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Abstract In this paper we consider matter fields in a grav-
itational background in order to compute the breaking of
the conformal current at one-loop order. Standard perturba-
tive calculations of conformal symmetry breaking expressed
by the non-zero trace of the energy-momentum tensor have
shown that some violating terms are regularization depen-
dent, which may suggest the existence of spurious breaking
terms in the anomaly. Therefore, we perform the calculation
in a momentum space regularization framework in which
regularization dependent terms are judiciously parametrized.
We compare our results with those obtained in the literature
and conclude that there is an unavoidable arbitrariness in the
anomalous term �R.

1 Introduction

Conformal invariance (CI) imposes strong constraints on the
correlation functions leading to exact results mainly in two
dimensions. On the other hand most renormalizable theories
possessing conformal invariance at the classical level exhibit
the trace anomaly once quantum corrections are taken into
account. Of course this is most welcome in particle physics
because conformal symmetry breaking must come into play
to properly describe the real world. Then, in the high energy
limit, CI may be recovered appearing as UV and/or IR lim-
its [1]. Furthermore, CI is an important concept in holo-
graphic theories based on the AdSn+1/CFTn duality which
relates strongly coupled four dimensional gauge theory to
gravitational theory in five dimensional AdS space-time, for
instance. It is also important in super-symmetric gauge the-
ories, e.g. (conformal invariant) N = 4 super Yang–Mills.
For applications of the AdS/CFT conjecture [2] in many
branches of physics see [3].

a e-mail: arvieira@fisica.ufmg.br

Anomalies occur when a symmetry presented at a classi-
cal level is broken upon quantization. In perturbation the-
ory, during the process of regularization/renormalization,
counter-terms are generated and may violate the symme-
try that was present at the classical level. The presence of
anomaly depends on the fact that it is not possible to find a
regulator that preserves all the symmetries of the classical
action. Well-known examples of anomalies are the (AVV)
chiral anomaly [4,5] when gauge fields coupled to conserved
currents give rise to non-conserved axial current, and the trace
anomaly of a scalar field conformally coupled to a classical
gravitational background [6,7].

Finite and undetermined local terms appear as differences
between loop integrals with the same degree of divergence
in Feynman diagram calculations [8]. Such indeterminacies
are regularization dependent and are at the heart of sym-
metry breakings by regularizations. A reasonable strategy
would be to leave them arbitrary till the end of the calcula-
tion to be fixed on symmetry or physical grounds. Anoma-
lies, such as the AVV chiral anomaly, appear in this approach
when the ambiguities proved themselves insufficient to pre-
serve the full set of symmetry identities valid at classical
level.

Attributing spurious values to such indeterminacies can
break gauge invariance or super-symmetry [9]. In the latter
reference it was shown that undetermined local terms can
be cast as surface terms at any loop order. Moreover, it was
argued that momentum routing invariance (MRI) is a nec-
essary and sufficient condition to preserve (abelian) gauge
symmetry at arbitrary loop order. This condition is auto-
matically fulfilled by dimensional regularization [10]. The
strategy of identifying ambiguous regularization dependent
surface terms in perturbation theory to arbitrary loop order
is better understood and accomplished within implicit reg-
ularization (IR) [11], which is discussed in more detail in
Sect. 3.
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IR is a momentum space setting to perform Feynman dia-
gram calculations in a regularization independent fashion.
Consequently IR turns out particularly adequate to unravel
anomalies within perturbation theory. In IR, the Lagrangian
of the underlying quantum field theory is not modified
because neither an explicit regulator is introduced nor the
dimensionality of the space time needs to be moved away
from its physical dimension. In particular, IR allows for a
democratic display of the anomaly between the Ward iden-
tities which ultimately should be fixed on physical grounds.
For example, in [12] was studied Weyl fermions on a classi-
cal gravitational background in two dimensions and shown
that, assuming Lorentz symmetry, the Weyl and Einstein–
Ward identities reduce to a set of algebraic equations for the
arbitrary parameters which place the Ward identities on equal
footing, just as in the AVV triangle anomaly [9].

In this contribution we revisit an old controversy related
to breaking of the conformal current at one-loop order when
matter fields lie on a gravitational background. Some of
the terms of this anomaly are ambiguous and regularization
dependent [13,14]. Therefore, we investigate if this ambigu-
ity appears as surface terms which sometimes may be fixed
on symmetry grounds. Moreover, we believe that performing
this calculation in four dimensions and without introducing
an explicit regulator is worthwhile, since we will not get spu-
rious terms that may contaminate the anomaly.

This work is organized as follows: in Sect. 2 we review
some aspects about conformal anomaly; in Sect. 3 we outline
the implicit regularization scheme to establish our notation;
in Sect. 4 we derive the a′ coefficient using the one-loop
correction to the graviton propagator; in Sect. 5 we perform
the one-loop renormalization of the quantum effective action;
we present how the anomaly is affected by the surface terms
in Sect. 6 and we draw concluding remarks in Sect. 7.

2 Aperçu on conformal anomaly

In order to present the state of the art let us establish some
notation. A theory is conformal invariant if it does not change
under the field transformation

Ψ ′(x) = edσ(x)Ψ (x), (1)

where Ψ stands for scalar, vector, spinor or the metric (Ψ =
φ, Aμ,ψ or gμν , respectively), σ is an arbitrary scalar field
and d is the corresponding conformal weight for the scalar,
vector or spinor fields (d = −1, 0, and − 3

2 , respectively) and
it is equal to 2 for the metric.

The corresponding conserved current associated with the
transformation (1) is the conformal current also known as
the trace of the energy-momentum tensor. In classical field
theory, this current is conserved in the massless limit. Quan-

tum corrections usually break conformal invariance in the
semi-classical approach of gravity (see [13] for a review).
Pioneering works about this anomaly have derived one-loop
corrections to the graviton propagator due to vector [6] and
spinor [15] couplings. They found that, although the diffeo-
morphism was preserved, the trace of the energy-momentum
tensor was no longer zero at the quantum level [16], since it
received finite corrections. Like other anomalies this break-
ing poses a renormalizability issue [17].

At first, this symmetry breaking was thought of as being
spurious [18–20], that is to say, an artifact of the regulariza-
tion method, motivating the seek for a regularization scheme
which preserves both CI and diffeomorphism [21–24]. After-
wards, the trace of energy-momentum tensor was computed
in several frameworks. In [16] it was calculated diagrammat-
ically using dimensional regularization [10,25]. Moreover, it
was shown that the anomaly also arises in ζ -function regular-
ization [26], point-splitting regularization [27,28] and in the
context of Schwinger–DeWitt method [29,30]. A derivation
based on the AdS/CFT correspondence can be found in [31].
Besides, this anomaly has already been classified in a regular-
ization independent way using the algebraic approach [32].
However, the explicit diagrammatic computation reveals that
some of the terms which quantum mechanically break con-
formal invariance are regularization dependent. For a review
of conformal anomaly and its universalities and ambiguities
in different regularization schemes, see [14].

It is noteworthy that the anomalous trace of the energy-
momentum tensor has physical consequences: it determines
the energy-momentum tensor for a black hole in two dimen-
sions [34] and the classification of the vacuum quantum states
in four dimensions [35,36]. This anomaly also gives rise to
the stability condition in the modified Starobinski inflation-
ary model [37,38]. Besides, the anomaly induced action has
applications in black hole evaporation [39], annihilation of
an AdS universe [40] and creation of a de Sitter wall universe
[41].

The trace anomaly has a general form given by

T = 〈Tμ
μ 〉 = aC2 + cE + a′�R, (2)

where C2 = R2
μναβ − 2R2

αβ + 1
3 R

2 is the square of the

Weyl tensor, E = R2
μναβ − 4R2

αβ + R2 is the Gauss–Bonnet
topological invariant, R is the Ricci scalar and a, c, and a′
are related with β-functions [14]

β1 = 1

(4π)2

(
1

120
Ns + 1

20
N f + 1

10
Nv

)
,

β2 = 1

(4π)2

(
1

360
Ns + 11

360
N f + 31

180
Nv

)
,

β3 = 1

(4π)2

(
1

180
Ns + 1

30
N f − 1

10
Nv

)
. (3)
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The usual results in the literature are a = β1 and c = β2.
However, there is a disagreement in the coefficient a′. While
some regularization schemes predict a′ = β3, dimensional
regularization yields a′ = 2

3β1 [16]. Furthermore, a′ van-
ishes in the derivation based on the AdS/CFT [31] corre-
spondence and it is ambiguous in Pauli–Villars regularization
[14,42,43].

Afterwards, it was shown that dimensional regularization
actually also furnishes an ambiguous result [14].

We shall compute the trace anomaly in an implicit momen-
tum space regularization framework, paying particular atten-
tion to regularization dependent quantities [8,9]. We perform
the one-loop correction to the graviton propagator due to
couplings with scalar, fermion, and vector fields. We then
relate that correction for the two-point function with 〈Tμ

μ 〉.
For this purpose we employ implicit regularization [11] in
which divergences are expressed order by order in perturba-
tion theory as loop integrals in consonance with BPHZ the-
orem [44] whereas undetermined regularization dependent
local terms are expressed by surface terms. Thus we derive
the a′ coefficient and then compare our result with those of
the literature.

3 Implicit regularization

We apply the implicit regularization framework [11] to treat
the integrals which appear in the amplitudes of Sect. 4. Let
us make a brief review of the method. In this scheme, we
assume the existence of an implicit regulator Λ just to justify
algebraic operations within the integrands. We then use the
following identity to separate UV divergent basic integrals
from the finite part:

∫
k

1

(k + p)2 − m2 =
∫
k

1

k2 − m2

−
∫
k

(p2 + 2p · k)
(k2 − m2)[(k + p)2 − m2] , (4)

where
∫
k ≡ ∫ Λ d4k

(2π)4 , to separate basic divergent integrals
(BDI’s) from the finite part. These BDI’s are defined as fol-
lows:

Iμ1···μ2n
log (m2) ≡

∫
k

kμ1 · · · kμ2n

(k2 − m2)2+n
, (5)

Iμ1···μ2n
quad (m2) ≡

∫
k

kμ1 · · · kμ2n

(k2 − m2)1+n
(6)

and

Iμ1···μ2n
quart (m2) ≡

∫
k

kμ1 · · · kμ2n

(k2 − m2)n
. (7)

The basic divergences with Lorentz indices can be com-
bined as differences between integrals with the same superfi-
cial degree of divergence, according to the equations below,
which define surface terms1:

Υ
μν
2w = ημν I2w(m2) − 2(2 − w)Iμν

2w (m2) ≡ υ2wημν, (8)

Ξ
μναβ
2w = η{μνηαβ} I2w(m2)

− 4(3 − w)(2−w)Iμναβ
2w (m2)≡ξ2wη{μνηαβ}, (9)

Σ
μναβγ δ
2w = η{μνηαβηγ δ} I2w(m2)

− 8(4 − w)(3 − w)(2 − w)Iμναβγ δ
2w (m2)

≡ σ2wη{μνηαβηγ δ}, (10)

Ω
μναβγ δεζ
2w = η{μνηαβηγ δηεζ } I2w(m2)

− 16(5 − w)(4 − w)(3 − w)(2 − w)

× Iμναβγ δεζ
2w (m2)

≡ ω2wη{μνηαβηγ δηεζ }. (11)

In the expressions above, 2w is the degree of divergence
of the integrals and, for the sake of brevity, we substitute the
subscripts log, quad, and quart by 0, 2, and 4, respectively.
Surface terms can be conveniently written as integrals of total
derivatives, namely

υ2wημν =
∫
k

∂

∂kν

kμ

(k2 − m2)2−w
, (12)

(ξ2w − v2w)η{μνηαβ} =
∫
k

∂

∂kν

2(2 − w)kμkαkβ

(k2 − m2)3−w
, (13)

(σ2w − ξ2w)η{μνηαβηγ δ}

=
∫
k

∂

∂kν

4(3 − w)(2 − w)kμkαkβkγ kδ

(k2 − m2)4−w
, (14)

and

(ω2w − σ2w)η{μνηαβηγ δηεζ }

=
∫
k

∂

∂kν

8(4 − w)(3 − w)(2 − w)kμkαkβkγ kδkεkζ

(k2 − m2)5−w
.

(15)

We see that Eqs. (8)–(11) are undetermined because they
are differences between divergent quantities. Each regular-
ization scheme gives a different value for these terms. How-
ever, as physics should not depend on the schemes applied,

1 The Lorentz indices between brackets stand for permutations, i.e.
A{α1···αn }B{β1···βn } = Aα1···αn Bβ1···βn + sum over permutations between
the two sets of indices α1 · · ·αn and β1 · · ·βn .
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we leave these terms to be arbitrary until the end of the calcu-
lation, fixing them by symmetry constraints or phenomenol-
ogy, when it applies [8].

It is noteworthy that this prescription is not the usual one,
since we do not evaluate divergent integrals or regularization
dependent quantities neither do we introduce a regulator or
further parameters usually introduced in explicit regulariza-
tion procedures. We do assume the existence of a regulator
in order to give sense to the manipulation (4). However, we
do not say which one. That is because the introduction of an
explicit regulator and additional parameters usually breaks
symmetries of the theory and it makes the renormalization
procedure more laborious.

Besides not modifying the theory, such as changing the
dimension of space-time or breaking gauge or Lorentz sym-
metry spuriously, we can support or differ controversial
results of the literature, which are most of the times caused by
regularization dependent quantities like surface terms in (8)–
(11). If those terms remain in the finite part of the amplitude,
it can be arbitrary and regularization dependent although of
being finite. Therefore, we carry those terms till the end of
the calculation and fix them using a symmetry requirement,
the fulfillment of a Ward identity, for instance.

We should also emphasize that although IR was consis-
tently built for multi-loop calculation in scalar field theories
[44], its validity is questionable for arbitrary loop order in
other theories and in curved space. If one works in a momen-
tum space framework, one must ensure that causality and
locality are guaranteed in all orders of perturbation theory.
In differential regularization [45], for instance, it was shown
that those principles hold at lower-order even in curved space
[46]. However, we do not worry with that in the present case
since we perform only one-loop calculations.

4 One-loop correction to the graviton propagator
and the trace anomaly

We consider the semi-classical approach of gravitation where
matter fields are quantized in a classical curved background
(see [43] for a review). The action for scalar, fermion, and
abelian vector are, respectively,

Ss = 1

2

∫
d4x

√−g(gμν∂μφ∂νφ + ξ Rφ2), (16)

S f = i
∫

d4xeeμ
a ψ̄γ aDμψ (17)

and

Sv = −1

4

∫
d4x

√−gFμνFμν (18)

where eμ
a is the tetrad, e = det eμ

a , and ξ is the non-minimal
coupling.

In Eq. (17), in order to couple fermions with the gravita-
tional field, we need to define the covariant derivative,

Dμψ = ∂μψ + 1

2
ωμabσ

abψ, (19)

where ωμab is the spin connection, which depends on the
tetrad, and σ ab = 1

4 [γ a, γ b], with γ a representing the Dirac
matrices.

The actions expressed by (17) and (18) are classically con-
formal invariant and so is the action (16) in the conformal
limit ξ → 1/6. To compute the classical breaking we have
first to calculate one-loop corrections to the graviton prop-
agator. In order to do this we first consider the weak field
approximation, i.e. we use the following expansions for the
metric and the tetrad:

gμν = ημν + κhμν (20)

and

eμa = ημa + 1

2
κhμa . (21)

Thus, using Eqs. (20) and (21) in (16), (17), and (18), we
obtain the Feynman rules up to first order in κ . We list them
in Fig. 1.

Diagrams contributing to one-loop correction to the gravi-
ton propagator are presented in Fig. 2. The finite part respon-
sible for the quantum breaking of conformal symmetry comes
from diagrams (a), (b), and (c). Loop diagrams (d), (e), and
(f) contribute only with quartic and quadratic divergences.
Quadratic divergences for massless fields are made zero in
dimensional regularization [47] and in implicit regulariza-
tion [48]. Quartic divergences are unphysical in the sense that
they do not contribute for physical quantities, like logarith-
mic divergences do when deriving the running of coupling
constants, for instance. Both divergences also come from
diagrams (a), (b), and (c). Using symmetric integration, like
kμkν → 1

4ημνk2, all quartic divergences can be transformed

in a single form
∫ Λ d4k

(2π)4 , which can be subtracted by a suit-
able cosmological counter-term (see [49] for details).

Therefore, we have to calculate the following amplitudes:

Π
μναβ

(a) (p) = 1

2

∫
k
Vμν
s (p, k, k + p)

i

k2 − m2
s

× V αβ
s (p, k + p, k)

i

(k + p)2 − m2
s
, (22)
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Fig. 1 Feynman rules for matter fields in linearized quantum gravity

(a) (d)

(b) (e)

(c) (f)

Fig. 2 One-loop corrections to the graviton propagator. The dashed,
solid, waved, and double-waved lines stand for scalar, fermion, vector,
and graviton, respectively

Π
μναβ

(b) (p) = 1

2

∫
k
V αβλθ

v (k, k + p)
−iηλγ

k2 − m2
v

× Vμνγ δ
v (k + p, k)

−iηδθ

(k + p)2 − m2
v

, (23)

Π
μναβ

(c) (p) = −
∫
k
T r [V αβ

f (k, k + p)
i

k/ − m f

× Vμν
f (k + p, k)

i

k/ + p/ − m f
]. (24)

In the equations above, 1/2 is a symmetry factor and we
have introduced fictitious masses in the propagators. This is
necessary because, although the present integrals are infrared
safe, expression (4) without mass will break the original
integral in two infrared divergent parts. The limit m2

i → 0
is taken in the end. In this process a renormalization scale
λ �= 0 appears. Observe that the other part of the mas-
sive vector propagator in Eq. (23) does not contribute, since
kλkγ V

αβλθ
v (k, k + p) = 0 and (k + p)δ(k + p)θV

μνγ δ
v (k +

p, k) = 0. For the sake of completeness, we list all regular-
ized integrals coming from the expansion of Eqs. (22)–(24)
in the appendix.

After taking the limits ms → 0 and ξ → 1
6 , we find that

amplitude (22) is transverse up to surface terms defined in
Eqs. (8)–(11):

2

κ2 pαΠ
μναβ

(a) (p) =
(

37

48
pβημν p2 + 1

16
pμηβν p2

+ 1

16
pνηβμ p2 + 2

3
pμ pβ pν

)
p2υ0

−
(

29

48
pβημν p2 + 1

16
pμηβν p2

+ 1

16
pνηβμ p2 + 1

3
pμ pβ pν

)
p2ξ0

+
(

109

8
pβημν p2 + 37

8
pμηβν p2

+ 37

8
pνηβμ p2 + 121

4
pμ pβ pν

)
p2σ0

−
(

1

8
pβημν p2 + 1

8
pμηβν p2

+ 1

8
pνηβμ p2 + 1

2
pμ pβ pν

)
p2ω0. (25)

We see in Eq. (25) that gauge invariance, i.e. pαΠ
μναβ
a (p)

= 0, holds if all indeterminacies expressed by surface terms
are set to zero. That is not the only possible solution. There
may exist relations between these surface terms which also
would entail gauge invariance. In this case the finite result
would be arbitrary [8,50–52]. We are going to discuss this in
Sect. 6. The ambiguity in the a′ term may be due to surface
terms because they are often the source of ambiguities as we
found in other models [50,51,53].
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Our final result for the amplitude (22) is

2

κ2 Π
μναβ

(a) (p)

= p2(ηανηβμ p2 + ηαμηβν p2 − pα pμηβν

− pβ pμηαν − pα pνηβμ − pβ pνηαμ)

×
[

23

1800
b + 1

240

(
Ilog(λ

2) − b ln

(
− p2

λ2

))]

− p2(ηαβημν p2 − pα pβημν − pμ pνηαβ)

×
[

7

675
b + 1

360

(
Ilog(λ

2) − b ln

(
− p2

λ2

))]

+ 1

180

(
41

15
b + Ilog(λ

2)

− b ln

(
− p2

λ2

))
pα pβ pμ pν . (26)

This result agrees with [55] after identifying Ilog(λ
2) as

the divergent part. We now return to the curvature tensor
from weak field approximation. In order to do this we write
the corresponding covariant expression and we focus on the
�R term

S =
∫

d4x
√−g(α1C

2 + α2R
2)

→
∫

d4x
√−g(2α1W + α2R

2), (27)

where we replace C2 → 2W = 2R2
μν − 2

3 R
2 since the

Gauss–Bonnet topological invariant does not contribute to
the propagator since it reduces in a topological surface term.

Applying the definition of the energy-momentum tensor
for the action (27), we see that its trace is given by

〈Tμ
μ 〉 = −2√−g

gμν δS

δgμν
= 12α2�R. (28)

Therefore, all we have to do is to determine the constant
α2. For this purpose, we write W and R2 in the weak field
limit up to second order in κ:∫

d4x
√−gR2 =

∫
d4xhμν[∂μ∂ν∂α∂β + ημνηαβ∂4

− (ημν∂α∂β∂2 + ηαβ∂μ∂ν∂
2)]hαβ (29)

∫
d4x

√−gW =
∫

d4xhμν

[
1

6
∂μ∂ν∂α∂β − 1

12
ημνηαβ∂4

+ 1

12
(ημν∂α∂β∂2 + ηαβ∂μ∂ν∂

2)

+ 1

8
(ημαηνβ + ηναημβ)∂4

− 1

8
ημα∂ν∂β∂2

]
hαβ. (30)

Replacing Eqs. (29) and (30) in Eq. (27) and comparing
with Eq. (26) written in the position space (the action for the
graviton propagator is S = − 1

2

∫
d4xhμνΠ̄μναβhαβ , where

Π̄μναβ is the Fourier transform of Eq. (26)), we get 12α2 =
1

180(4π)2 . Therefore, our result for the anomaly is

〈Tμ
μ 〉scalar = 1

180(4π)2 �R (31)

This result agrees with the one obtained in [16,26–28,55],
where it was applied dimensional regularization, ζ -function
regularization, point-splitting regularization and proper time
cut-off regularization, respectively. We proceed using the
same idea to obtain the anomaly contributions coming from
vector and spinor fields. The result of the one-loop correc-
tion to the graviton propagator for the amplitudes (23) and
(24) are, respectively (if we set again the surface terms to
zero, gauge invariance holds, i.e. pαΠ

μναβ

(b) (p) = 0 and

pαΠ
μναβ

(c) (p) = 0),

2

κ2 Π
μναβ

(b) (p) = p2(ηανηβμ p2 + ηαμηβν p2 − pα pμηβν

− pβ pμηαν − pα pνηβμ − pβ pνηαμ)

×
[

4

75
b + 1

20

(
Ilog(λ

2) − b ln

(
− p2

λ2

))]

− p2(ηαβημν p2 − pα pβημν − pμ pνηαβ)

×
[

1

450
b+ 1

30

(
Ilog(λ

2)−b ln

(
− p2

λ2

))]

+ 1

15

(
47

30
b + Ilog(λ

2) − b ln

(
− p2

λ2

))

× pα pβ pμ pν (32)

and
2

κ2 Π
μναβ

(c) (p) = p2(ηανηβμ p2 + ηαμηβν p2 − pα pμηβν

− pβ pμηαν − pα pνηβμ − pβ pνηαμ)

×
[

3

50
b + 1

40

(
Ilog(λ

2) − b ln

(
− p2

λ2

))]

− p2(ηαβημν p2 − pα pβημν − pμ pνηαβ)

×
[

23

450
b+ 1

60

(
Ilog(λ

2)−b ln

(
− p2

λ2

))]

+ 1

30

(
31

15
b + Ilog(λ

2) − b ln

(
− p2

λ2

))

× pα pβ pμ pν . (33)

The corresponding values for the constant α2 for Eqs. (32)
and (33) are 12α2 = − 1

10(4π)2 and 12α2 = 1
30(4π)2 , respec-

tively. Multiplying each diagram by the number of fields, our
final result is

123



Eur. Phys. J. C (2015) 75 :338 Page 7 of 9 338

〈Tμ
μ 〉 =

(
1

180(4π)2 Ns + 1

30(4π)2 N f − 1

10(4π)2 Nv

)
�R

= β3�R. (34)

Therefore, we found that apparently no ambiguity appears
in the massless case and if we require gauge symmetry that
fixes the surface terms to zero. This result agrees with all reg-
ularization methods [26–30] but the one obtained by dimen-
sional regularization [14,16]. This may suggest the result
(34) is universal and dimensional regularization provides a
different result because of a hard breaking of conformal sym-
metry. However, as we are going to see in Sect. 5, there is
an inherent ambiguity associated with the renormalization.
Moreover, in Sect. 6 we present how this anomaly can be
plagued by the arbitrary surface term, which also makes its
result ambiguous.

5 Renormalization

We now perform the one-loop renormalization. Therefore,
we write the one-loop renormalized action corresponding to
the calculation of the previous section

SR(a1, a2) = Svacuum(a(0)
1 , a(0)

2 ) + Γ̄ (1) + ΔSvacuum, (35)

where Svacuum(a(0)
1 , a(0)

2 ) = ∫
d4x

√−g(a(0)
1 C2 +a(0)

2 R2) is
the vacuum action, Γ̄ (1) is the one-loop effective action and
ΔSvacuum is the counter-term action.

In order to renormalize, we seize the results of Sect. 4.
Considering, for instance, the photon correction given by
Eq. (32), we have the following effective action:

Γ̄ (1) = 1

(4π)2

∫
d4x

√−g

[
Cμναβ

(
− 4

75
(36)

+ 1

20

(
(4π)2i Ilog(λ

2) + ln

( �
λ2

)))
Cμναβ

− 1

120
R2

]
.

We may choose ΔSvacuum = − i
20

∫
d4x

√−gIlog(λ
2)C2.

We add this counter-term in order to remove the divergent
integral Ilog(λ

2). This is equivalent to the MS renormaliza-
tion scheme as we have shown in Ref. [54]. However, it is
also possible to add a finite local counter-term of the form

1
(4π)2 α

∫
d4x

√−gR2 since it is a vacuum term and it does
not break conformal symmetry of the quantum fields. Con-
sidering these counter-terms, we end up with the following
renormalized action:

SR(a1, a2) = 1

(4π)2

∫
d4x

√−g

×
[
Cμναβ

(
a(0)

1 − 4

75
+ 1

20
ln

( �
λ2

))
Cμναβ

+
(
a(0)

2 − 1

120
+ α

)
R2

]

=
∫

d4x
√−g(a1C

2 + a2R
2). (37)

Requiring that Eq. (37) must not depend on the renormal-
ization group scale λ, we find the one-loop β-function

β1 = λ
∂a1

∂λ
= 2λ2 ∂a1

∂λ2 = − 1

10(4π)2 . (38)

Following the same idea, the contributions coming from
the scalar and the spinor field are β1 = − 1

120(4π)2 and

β1 = − 1
20(4π)2 , respectively. This result agrees with [55,56]

where it was applied the MS scheme. In this case we have
found only the ultraviolet behavior of the β-function since
we consider massless matter fields in a curved background.

Clearly, the addition of the local finite counter-term gen-
erates an arbitrariness in the conformal anomaly. Applying
Eq. (28) for the action (37) we find the arbitrary result

〈Tμ
μ 〉vector = 1

(4π)2

(
− 1

10
+ 12α

)
�R (39)

The result of Eq. (39) is compatible with regularization
schemes which breaks hardly conformal symmetry such as
dimensional regularization, as mentioned before. The result
also agrees with the obtained in Pauli–Villars regularization,
where an ambiguous result can also be found for the massive
theory [42,56]. In the next section, we show that an arbi-
trariness also appears if we do not set all surfaces terms to
zero.

6 Arbitrariness in the conformal anomaly

We return to the previous amplitudes in order to see what hap-
pens if we do not set all surfaces terms to zero. For instance,
consider again the amplitude (23). However, this time we
investigate if there is a relation between surface terms which
also make the final amplitude gauge invariant. As before we
use the gauge Ward identity in order to fix those arbitrary
surface terms. After taking the limit m → 0, we find that
amplitude (23) is transverse up to surfaces terms

2

κ2 pαΠ
μναβ

(b) (p) =
(

1

8
pβημν p2 + pμηβν p2

+ pνηβμ p2 + pμ pβ pν

)

× p2υ0 −
(

1

8
pβημν p2 + 3

4
pμηβν p2

123
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+ 3

4
pνηβμ p2 + 1

2
pμ pβ pν

)
p2ξ0

+
(

37

4
pβημν p2 + 73

4
pμηβν p2

+ 73

4
pνηβμ p2 + 121

2
pμ pβ pν

)
p2σ0

−
(

1

4
pβημν p2 + 1

4
pμηβν p2

+ 1

4
pνηβμ p2 + pμ pβ pν

)
p2ω0 = 0

(40)

As in Eq. (25), setting all surface terms to zero is a possi-
ble solution. However, we can easily see that it is possible to
establish a relation between them which would also satisfy
(40). Considering the tensorial structure, we see that requir-
ing gauge invariance gives us the relations

υ0 − ξ0 + 74σ0 − 2ω0 = 0, (41)

4υ0 − 3ξ0 + 73σ0 − ω0 = 0, (42)

2υ0 − ξ0 + 121σ0 − 2ω0 = 0. (43)

Since the parameters are overdetermined by equations
above we may write υ0 = −47σ0, ξ0 = − 257

5 σ0, and
ω0 = 196

5 σ0. This means that gauge invariance was not suf-
ficient to fix all the arbitrary terms. Consequently, we can
replace υ0, ξ0, and ω0 in the amplitude and the final answer
now depends on the arbitrary surface term σ0. As a result, the
anomaly become arbitrary because it depends on the arbitrary
surface term

〈Tμ
μ 〉vector = − 1

(4π)2

(
1

10
+ 497

15
σ0

)
�R

= 1

(4π)2

(
− 1

10
+ σ ′

0

)
�R (44)

This result is compatible with the arbitrariness that appears
in renormalization, as presented in the previous section.
It also agrees with the result found in dimensional regu-
larization of Ref. [14] and in Pauli–Villars regularization
[14,42,56].

In order to support our result, we also calculated the
anomaly for the massive case. In this case, we found the
same ambiguity as appeared in (44) (massless case), accord-
ing to [14,42,56]. Although in the latter case the ambiguity
was found only in the massive theory, our result shows that
the ambiguity in the conformal anomaly appears even in the
massless case.

7 Conclusion

In this paper, we considered an implicit momentum space
regularization derivation of the one-loop conformal anomaly
in order to shed some light on controversies raised in the lit-
erature in which some finite breaking terms are ambiguous.
Our approach is specially tailored to study quantum sym-
metry breakings. In this approach, regularization dependent
indeterminacies expressed by surface terms are identified to
be fixed on symmetry grounds. However, as in the present
case the symmetry content of the theory is not sufficient to fix
all the arbitrary terms and the finite part of the amplitude is
ambiguous and regularization dependent although of being
finite. As a result, we find that there is an unavoidable arbi-
trariness in the conformal anomaly even in the massless case.
Our result is equivalent to the usual subtraction procedure of
including an

∫
d4x

√−gR2-term in the renormalized action.
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Appendix

The results of the regularized integrals in the massless limit
are

∫
k

1

k2(k + p)2 = Ilog(λ
2) + 2b − b ln

(
− p2

λ2

)
, (45)

∫
k

k2

k2(k + p)2 = −p2υ0, (46)

∫
k

k2kα

k2(k + p)2 = p2 pα(ξ0 − υ0), (47)

∫
k

k4

k2(k + p)2 = p4(3υ0 − 2ξ0), (48)

∫
k

kα

k2(k + p)2 = 1

2
pα

[
−Ilog(λ

2)+υ0−2b+b ln

(
− p2

λ2

)]
,

(49)∫
k

kαkβ

k2(k + p)2 =
(

1

3
pα pβ − 1

12
p2ηαβ

)
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×
[
Ilog(λ

2) − b ln

(
− p2

λ2

)]

−
(

1

3
pα pβ + 1

6
p2ηαβ

)
ξ0

+ 1

4
p2ηαβυ0 + 13

18
bpα pβ − 2

9
p2bηαβ,

(50)∫
k

kμkαkβ

k2(k + p)2 = 1

24
(p{μηαβ} p2 − 6pα pβ pμ)

×
[
Ilog(λ

2) − ξ0 − b ln

(
− p2

λ2

)]

+ 3(p{μηαβ} p2 + 2pα pβ pμ)σ0

+ 1

9
bp{μηαβ} p2 − 7

12
bpμ pα pβ, (51)

∫
k

k2kαkβ

k2(k + p)2 = 1

4
p4ηαβ(ξ0 − υ0)

− 6p2(4pα pα + ηαβ p2)σ0, (52)

∫
k

kμkνkαkβ

k2(k + p)2

= 1

240
(η{μνηαβ} p4 − 3p2 p{μ pνηαβ}

+ 48pα pβ pμ pν)

[
Ilog(λ

2) − b ln

(
− p2

λ2

)]

+ 1

48
η{μνηαβ} p4

(
26σ0 − ξ0 − 6

5
ω0

)

+ 1

48
p{α pβημν} p2

(
26σ0 + ξ0 − 12

5
ω0

)

+ 1

600
b

(
23

3
p4η{αβημν} − 41

2
p2 p{α pβημν}

)

+ 149

300
bpμ pν pα pβ − 1

5
pμ pν pα pβω0, (53)

where λ is the renormalization group scale and b ≡ i
(4π)2 .

For the sake of simplicity we omit quartic divergent integrals.
The surface terms are defined in Sect. 3.
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