (ε)g(ε) ,
LNED,

⎡
⎣ kg(ε)2

r2+
−�− (2s−1)

2

(√
2q f (ε)g(ε)(2s−3)

(2s−1)r
2/(2s−1)
+

)2s
⎤
⎦r+

4π f (ε)g(ε) , PMI,

(17)

where �+ = �
∣∣r=r+ , Lw+ = Lw

∣∣r=r+ , F1+ = F1
∣∣r=r+ ,

F2+ =F2
∣∣r=r+ ,F3+ = F3

∣∣r=r+ ,F4 = 2F1

(
[2],

[ 13
4

]
,
Lw+

4

)
,

and F5 = 2F1

([
3
2 , 5

4

]
,
[ 9

4

]
, 1 − �2+

)
.

In order to study the entropy of the solutions, one can use
the area law. It is easy to show that the entropy is

S = r2+
4g(ε)2 . (18)

On the other hand, even with the modifications in the met-
ric, the entropy is independent of the electromagnetic fields.
It is notable that although there is no trace of an electromag-
netic field in explicit form of the entropy, the horizon radius
is affected by the electromagnetic field under consideration.

As for the total charge of the solutions, one can employ
the Gauss law. Considering this approach, one can show that,
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for BI type models, the results are the same. In other words,
in the case of BI type models, the total electric charge is inde-
pendent of the nonlinearity parameter. For the PMI case, the
total charge is modified and depends on the PMI parameter,

Q =

⎧⎪⎨
⎪⎩

f (ε)
4πg(ε)q, BI type models,

s(2s−1)
(√

2(2s−3) f (ε)g(ε)
(2s−1)

)2s
q2s−1

8(3−2s)π f (ε)g(ε)3 , PMI.
(19)

In order to obtain the electric potential, we can calculate
it on the horizon with respect to a reference

U = Aμχμ |r→∞ − Aμχμ
∣∣r→r+ , (20)

which leads to

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
r+ F2+, BINED,

4β
√
Lw+

[
45(3+Lw+)

8 + 9Lw+(4+Lw+)F3+
4 +L2

w+F4

]
r+

135g(ε) f (ε)(1+Lw)
, ENED,

8β(�+−1)
[
10F2++(�2+−1

)
F5
]
r+

45q + 2β[6(1−�+)+(8−5�+)]r+
9q f �+ , LNED,

qr
2s−3
2s−1+ , PMI.

(21)

It is worthwhile to mention that for s ≥ 3
2 , the gauge

potential is not well behaved, asymptotically. Therefore, we
have both upper and lower limits for the nonlinearity param-
eter of PMI theory ( 1

2 < s < 3
2 ).

It is straightforward to show that the total finite mass of
this black hole is

M = m

8π f (ε)g(ε)
. (22)

Here, we give more details for the examination of the first
law of thermodynamics. Evaluating the metric function on
the event horizon (ψ(r = r+) = 0), one can obtain the
geometrical mass (m) as a function of r+ and q. Inserting
m(r+, q) in Eq. (22), one finds

M=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
3k
2 g(ε)2+r2+

(
β2[1−F1+]− �

2

)]
r+

12π f (ε)g(ε)3 , BINED,

[
kg(ε)2−r2+

(
�+ β2

2

)
+ βq f (ε)g(ε)

3
√

Lw+

(
(1+Lw+)+ 4

5 L
2
w+F3+

)]
r+

8π f (ε)g(ε)3 , ENED,

9kr2+g(ε)2

4 +β2r4+
[
4
(
�2+−1

)
F2+−5�++3 ln(1+�+)

]−3
[

�
4 +β2

(
ln 2− 5

3

)]
18πr+ f (ε)g(ε)3 , LNED,

⎡
⎣2

(
kg(ε)2− �r2+

3

)
− (2s−1)2

(2s−3)

(
−√

2(2s−3)q f (ε)g(ε)

(2s−1)r
2/(2s−1)
+

)2s

r2+

⎤
⎦r+

16π f (ε)g(ε)3 , PMI.

(23)

Now, we use Eqs. (18) and (19) to obtain M = M(S, Q)

in the following form:

M=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
[

3k
8 +S

(
β2− �

2

)
−Sβ2F1�

]√
S

3π f (ε) , BINED,

4
[
πβQL3/2

w F3L+
(

15k
16 − 5S

8

(
2�+β2

))+ 5πβQ(1+Lw)
4
√Lw

]√
S

15π f (ε) , ENED,

−16π2Q2F2�+ 3S(4S�−3k)
4 +12S2β2

[
ln
(

2
1+�

)
+ 5(�−1)

3

]
9π f (ε)

√
S

, LNED,
[

3k
4 −S�− 3S(−2)s (2s−1)2

2(2s−3)

(
−πQ f (ε)s(3−2s)

s2s−2S

)2s/(2s−1)
]√

S

3π f (ε) , PMI,

(24)

where F1� = F1 |�=� , F2� = F2 |�=� , and F3L =
F3
∣∣
Lw=Lw

. Also, � and Lw are of the following forms:

� =
√

1 + π2Q2

β2S2 ,

Lw = LamberW

(
4π2Q2

β2S2

)
.

Now, we are in a position to study the validity of the first
law of thermodynamics. Here, we should calculate

(
∂M
∂S

)
Q

and
(

∂M
∂Q

)
S
, and then use Eqs. (18) and (19) to convert them

as functions of r+ andq. After some simplifications, one finds
that these quantities are, respectively, the same as the tem-
perature and potential which were obtained in Eqs. (17) and
(21). Hence, although the rainbow functions affected ther-
modynamic and conserved quantities, the first law remains
valid as

dM =
(

∂M

∂S

)
Q

dS +
(

∂M

∂Q

)
S

dQ. (25)

4 Thermodynamic stability

In this section, we investigate the thermal stability condi-
tions of nonlinearly charged black hole solutions in gravity’s
rainbow. To do so, we investigate the heat capacity in terms
of canonical ensemble. The thermal stability conditions are
indicated by the sign of the heat capacity. The positivity of the
heat capacity guarantees thermally stable solutions, whereas
the negative heat capacity is considered to be an unstable
state. Another advantage of studying the heat capacity is
investigation of the phase-transition point. There is a limi-
tation value for the minimum horizon radius (r+0) and also
a phase transition point; these are obtainable through calcu-
lating the root and divergence point of the heat capacity.
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One can use the following relation for calculating the heat
capacity:

CQ = T

(
∂S

∂T

)
Q

= T

(
∂S
∂r+

)
Q(

∂T
∂r+

)
Q

. (26)

Using the obtained values for the temperature and entropy
for various models of NED (Eqs. (17) and (18)), one can find
the following relations:

CQ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
F1++2

(
�2+−1

)
F2+− (kg(ε)2+(2β2−�)r2+)

2β2r2+

]

4πβ2g(ε)2

[
F1++ 4(�2+−1)

2

5 F5+ (kg(ε)2−(2β2−�)r2+)
2β2r2+

]
r2+

, BINED,

r2+
(
1+Lw+

)2A1

4πg2(ε)A2
, ENED,

β2�5+(1−�+)
(
�2+−1

)B1r2+
128πg2(ε)(B2+B3)

, LNED,

⎛
⎝(s− 1

2

)[−√
2q f (ε)g(ε)(2s−3)

(2s−1)r
2/(2s−1)
+

]2s

−�+ kg(ε)2

r2+

⎞
⎠r2+

4πg(ε)2

⎛
⎝(s+ 1

2

)[−√
2q f (ε)g(ε)(2s−3)

(2s−1)r
2/(2s−1)
+

]2s

−�− kg(ε)2

r2+

⎞
⎠

, PMI,

(27)

where A1, A2, B1, B2, and B3 are

A1 = βq f (ε)g(ε)L2
w+

×
[(

5 − Lw+
)
F3+ + 4Lw+F4

9
− 5

(
3 + L2

w+
)

4L2
w+

]

−15L1/2
w+ (1 + Lw+)

[
kg2(ε) − r2+

(
2� + β2

)]
4

,

A2 = −60βq f (ε)g(ε)L2
w+

×
{(

L3
w+ + 3L2

w+ − 9Lw+ − 35
)
F5

−16

3
Lw+

(
Lw+ + 4

3

)
F4 − 32

117
L2

w+ (Lw+ + 1)F6

+5 (Lw+ − 1)

4L2
w+

(
L3

w+ + 5L2
w+ + 15Lw+ + 3

)}

+15L1/2
w+
[
kg2(ε) + r2+

(
2� + β2

)]
8

×
(
L3

w+ + 3L2
w+ + 3Lw+ + 1

)
,

B1 = 9 ln (2 (1 + �+)) + 4
(

1 − �2+
)

×
[
F2+ + 2

5

(
1 − �2+

)
F5

]
− 9

4β2

(
� − kg(ε)2

r2+

)

+3
(
6 − �+ − 5�3+

)
(1 + �+) �+

+ 2 (1 + �+) (7 + 5�+)

�+
,

B2 = 9�3+
16β6r4+

[
β2
(
3 − �2+

)
2

−
(
�2+ − �+ − 1

)]

− ln (1 + �+) �2+
3r20+

− β6�5+
(
�2+ − 1

)2
2

×

⎧⎪⎪⎨
⎪⎪⎩

((
1+5�2+

)
4 F2+ −

(
�2+−1

)(
3+5�2+

)
5 F5

)
(
�2+ − 1

)

+
(
�2+ − 1

) (
1 + �2+

)
F7

3β2g(ε)4 − 9

16β4�2+

×

⎡
⎢⎢⎣

(
17β2

3 − �2+
r4+

− 3
(
3−�2+

)
ln 2

4β2r6+

)
(
�2+ − 1

)2 +

(
� + kg(ε)2

r2+
+ 32β2(�2+−1

)
3

)

2
(
�2+ − 1

)2

+
3

(
kg(ε)2

r2+
− �

3

)

4
+

(
� + 10kg(ε)2

3r2+
+ 320β2(�2+−1

)
9

)

4
(
�2+ − 1

)
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

B3 = β4�2+
3

⎧⎪⎪⎨
⎪⎪⎩

−45�5+
32

− 3
(
�2+ − 1

)
�+

10

×
[
− 5

(
�2+ − 1

)
�2+

2

(
F2+ + 2

(
1 − �2+

)
F5

5

)

+ 45

32β2

(
4

[
3 − β2�2+ ln 2 + kg(ε)2

4r2+
+ 23β2

(
�2+ − 1

)
9

]

+
(
�2+ − 1

) [
kg(ε)2 − �r2+

]
r2+

)]

+ (�2+ − 1
)
�4+

(
9F2+

4
− 12

(
�2+ − 1

)
F5

5
+ (�2+ − 1

)2
F7

)

− 27
(
�2+ − 1

)2
64β2

⎡
⎢⎢⎣ 4
(
2 + β4�4+ ln 2

)
β2
(
�2+ − 1

)2 +

(
� + kg(ε)2

r2+
+ 38β2

(
�2+−1

)
3

)
(
�2+ − 1

)2

+
2

(
� + kg(ε)2

r2+
+ 34β2

(
�2+−1

)
9

)
(
�2+ − 1

) +

(
� + kg(ε)2

r2+
+ 10β2

(
�2+−1

)
9

)

q2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

in which F7 = 2F1

([
5
2 , 9

4

]
,
[ 13

4

]
, 1 − �2+

)
.

In order to investigate the thermal stability of the solu-
tions, we may regard explicit functional forms of the rain-
bow functions f (ε) and g(ε). The choices of these functions
are motivated from various theoretical and phenomenologi-
cal considerations. Here, we refer to more important forms
which are based on interesting phenomenology.

The first model is related to constant speed of light and
one may use it to solve the horizon problem [15,16]. The
functional form of both rainbow functions are the same

f (ε) = g(ε) = 1

1 − λε
. (28)

In addition, motivated by the results of loop quantum grav-
ity and also non-commutative geometry, the rainbow func-
tions are given by [107,108]

f (ε) = 1, g(ε) = √1 − ηεn . (29)
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Fig. 1 ENED branch: CQ (left panel) and T (right panel) versus r+
for k = 1, l = 1, β = 2, ε = 0.2, and q = 1. ξ = 0.5 (continuous line),
ξ = 1 (dotted line), ξ = 1.5 (dashed line), and ξ = 2 (dotted-dashed
line)

Fig. 2 ENED branch: CQ (left panel) and T (right panel) versus r+
for k = 1, l = 1, β = 2, ε = 0.2, and ξ = 1. q = 0.1 (continuous line),
q = 1 (dotted line), q = 1.5 (dashed line), and q = 2 (dotted-dashed
line)

Also, it was shown that in the non-commutative geome-
try context, it is better to regard a Gaussian trial functional
form (exponential function) for f (ε) to avoid a regulariza-
tion/renormalization scheme [23,109]. On the other hand,
based on the hard spectra from gamma-ray bursters, one
may consider the rainbow functions [4] to have the following
forms:

f (ε) = eξε − 1

ξε
, g(ε) = 1. (30)

In order to study the thermodynamical behavior of the
system, we use Eq. (30), in which f (ε) has an exponential

form. Considering these two rainbow functions, we plot the
following diagrams to study the effects of variation of differ-
ent parameters on stability conditions and the phase transition
of the obtained solutions (see Figs. 1, 2, 3, 4, 5).

In the case of BI type models, for specific values of dif-
ferent parameters, there is a region in which the temperature
and heat capacity are negative. Black hole solutions are not
physical in this region. In this case, the heat capacity enjoys
a root, r+0, in which for r+ > r+0, BI type black holes are
in a stable state with positive temperature. r+0 is a decreas-
ing function of ξ (Fig. 1) and an increasing function of the
electric charge (Fig. 2). Interestingly, for small values of q,
the heat capacity may enjoy a divergency which indicates
a second order phase transition. Here, a phase transition of
smaller to larger black holes takes place (continuous line in
the left panel of Fig. 2). Surprisingly, the plotted diagram for
the temperature in this case shows the existence of a subcrit-
ical isobar. The presence of subcritical isobars is observed
for van der Waals-like liquid/gass systems. Such a behavior
for black holes is only observed in the cases of considering
cosmological constant as a thermodynamical pressure [106].
Here, without the use of an analogy between cosmological
constant and thermodynamical pressure, we found the prop-
erties of the critical point.

In addition, we see that, for suitable choices of different
parameters and small values of nonlinearity parameter, there
are one root and two extrema in the temperature diagram; one
minimum and one maximum. These extrema present them-
selves as divergencies in heat capacity diagrams. The sta-
ble states exist between the root and smaller divergency and
after the larger divergence point (Fig. 3). Between the two
divergencies, the heat capacity is negative while the temper-
ature is positive, and therefore, in this region an unstable
state exists. This instability switches to a stable state as the
heat capacity meets the divergencies. In other words, a phase
transition of smaller unstable to larger stable solutions takes
place at the larger divergence point, while a phase transition
of larger unstable to smaller stable solutions occurs at the
smaller divergence point. Increasing the nonlinearity param-
eter leads to vanishing of these phase-transition points (Fig.
3).

Fig. 3 ENED branch: CQ
(left and middle panels) and T
(right panel) versus r+ for
k = 1, l = 1, q = 1, ε = 0.2,
and ξ = 1 “for different scales”.
β = 0.1 (continuous line),
β = 0.2 (dotted line), β = 1
(dashed line), and β = 2
(dotted-dashed line)
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Fig. 4 PMI branch:CQ and T (bold lines) versus r+ for k = 1, l = 1,
ε = 0.2, and s = 0.7. Left panel: q = 1, ξ = 0.5 (continuous line),
ξ = 1 (dotted line) and ξ = 5 (dashed line).Right panel ξ = 1, q = 0.9
(continuous line), q = 1.3 (dotted line), and q = 1.7 (dashed line)

It is worthwhile to mention that the small values of nonlin-
earity parameter represent a strong nonlinearity for the sys-
tem. Therefore, as the nonlinearity of the system increases
(the nonlinearity parameter decreases), the thermodynami-
cal structure of the solutions will be modified. In addition, a
numerical evaluation shows that the root of the heat capacity
in LNED theory is bigger comparing to other theories of the
BI family. This indicates that physical stable solutions are
obtained for higher values of the horizon radius for this the-
ory of NED comparing to BINED and ENED. Oppositely,
the divergence point in LNED is located at a smaller horizon
radius, which shows that black hole solutions in the presence
of LNED acquire thermal stability faster comparing to other
two BI models.

For the PMI case, for specific values of the different
parameters, like the BI case, a root is observed which is a
limitation bound between non-physical and physical states.
The value of the root is a decreasing function of ξ (Fig. 4,
left panel) and an increasing function of the electric charge
(Fig. 4, right panel). Interestingly, regarding the variation of
s, for 0.5 < s < sc (sc ≈ 1.3 for considered parameters),
only a root (the mentioned bound point) exists (Fig. 5, left
panel). As for s = sc, there are two extrema, one minimum
and one maximum, and also one root for the temperature
(Fig. 5, middle and right panels). Between root and smaller
divergence point and after the larger divergence point, the

heat capacity is positive and the system is in a stable state,
whereas between two divergencies the system has a negative
heat capacity (with positive T ); hence, the black holes are not
stable. Another interesting effect is that for sc < s < 1.5, the
smaller divergence point is a decreasing function of s, while
the larger divergency is an increasing function of it (Fig. 5).

5 Closing remarks

In this paper, we have considered gravity’s rainbow in the
presence of various models of NED. First, 4-dimensional
black hole solutions for these configurations were derived,
and then the related conserved and thermodynamic quantities
were calculated. It was shown that some of the conserved and
thermodynamical quantities were modified due to the contri-
bution of gravity’s rainbow. Despite these modifications, the
first law of thermodynamics was valid for these black hole
solutions.

Next, we have studied the stability of the solutions and
phase-transition points in the context of canonical ensem-
ble. The employed nonlinear electromagnetic fields in this
paper were categorized into two types: the BI type includes
Born–Infeld, logarithmic and exponential forms, and the
PMI model, is a power law generalization of the Maxwell
Lagrangian.

In the case of BI types, we have found a lower bound for the
horizon radius, r+0, in which the black holes are not physical
for r+ < r+0. Interestingly, for suitable choices of different
parameters, we have found a second order phase-transition
point which had characteristics of T –V diagrams for a crit-
ical pressure (a subcritical isobar was observed). Then, by
employing different parameters, we have found two extrema
and a root in the temperature, and one root and two divergen-
cies in the heat capacity diagrams. In this case, there exist
two phase transitions of smaller unstable to larger stable and
larger unstable to smaller stable solutions. The phase transi-
tions took place at divergencies of the heat capacity. It was
pointed out that the largest root and the smallest divergence
point of the heat capacity belonged to the logarithmic form
of NED.

Fig. 5 PMI branch: CQ and T
(bold lines) versus r+ for k = 1,
l = 1, ε = 0.2, q = 1 and ξ = 1
“for different scales”. Left panel
s = 0.9 (continuous line), s = 1
(dotted line) and s = 1.1
(dashed line). Middle and right
panels: s = 1.3 (continuous
line), s = 1.4 (dotted line), and
s = 1.45 (dashed line)
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For the PMI case, similarly, stable physical and unstable
non-physical states were observed for a range of s. Inter-
estingly, for another range of this parameter the thermody-
namical behavior was modified. A root, a maximum, and a
minimum were observed for the temperature. In the places of
these extrema (heat capacity enjoyed the existence of diver-
gencies), two phase transitions of medium unstable to smaller
or larger stable black holes took place. Another interesting
property of this matter field was the effects of the variation of
the s on divergencies of the heat capacity. For a specific range
of s, the smaller divergence point was a decreasing function
of s, while the larger divergency was an increasing function
of the nonlinearity parameter.

It is evident that BI types and PMI models have different
effects and contributions to the thermodynamical behavior of
the black hole system. In other words, considering these two
classes of NED leads to different modifications and proper-
ties for the system. In the case of BI family of NED, the theory
under consideration will indicate the place of the formation
of the stable solutions.

It will be worthwhile to study the solutions obtained in this
paper in the context of extended phase space and investigate
both modifications of gravity’s rainbow and the nonlinear
electromagnetic field for the critical behavior of the system.
In addition, a generalization to higher dimensions is another
interesting work. We left these issues for forthcoming work.
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