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The Euler method is introduced for stochastic differential delay equations (SDDEs) with Poisson
random measure under the generalized Khasminskii-type conditions which cover more classes
of such equations than before. The main aims of this paper are to prove the existence of global
solutions to such equations and then to investigate the convergence of the Euler method in
probability under the generalized Khasminskii-type conditions. Numerical example is given to
indicate our results.

1. Introduction

To take into consideration stochastic effects such as corporate defaults, operational failures,
market crashes or central bank announcements in financial market, the research on stochastic
differential equations (SDEs) with Poisson random measure (see [1, 2]) is important, since
Merton initiated the model of such equations in 1976 (see [3]). Due to the rate of change
of financial dynamics system depending on its past history, SDDE with Poisson random
measure (see [4, 5]), the case we propose and consider in this work, is meaningful.

Since there is no explicit solution for an SDDE with Poisson random measure, one
needs, in general, numerical methods which can be classified into strong approximations and
weak approximations (see [6–8]).

We here give an overview of the results on the strong approximations of differential
equation driven by Wiener process and Poisson random measure. Platen [9] presented a
convergence theorem with order γ ∈ {0.5, 1, 1.5, . . .} and originally introduced the jump-
adapted methods which are based on all the jump times. Moreover, Bruti-Liberati and Platen
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(see [10]) get the jump-adapted order 1.5 scheme, and they also construct the derivative free
or implicit jump-adapted schemes with desired order of strong convergence. In [11], for a
class of pure jump systems, the order of Taylor schemes is given under weaker conditions
than the current literature. In [7, 10], Bruti-Liberati and Platen present the drift-implicit
schemes which have order γ ∈ {0.5, 1}. Recently, [8] develops adaptive time stepping
algorithms based on a jump augmented Monte Carlo Euler-Maruyama method, which
achieve a prescribed precision. Mao [4] presents the convergence of numerical solutions for
variable delay differential equations with Poisson random measure. In [12], the improved
Runge-Kutta methods are presented to improve the accuracy behaviour of problems with
small noise for SDEs driven by Poisson random measure. Clearly, the results above require
that the SDEs with poisson random measure satisfy the global Lipschitz conditions and the
linear growth conditions. In [5], the Euler scheme is proved to converge to the analytic
solution for SDDEs with Wiener process and Poisson random measure under weaker
conditions than the global Lipschitz condition and the linear growth condition.

However, there are many SDDEs with Poisson random measure, especially highly
nonlinear equations, which do not satisfy the above-mentioned conditions and classical
Khasminskii-type conditions (see [13–15]). And in Section 5, we give such highly nonlinear
equation. Our work is motivated by [16] in which the generalized Khasminskii-type
conditions are applied to SDDEs with Wiener process. The main contribution in our paper
is to present Euler method for SDDEs with Poisson random measure under the generalized
Khasminskii-type conditions which cover more classes of these equations than all the
mentioned classical conditions above.

Our work is organized as follows. In Section 2, the properties of SDDEs with Poisson
random measure are given under the generalized Khasminskii-type conditions. In Section 3,
Euler method is analyzed under such conditions. In Section 4, we present the convergence in
probability of the Euler method. In Section 5, an example is given.

2. The Generalized Khasminskii-Type Conditions for SDDEs
with Poisson Random Measure

2.1. Problem’s Setting

Throughout this paper, unless otherwise specified, we use the following notations. Let | · | be
the Euclidean norm in Rd, d ∈ N. Let u1 ∨ u2 = max{u1, u2} and u1 ∧ u2 = min{u1, u2}. IfA is
a vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted
by |A| =

√
trace(ATA). Let τ > 0 and R+ = [0, ∞). Let C([−τ, 0];Rd) denote the family

of continuous functions from [−τ, 0] to Rd with the norm |ϕ| = sup−τ≤θ≤0|ϕ(θ)|. Denote by
C(Rd; R+) the family of continuous functions fromRd toR+. LetC2(Rd; R+) denote the family
of continuously two times differentiable R+-valued functions from Rd to R+. [z] denotes the
largest integer which is less than or equal to z in R. IA denotes the indicator function of a set
A.

The following d-dimensional SDDE with Poisson random measure is considered in
our paper:

dx(t) = a
(
x
(
t−
)
, x
(
(t − τ)−

))
dt + b

(
x
(
t−
)
, x
(
(t − τ)−

))
dW(t)

+
∫

ε

c
(
x
(
t−
)
, x
(
(t − τ)−

)
, v
)
p̃φ(dv × dt),

(2.1)
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for t > 0, where p̃φ(dv×dt) := pφ(dv×dt)−φ(dv)dt. Here x(t−) denotes lims↑tx(s). The initial
data of (2.1) is given by

{x(t) : −τ ≤ t ≤ 0} = ξ(t) ∈ C
(
[−τ, 0];Rd

)
, (2.2)

where x(−τ−) = x(−τ).
The drift coefficient a : Rd × Rd → Rd, the diffusion coefficient b : Rd × Rd → Rd×m0 ,

and the jump coefficient c : Rd × Rd × ε → Rd are assumed to be Borel measurable functions
and the coefficients are sufficiently smooth.

The randomness in (2.1) is generated by the following (see [8]). An m0-dimensional
Wiener process W = {W(t) = (W1(t), . . . ,Wm0(t))T} with independent scalar components is
defined on a filtered probability space (ΩW,FW, (FW

t )t≥0,P
W). A Poisson random measure

pφ(ω, dv × dt) is on ΩJ × ε × [0,∞), where ε ⊆ Rr \ {0} with r ∈ N, and its deterministic
compensated measure φ(dv)dt = λf(v)dvdt. f(v) is a probability density, and we require
finite intensity λ = φ(ε) < ∞. The Poisson random measure is defined on a filtered
probability space (ΩJ , FJ , (FJ

t )t≥0, P
J). The process x(t) is thus defined on a product space

(Ω, F, (Ft)t≥0, P), whereΩ = ΩW ×ΩJ , F = FW ×FJ ,(Ft)t≥0 = (FW
t )t≥0 × (FJ

t )t≥0, P = PW ×PJ ,
and F0 contains all P-null sets. The Wiener process and the Poisson random measure are
mutually independent.

To state the generalized Khasminskii-type conditions, we define the operator LV :
Rd × Rd → R by

LV
(
x, y
)
= Vx(x)a

(
x, y
)
+
1
2
trace

(
bT
(
x, y
)
Vxx(x)b

(
x, y
))

+
∫

ε

(
V
(
x + c

(
x, y, v

)) − V (x) − Vx(x)c
(
x, y, v

))
φ(dv),

(2.3)

where

V ∈ C2
(
Rd;R+

)
, Vx =

(
∂V (x)
∂x1

, . . . ,
∂V (x)
∂xd

)
, Vxx =

(
∂2V (x)
∂xi∂xj

)

d×d
. (2.4)

Now the generalized Khasminskii-type conditions are given by the following
assumptions.

Assumption 2.1. For each integer k ≥ 1, there exists a positive constant Ck, dependent on k,
such that

∣∣a
(
x, y
) − a

(
x, y
)∣∣2 ∨ ∣∣b(x, y) − b

(
x, y
)∣∣2 ≤ Ck

(∣∣x − y
∣∣2 +

∣∣x − y
∣∣2
)
, (2.5)

for x, y ∈ Rd with |x| ∨ |y| ≤ k. And there exists a positive constant C such that

∫

ε

∣∣c
(
x, y, v

) − c
(
x, y, v

)∣∣2φ(dv) ≤ C
(∣∣x − y

∣∣2 +
∣∣x − y

∣∣2
)
, (2.6)

for x, y ∈ Rd.
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Assumption 2.2. There are two functions V ∈ C2(Rd;R+) and U ∈ C(Rd;R+) as well as two
positive constants μ1 and μ2 such that

lim
|x|→∞

V (x) = ∞, (2.7)

LV
(
x, y
) ≤ μ1

(
1 + V (x) + V

(
y
)
+U
(
y
)) − μ2U(x), (2.8)

for all (x, y) ∈ Rd × Rd.

Assumption 2.3. There exists a positive constant C such that

∫

ε

|c(0, 0, v)|2φ(dv) ≤ C. (2.9)

Assumption 2.4. There exists a positive constant L such that the initial data (2.2) satisfies

|ξ(t) − ξ(s)| ≤ L|t − s|1/2, for − τ ≤ t, s ≤ 0. (2.10)

2.2. The Existence of Global Solutions

In this section, we analyze the existence and the property of the global solution to (2.1) under
Assumptions 2.1, 2.2, and 2.4.

In order to demonstrate the existence of the global solution to (2.1), we redefine the
following concepts mainly according to [17, 18].

Definition 2.5. Let {x(t)}t≥−τ be an Rd-valued stochastic process. The process is said to be
càdlàg if it is right continuous and for almost all ω ∈ Ω the left limit lims↑tx(s) exists and is
finite for all t > −τ .

Definition 2.6. Let σ∞ be a stopping time such that 0 ≤ σ∞ ≤ T a.s. An Rd-valued, Ft-adapted,
and càdlàg process {x(t) : −τ ≤ t < σ∞} is called a local solution of (2.1) if x(t) = ξ(t) on
t ∈ [−τ, 0] and, moreover, there is a nondecreasing sequence {σk}k≥1 of stopping times such
that 0 ≤ σk ↑ σ∞ a.s. and

x(t ∧ σk) = x(0) +
∫ t∧σk

0
a
(
x
(
s−
)
, x
(
(s − τ)−

))
ds +

∫ t∧σk

0
b
(
x
(
s−
)
, x
(
(s − τ)−

))
dW(s)

+
∫ t∧σk

0

∫

ε

c
(
x
(
s−
)
, x
(
(s − τ)−

)
, v
)
p̃φ(dv × ds)

(2.11)

holds for any t ∈ [0, T] and k ≥ 1 with probability 1. If, furthermore,

lim
t→σ∞

sup|x(t)| = ∞ wheneverσ∞ < T, (2.12)

then it is called a maximal local solution of (2.1) and σ∞ is called the explosion time. A local
solution {x(t) : −τ ≤ t < σ∞} to (2.1) is called a global solution if σ∞ = ∞.
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Lemma 2.7. Under Assumptions 2.1 and 2.4, for any given initial data (2.2), there is a unique
maximal local solution to (2.1).

Proof. From Assumption 2.4, for the initial data (2.2), we have

max
−τ≤t≤0

|ξ(t)| ≤ max
−τ≤t≤0

|ξ(t) − ξ(0)| + |ξ(0)| ≤ L
√
τ + |ξ(0)|. (2.13)

For each integer k ≥ [L
√
τ + |ξ(0)|] + 1, we define

z[k] =
|z| ∧ k

|z| z, 0[k] = 0, (2.14)

for z ∈ Rd. And then we define the truncation functions

ak

(
x, y
)
= a
(
x[k], y[k]

)
, bk

(
x, y
)
= b
(
x[k], y[k]

)
, ck

(
x, y, v

)
= c
(
x, y, v

)
, (2.15)

for x, y ∈ Rd and each k ≥ [L
√
τ + |ξ(0)|] + 1. Moreover, we define the following equation:

dxk(t) = ak

(
xk

(
t−
)
, xk

(
(t − τ)−

))
dt + bk

(
xk

(
t−
)
, xk

(
(t − τ)−

))
dW(t)

+
∫

ε

ck
(
xk

(
t−
)
, xk

(
(t − τ)−

)
, v
)
p̃φ(dv × dt),

(2.16)

on t ∈ [0, T] with initial data xk(t) = ξ(t) on t ∈ [−τ, 0]. Obviously, the equation satisfies
the global Lipschitz conditions and the linear growth conditions. Therefore according to [4],
there is a unique global solution xk(t) to (2.16) and its solution is a càdlàg process (see [17]).
We define the stopping time

σk = T ∧ inf{t ∈ [0, T] : |xk(t)| ≥ k}, (2.17)

for k ≥ [L
√
τ + |ξ(0)|] + 1, and

σ1 = · · · = σ[L
√
τ+|ξ(0)|] = σ[L

√
τ+|ξ(0)|]+1, (2.18)

where we set infφ = ∞ (as usual φ denotes the empty set) throughout our paper. We can
easily get

xk(t) = xk+1(t), −τ ≤ t ≤ σk, (2.19)

which means {σk}k≥1 is a nondecreasing sequence and then let limk→∞ σk = σ∞ a.s. Now, we
define {x(t) : −τ ≤ t < σ∞}with x(t) = ξ(t) on t ∈ [−τ, 0] and

x(t) = xk(t), t ∈ [σk−1, σk), k ≥ 1, (2.20)
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where σ0 = 0. And from (2.16) and (2.19), we can also obtain

x(t ∧ σk) = xk(t ∧ σk)

= x0 +
∫ t∧σk

0
a
(
x
(
s−
)
, x
(
(s − τ)−

))
ds +

∫ t∧σk

0
b
(
x
(
s−
)
, x
(
(s − τ)−

))
dW(s)

+
∫ t∧σk

0

∫

ε

c
(
x
(
s−
)
, x
(
(s − τ)−

)
, v
)
p̃φ(dv × ds),

(2.21)

for any t ∈ [0, T] and k ≥ 1 with probability 1. Moreover, if σ∞ < T , then

lim
t→σ∞

sup|x(t)| ≥ lim
k→∞

sup|x(σk)| = lim
k→∞

sup|xk(σk)| = ∞. (2.22)

Hence {x(t) : −τ ≤ t < σ∞} is a maximal local solution to (2.1).
To show the uniqueness of the solution to (2.1), let {x(t) : −τ ≤ t < σ∞} be another

maximal local solution. As the same proof as Theorem 2.8 in [17], we infer that

P(x(t, ω) = x(t, ω), (t, ω) ∈ [−τ, σk ∧ σk) ×Ω) = 1, k ≥ 1. (2.23)

Hence by k → ∞, we get

P(x(t, ω) = x(t, ω), (t, ω) ∈ [−τ, σ∞ ∧ σ∞) ×Ω) = 1. (2.24)

Therefore x(t) is a unique local solution and then it is a unique maximal local solution to
(2.1).

So we complete the whole proof.

Now, the existence of the global solution to (2.1) is shown in the following theorem.

Theorem 2.8. Under Assumptions 2.1, 2.2, and 2.4, for any given initial data (2.2), there is a unique
global solution x(t) to (2.1) on t ∈ [−τ,∞).

Proof. According to Lemma 2.7, there exists a unique maximal local solution to (2.1) on
[−τ, σ∞). Hence in order to show that this local solution is a global one, we only need to
demonstrate σ∞ = ∞ a.s. Using Itô’s formula (see [1]) to V (x(t)), we have

dV (x(t)) =
(
Vx

(
x
(
t−
))
a
(
x
(
t−
)
, x
(
(t − τ)−

))

+
1
2
trace

(
bT
(
x
(
t−
)
, x
(
(t − τ)−

))
Vxx

(
x
(
t−
))
b
(
x
(
t−
)
, x
(
(t − τ)−

)))
)
dt

+
∫

ε

(
V
(
x
(
t−
)
+ c
(
x
(
t−
)
, x
(
(t − τ)−

)
, v
))

−V (x(t−)) − Vx

(
x
(
t−
))
c
(
x
(
t−
)
, x
(
(t − τ)−

)
, v
))
φ(dv)dt

+ Vx

(
x
(
t−
))
b
(
x
(
t−
)
, x
(
(t − τ)−

))
dW(t)

+
∫

ε

(
V
(
x
(
t−
)
+ c
(
x
(
t−
)
, x
(
(t − τ)−

)
, v
)) − V

(
x
(
t−
)))

p̃φ(dv × dt)
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= LV
(
x
(
t−
)
, x
(
(t − τ)−

))
dt + Vx

(
x
(
t−
))
b
(
x
(
t−
)
, x
(
(t − τ)−

))
dW(t)

+
∫

ε

(
V
(
x
(
t−
)
+ c
(
x
(
t−
)
, x
(
(t − τ)−

)
, v
)) − V

(
x
(
t−
)))

p̃φ(dv × dt),

(2.25)

for t ∈ [0, σ∞).
Our proof is divided into the following steps.

Step 1. For any integer k ≥ [L
√
τ + |ξ(0)|] + 1 and 0 ≤ t ≤ τ , by taking integration and

expectations and using Assumption 2.2 to (2.25), we get

EV (x(t ∧ σk)) − EV (x(0))

≤ E
∫ t∧σk

0

(
μ1
(
1 + V

(
x
(
s−
))

+ V
(
x
(
(s − τ)−

))
+U
(
x
(
(s − τ)−

))) − μ2U
(
x
(
s−
)))

ds,
(2.26)

which means

EV (x(t ∧ σk)) ≤ C1 + μ1E
∫ t∧σk

0
V
(
x
(
s−
))
ds − μ2E

∫ t∧σk

0
U
(
x
(
s−
))
ds, (2.27)

where

C1 = V (x(0)) + μ1τ + μ1

∫0

−τ
V (ξ(s))ds + μ1

∫0

−τ
U(ξ(s))ds < ∞. (2.28)

From (2.27), we obtain

EV (x(t ∧ σk)) ≤ C1 + μ1E
∫ t∧σk

0
V
(
x
(
s−
))
ds

≤ C1 + μ1

∫ t

0
EV
(
x
(
s ∧ σ−

k

))
ds,

(2.29)

by the Gronwall inequality (see [18]), which leads to

EV (x(t ∧ σk)) ≤ C1e
μ1τ , (2.30)

for 0 ≤ t ≤ τ and k ≥ [L
√
τ + |ξ(0)|] + 1. Let

ςk = inf
|x| ≥ k, 0≤t<∞

V (x), for k ≥ [L√τ + |ξ(0)|] + 1. (2.31)

Therefore, from (2.30), we have

ςkP(σk ≤ τ) ≤ E
(
V (x(σk))I{σk≤τ}

) ≤ EV (x(τ ∧ σk)) ≤ C1e
μ1τ , (2.32)
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by taking k → ∞, which gives

P(σ∞ ≤ τ) = 0. (2.33)

Hence we get

P(σ∞ > τ) = 1. (2.34)

It thus follows from (2.30) and (2.34) that

EV (x(t)) ≤ C1e
μ1τ , 0 ≤ t ≤ τ, (2.35)

by taking k → ∞.
Moreover, from (2.27), we get

E
∫ τ∧σk

0
U
(
x
(
s−
))
ds ≤ μ−1

2

(

C1 + μ1E
∫ τ∧σk

0
V
(
x
(
s−
))
ds

)

≤ μ−1
2

(
C1 + μ1

∫ τ

0
EV
(
x
(
s ∧ σ−

k

))
ds

)
,

(2.36)

by taking k → ∞, which gives

E
∫ τ

0
U(x(s))ds ≤ μ−1

2

(
C1 + τμ1C1e

μ1τ
)
< ∞, (2.37)

where (2.34) and (2.35) are used.
Step 2. For any integer k ≥ [L

√
τ + |ξ(0)|]+1 and 0 ≤ t ≤ 2τ , the similar analysis as above gives

EV (x(t ∧ σk)) ≤ C2 + μ1E
∫ t∧σk

0
V
(
x
(
s−
))
ds − μ2E

∫ t∧σk

0
U
(
x
(
s−
))
ds, (2.38)

where

C2 = V (x(0)) + 2μ1τ + μ1

∫0

−τ
V (ξ(s))ds + μ1

∫0

−τ
U(ξ(s))ds

+ μ1E
∫ τ

0
V (x(s))ds + μ1E

∫ τ

0
U(x(s))ds < ∞,

(2.39)

from (2.35) and (2.37).
Thus,

EV (x(t ∧ σk)) ≤ C2 + μ1E
∫ t

0
V
(
x
(
s ∧ σ−

k

))
ds, (2.40)
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which gives

EV (x(t ∧ σk)) ≤ C2e
2μ1τ , (2.41)

for 0 ≤ t ≤ 2τ and k ≥ [L
√
τ + |ξ(0)|] + 1. Hence we get

ςkP(σk ≤ 2τ) ≤ EV (x(2τ ∧ σk)) ≤ C2e
2μ1τ , (2.42)

by taking k → ∞, which implies

P(σ∞ ≤ 2τ) = 0, (2.43)

that is,

P(σ∞ > 2τ) = 1. (2.44)

Moreover, by taking k → ∞ to (2.41), we then get

EV (x(t)) ≤ C2e
2μ1τ , 0 ≤ t ≤ 2τ. (2.45)

Therefore, from (2.38), (2.44), and (2.45), we have

E
∫2τ

0
U(x(s))ds ≤ μ−1

2

(
C2 + 2τμ1C1e

2μ1τ
)
< ∞. (2.46)

Step 3. So for any i ∈ N, we repeat the similar analysis as above and then obtain

P(σ∞ > iτ) = 1,

EV (x(t)) ≤ Cie
iμ1τ , 0 ≤ t ≤ iτ,

E
∫ τ

0
U(x(s))ds ≤ μ−1

2

(
Ci + iτμ1Cie

iμ1τ
)
< ∞,

(2.47)

where

Ci = V (x(0)) + μ1E
∫ (i−1)τ

−τ
(1 + V (x(s)) +U(x(s)))ds < ∞. (2.48)

So we can get P(σ∞ = ∞) = 1 and the required result follows.

In the following lemma, we show that the solution of (2.1) remains in a compact set
with a large probability.
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Lemma 2.9. Under Assumptions 2.1, 2.2, and 2.4, for any pair of ε ∈ (0, 1) and T > 0, there exists a
sufficiently large integer k∗, dependent on ε and T , such that

P(σk ≤ T) ≤ ε, ∀k ≥ k∗, (2.49)

where σk is defined in Lemma 2.7.

Proof. According to Theorem 2.8, we can get

EV (x(T ∧ σk)) ≤ Cie
iμ1τ , (2.50)

for i large enough to iτ ≥ T and k ≥ [L
√
τ + |ξ(0)|] + 1. Therefore, we have

ςkP(σk ≤ T) ≤ E
(
V (x(σk))I{σk≤T}

) ≤ EV (x(T ∧ σk)) ≤ Cie
iμ1τ , (2.51)

where

ςk = inf
|x|≥k

V (x) for k ≥ [L√τ + |ξ(0)|] + 1. (2.52)

Under (2.7) in Assumption 2.2, there exists a sufficiently large integer k∗ such that

P(σk ≤ T) ≤ Cie
iμ1τ

ςk
≤ ε, ∀k ≥ k∗. (2.53)

So we complete the proof.

3. The Euler Method

In this section, we introduce the Euler method to (2.1) under Assumptions 2.1, 2.2, 2.3, and
2.4.

Given a step size Δt = τ/m ∈ (0, 1), m ∈ N, the Euler method applied to (2.1)
computes approximation Xn ≈ x(tn), where tn = nΔt for n = −m, −(m − 1), . . . , −1, 0, 1, . . .,
by setting

Xn = ξ(nΔt) forn = −m, −(m − 1), . . . , −1, 0, (3.1)

and forming

Xn+1 = Xn + a(Xn,Xn−m)Δt + b(Xn,Xn−m)ΔWn

+
∫ tn+1

tn

∫

ε

c(Xn,Xn−m, v)p̃φ(dv × dt),
(3.2)

for n = 0, 1, . . ., where ΔWn = W(tn+1) −W(tn).
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The continuous-time Euler method X(t) on t ∈ [−τ,∞) is then defined by

X(t) := ξ(t) for t ∈ [−τ, 0], (3.3)

X(t) := X0 +
∫ t

0
a(Z(s), Z(s − τ))ds +

∫ t

0
b(Z(s), Z(s − τ))dW(s)

+
∫ t

0

∫

ε

c(Z(s), Z(s − τ), v)p̃φ(dv × ds),

(3.4)

for t ≥ 0, where

Z(t) =
∞∑

n=−m
XnI[nΔt, (n+1)Δt)(t) for t ∈ [−τ,∞). (3.5)

Actually, we can see in [11] that pφ = {pφ(t) := pφ(ε×[0, t])} is a process that counts the
number of jumps until some given time. The Poisson randommeasure pφ(dv×dt) generates a
sequence of pairs {(ιi, ξi), i ∈ {1, 2, . . . , pφ(T)}} for a given finite positive constant T if λ < ∞.
Here {ιi : Ω → R+, i ∈ {1, 2, . . . , pφ(T)}} is a sequence of increasing nonnegative random
variables representing the jump times of a standard Poisson process with intensity λ, and {ξi :
Ω → ε, i ∈ {1, 2, . . . , pφ(T)}} is a sequence of independent identically distributed random
variables, where ξi is distributed according to φ(dv)/φ(ε). Then (3.2) can equivalently be of
the following form:

Xn+1 = Xn +
(
a(Xn,Xn−m) −

∫

ε

c(Xn,Xn−m, v)φ(dv)
)
Δt

+ b(Xn,Xn−m)ΔWn +
pφ(tn+1)∑

i=pφ(tn)+1

c(Xn,Xn−m, ξi).

(3.6)

In order to analyze the Euler method, we will give two lemmas.
The first lemma shows the close relation between the continuous-time Euler solution

(3.4) and its step function Z(t).

Lemma 3.1. Suppose Assumptions 2.1 and 2.3 hold. Then for any T > 0, there exists a positive
constant K1(k), dependent on integer k and independent of Δt, such that for all Δt ∈ (0, 1) the
continuous-time Euler method (3.4) satisfies

E
∣∣∣X(t) − Z(t)

∣∣∣
2 ≤ K1(k)Δt, (3.7)

for 0 ≤ t ≤ T ∧σk ∧ρk and k ≥ [L
√
τ + |ξ(0)|]+1, where σk is defined in Lemma 2.7 and ρk = inf{t ≥

0 : |X(t)| ≥ k}.
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Proof. For 0 ≤ t ≤ T ∧ σk ∧ ρk and k ≥ [L
√
τ + |ξ(0)|] + 1, there is an integer n such that

t ∈ [tn, tn+1). Thus it follows from (3.2) that

X(t) − Z(t) = Xn +
∫ t

tn

a(Z(s), Z(s − τ))ds +
∫ t

tn

b(Z(s), Z(s − τ))dW(s)

+
∫ t

tn

∫

ε

c(Z(s), Z(s − τ), v)p̃φ(dv × ds) −Xn.

(3.8)

Therefore, by taking expectations and the Cauchy-Schwarz inequality and using the
martingale properties of dW(t) and p̃φ(dv × dt), we get

E
∣
∣∣X(t) − Z(t)

∣
∣∣
2

≤ 3E

∣∣∣∣∣

∫ t

tn

a(Z(s), Z(s − τ))ds

∣∣∣∣∣

2

+ 3E

∣∣∣∣∣

∫ t

tn

b(Z(s), Z(s − τ))dW(s)

∣∣∣∣∣

2

+ 3E

∣∣∣∣∣

∫ t

tn

∫

ε

c(Z(s), Z(s − τ), v)p̃φ(dv × ds)

∣∣∣∣∣

2

≤ 3ΔtE
∫ t

tn

|a(Z(s), Z(s − τ))|2ds + 3E
∫ t

tn

|b(Z(s), Z(s − τ))|2ds

+ 3E
∫ t

tn

∫

ε

|c(Z(s), Z(s − τ), v)|2φ(dv)ds,

(3.9)

where the inequality |u1 + u2 + u3|2 ≤ 3|u1|2 + 3|u2|2 + 3|u3|2 for u1, u2, u3 ∈ Rd is used.
Therefore, by applying Assumption 2.1, we get

E
∫ t

tn

|a(Z(s), Z(s − τ))|2ds

≤ 2E
∫ t

tn

|a(Z(s), Z(s − τ)) − a(0, 0)|2ds + 2E
∫ t

tn

|a(0, 0)|2ds

≤ 2CkE
∫ t

tn

(
|Z(s)|2 + |Z(s − τ)|2

)
ds + 2|a(0, 0)|2Δt

≤ 4k2CkΔt + 2|a(0, 0)|2Δt,

E
∫ t

tn

|b(Z(s), Z(s − τ))|2ds ≤ 4k2CkΔt + 2|b(0, 0)|2Δt,

E
∫ t

tn

∫

ε

|c(Z(s), Z(s − τ), v)|2φ(dv)ds ≤ 4k2CΔt + 2Δt

∫

ε

|c(0, 0, v)|2φ(dv).

(3.10)
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Hence by substituting (3.10) into (3.9), we get

E
∣
∣
∣X(t) − Z(t)

∣
∣
∣
2 ≤ Δt

(
24k2Ck + 12k2C + 6|a(0, 0)|2 + 6|b(0, 0)|2 + 6

∫

ε

|c(0, 0, v)|2φ(dv)
)
,

(3.11)

for 0 ≤ t ≤ T ∧ σk ∧ ρk and k ≥ [L
√
τ + |ξ(0)|] + 1.

So from Assumption 2.3, we can get the result (3.7) by choosing

K1(k) = 24k2Ck + 12k2C + 6|a(0, 0)|2 + 6|b(0, 0)|2 + 6
∫

ε

|c(0, 0, v)|2φ(dv). (3.12)

In the following lemma, we demonstrate that the solution of continuous-time Euler
method (3.4) remains in a compact set with a large probability.

Lemma 3.2. Under Assumptions 2.1, 2.2, 2.3, and 2.4, for any pair of ε ∈ (0, 1) and T > 0, there
exist a sufficiently large integer k∗ and a sufficiently small Δt∗1 such that

P
(
ρk∗ ≤ T

) ≤ ε, ∀Δt ≤ Δt∗1, (3.13)

where ρk∗ is defined in Lemma 3.1.

Proof. Our proof is completed by the following steps.
Step 1. Using Itô’s formula (see [1]) to V (X(t)), for t ≥ 0, we have

dV
(
X(t)

)
=
(
Vx

(
X(t)

)
a(Z(t), Z(t − τ))

+
1
2
trace

(
bT(Z(t), Z(t − τ))Vxx

(
X(t)

)
b(Z(t), Z(t − τ))

))
dt

+
∫

ε

(
V
(
X(t) + c(Z(t), Z(t − τ), v)

)

−V
(
X(t)

)
− Vx

(
X(t)

)
c(Z(t), Z(t − τ), v)

)
φ(dv)dt

+ Vx

(
X(t)

)
b(Z(t), Z(t − τ))dW(t)

+
∫

ε

(
V
(
X(t) + c(Z(t), Z(t − τ), v)

)
− V
(
X(t)

))
p̃φ(dv × dt)

= LV
(
X(t), X(t − τ)

)
dt + f

(
X(t), X(t − τ), Z(t), Z(t − τ)

)
dt

+ Vx

(
X(t)

)
b(Z(t), Z(t − τ))dW(t)

+
∫

ε

(
V
(
X(t) + c(Z(t), Z(t − τ), v)

)
− V
(
X(t)

))
p̃φ(dv × dt),

(3.14)
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where f(x, y, Z1, Z2) : Rd × Rd × Rd × Rd → R is defined by

f
(
x, y, Z1, Z2

)

= Vx(x)
(
a(Z1, Z2) − a

(
x, y
))

+
1
2
trace

(
bT(Z1, Z2)Vxx(x)b(Z1, Z2)

)

− 1
2
trace

(
bT
(
x, y
)
Vxx(x)b

(
x, y
))

+
∫

ε

(
Vx(x)c

(
x, y, v

) − Vx(x)c(Z1, Z2, v)
)
φ(dv)

+
∫

ε

(
V (x + c(Z1, Z2, v)) − V

(
x + c

(
x, y, v

)))
φ(dv).

(3.15)

Moreover, for (x, y, Z1, Z2) ∈ Rd × Rd × Rd × Rd with |x| ∨ |y| ∨ |Z1| ∨ |Z2| ≤ k, we have

f
(
x, y, Z1, Z2

)
= Vx(x)

(
a(Z1, Z2) − a

(
x, y
))

+
1
2
trace

((
bT(Z1, Z2) − bT

(
x, y
))
Vxx(x)b(Z1, Z2)

)

+
1
2
trace

(
bT
(
x, y
)
Vxx(x)

(
b(Z1, Z2) − b

(
x, y
)))

+
∫

ε

Vx(x)
(
c
(
x, y, v

) − c(Z1, Z2, v)
)
φ(dv)

+
∫

ε

(
V (x + c(Z1, Z2, v)) − V

(
x + c

(
x, y, v

)))
φ(dv)

≤ Lk

(|x − Z1| +
∣∣y − Z2

∣∣),

(3.16)

where Assumptions 2.1 and 2.2 are used and Lk is a positive constant dependent on integer
k, intensity λ and independent of Δt. Therefore, from (3.16), Assumption 2.4, and (3.7) in
Lemma 3.1, we obtain

E
∫ t∧ρk

0
f
(
X(s), X(s − τ), Z(s), Z(s − τ)

)
ds

≤ LkE
∫ t∧ρk

0

∣∣∣X(s) − Z(s)
∣∣∣ds + LkE

∫ t∧ρk

0

∣∣∣X(s − τ) − Z(s − τ)
∣∣∣ds

≤ 2LkE
∫ t∧ρk

0

∣∣∣X(s) − Z(s)
∣∣∣ds + Lk

∫0

−τ
|ξ(s) − Z(s)|ds

≤ 2Lk

∫ t

0

(
E
∣∣∣X
(
s ∧ ρk

) − Z
(
s ∧ ρk

)∣∣∣
2
)1/2

ds + Lk

−1∑

n=−m

∫ tn+1

tn

|ξ(s) − ξ(tn)|ds

≤ 2LkT
√
K1(k)Δt + LkLτ

√
Δt,

(3.17)
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for 0 ≤ t ≤ T and k ≥ [L
√
τ + |ξ(0)|] + 1. Hence by taking expectations and integration to

(3.14), applying the martingale properties of dW(t) and p̃φ(dv × dt), and then using (3.17)
and Assumption 2.2, we obtain

EV
(
X
(
t ∧ ρk

))

= V (X0) + E
∫ t∧ρk

0
LV
(
X(s), X(s − τ)

)
ds

+ E
∫ t∧ρk

0
f
(
X(s), X(s − τ), Z(s), Z(s − τ)

)
ds

≤ V (X0) + 2LkT
√
K1(k)Δt + τLkL

√
Δt

+ E
∫ t∧ρk

0

(
μ1

(
1 + V

(
X(s)

)
+ V
(
X(s − τ)

)
+U
(
X(s − τ)

))
− μ2U

(
X(s)

))
ds,

(3.18)

for 0 ≤ t ≤ T and k ≥ [L
√
τ + |ξ(0)|] + 1.

Step 2. For 0 ≤ t ≤ τ and k ≥ [L
√
τ + |ξ(0)|] + 1, it follows from (3.18) that

EV
(
X
(
t ∧ ρk

)) ≤ V (X0) + 2LkT
√
K1(k)Δt + τLkL

√
Δt + α1

+ μ1E
∫ t∧ρk

0
V
(
X(s)

)
ds − μ2E

∫ t∧ρk

0
U
(
X(s)

)
ds,

(3.19)

where α1 = μ1
∫0
−τ(1 + V (ξ(s)) +U(ξ(s)))ds. Thus from (3.19), we get

EV
(
X
(
t ∧ ρk

)) ≤ V (X0) + 2LkT
√
K1(k)Δt

+ τLkL
√
Δt + α1 + μ1E

∫ t

0
V
(
X
(
s ∧ ρk

))
ds,

(3.20)

by the Gronwall inequality (see [18]), which gives

EV
(
X
(
t ∧ ρk

)) ≤
(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α1

)
eμ1t, (3.21)

for 0 ≤ t ≤ τ and k ≥ [L
√
τ + |ξ(0)|] + 1. Moreover, from (3.19) and (3.21), we have

E
∫ τ∧ρk

0
U
(
X(s)

)
ds

≤ μ−1
2

(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α1 + μ1

∫ τ

0
EV
(
X
(
s ∧ ρk

))
ds

)

≤
(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α1

)
eμ1τμ−1

2 ,

(3.22)

for k ≥ [L
√
τ + |ξ(0)|] + 1.
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Step 3. For 0 ≤ t ≤ 2τ and k ≥ [L
√
τ + |ξ(0)|] + 1, it follows from (3.18) that

EV
(
X
(
t ∧ ρk

))

≤ V (X0) + 2LkT
√
K1(k)Δt + τLkL

√
Δt + α2

+ μ1E
∫ t∧ρk

0
V
(
X(s)

)
ds − μ2E

∫ t∧ρk

0
U
(
X(s)

)
ds.

(3.23)

As the same way as Step 2, we can obtain

EV
(
X
(
t ∧ ρk

))

≤
(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α2

)
eμ1t, 0 ≤ t ≤ 2τ,

(3.24)

E
∫2τ∧ρk

0
U
(
X(s)

)
ds

≤
(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α2

)
e2μ1τμ−1

2 ,

(3.25)

where

α2 = μ1E
∫2τ∧ρk

0

(
1 + V

(
X(s − τ)

)
+U
(
X(s − τ)

))
ds

= μ1E
∫2τ∧ρk−τ

−τ

(
1 + V

(
X(s)

)
+U
(
X(s)

))
ds

≤ μ1E
∫ τ∧ρk

−τ

(
1 + V

(
X(s)

)
+U
(
X(s)

))
ds

= α1 + μ1E
∫ τ∧ρk

0

(
1 + V

(
X(s)

)
+U
(
X(s)

))
ds

≤ α1 + μ1τ + μ1

∫ τ

0
EV
(
X
(
s ∧ ρk

))
ds + μ1E

∫ τ∧ρk

0
U
(
X(s)

)
ds

≤ μ1τ +
(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α1

)(
eμ1τ + eμ1τμ1μ

−1
2

)
,

(3.26)

from (3.21) and (3.22). So (3.24) becomes

EV
(
X
(
t ∧ ρk

)) ≤
(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α1

)
β1, 0 + β2, 0, (3.27)

for 0 ≤ t ≤ 2τ and k ≥ [L
√
τ + |ξ(0)|] + 1, where

β1, 0 =
(
1 + eμ1τ + eμ1τμ1μ

−1
2

)
e2μ1τ , β2, 0 =

(
μ1τ − α1

)
e2μ1τ . (3.28)
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Step 4. By repeating the same way in Steps 2 and 3, we get

EV
(
X
(
T ∧ ρk

)) ≤
(
V (X0) + 2LkT

√
K1(k)Δt + τLkL

√
Δt + α1

)
β1 + β2, (3.29)

for k ≥ [L
√
τ + |ξ(0)|] + 1, where β1 and β2 are two constants dependent on μ1, μ2, τ, T and

independent of k and Δt. Therefore, we have

P
(
ρk ≤ T

) ≤ V (X0)β1 + α1β1 + β2 + 2β1LkT
√
K1(k)Δt + β1τLkL

√
Δt

ϑk
, (3.30)

where

ϑk = inf
|X|≥k

V
(
X
)
, k ≥ [L√τ + |ξ(0)|] + 1. (3.31)

Now, for any ε ∈ (0, 1), we can choose sufficiently large integer k∗ such that

V (X0)β1 + α1β1 + β2
ϑk∗

≤ ε

2
(3.32)

and sufficiently small Δt∗1 such that

2β1Lk∗T
√
K1(k∗)Δt∗1 + β1τLk∗L

√
Δt∗1

ϑk∗
≤ ε

2
. (3.33)

So from (3.30), we can obtain

P
(
ρk∗ ≤ T

) ≤ ε, ∀Δt ≤ Δt∗1. (3.34)

4. Convergence in Probability

In this section, we show the convergence in probability of the Euler method to (2.1) over a
finite time interval [0, T], which is based on the following lemma.

Lemma 4.1. Under Assumptions 2.1, 2.3, and 2.4, for any T > 0, there exists a positive constant
K2(k), dependent on k and independent of Δt, such that for all Δt ∈ (0, 1) the solution of (2.1) and
the continuous-time Euler method (3.4) satisfy

E

(

sup
0≤t≤T

∣∣∣x
(
t ∧ σk ∧ ρk

) −X
(
t ∧ σk ∧ ρk

)∣∣∣
2
)

≤ K2(k)Δt, (4.1)

where σk and ρk are defined in Lemmas 2.7 and 3.1, respectively, and k ≥ [L
√
τ + |ξ(0)|] + 1.



18 Abstract and Applied Analysis

Proof. From (2.1) and (3.4), for any 0 ≤ t′ ≤ T and k ≥ [L
√
τ + |ξ(0)|] + 1, we have

E

(

sup
0≤t≤t′

∣
∣
∣x
(
t ∧ σk ∧ ρk

) −X
(
t ∧ σk ∧ ρk

)∣∣
∣
2
)

≤ 3E

⎛

⎝sup
0≤t≤t′

∣
∣
∣
∣
∣

∫ t∧σk∧ρk

0

(
a
(
x
(
s−
)
, x
(
(s − τ)−

)) − a(Z(s), Z(s − τ))
)
ds

∣
∣
∣
∣
∣

2
⎞

⎠

+ 3E

⎛

⎝sup
0≤t≤t′

∣
∣
∣
∣
∣

∫ t∧σk∧ρk

0

(
b
(
x
(
s−
)
, x
(
(s − τ)−

)) − b(Z(s), Z(s − τ))
)
dW(s)

∣
∣
∣
∣
∣

2
⎞

⎠

+ 3E

⎛

⎝sup
0≤t≤t′

∣
∣
∣∣∣

∫ t∧σk∧ρk

0

∫

ε

(
c
(
x
(
s−
)
, x
(
(s − τ)−

)
, v
) − c(Z(s), Z(s − τ), v)

)
p̃φ(dv × ds)

∣
∣
∣∣∣

2
⎞

⎠,

(4.2)

where the inequality |u1 + u2 + u3|2 ≤ 3|u1|2+3|u2|2+3|u3|2 for u1, u2, u3 ∈ Rd is used. Therefore,
by using the Cauchy-Schwarz inequality, Assumptions 2.1 and 2.4, Fubini’s Theorem, and
Lemma 3.1, we obtain

E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧σk∧ρk

0

(
a
(
x
(
s−
)
, x
(
(s − τ)−

)) − a(Z(s), Z(s − τ))
)
ds

∣∣∣∣∣

2
⎞

⎠

≤ E

(

sup
0≤t≤t′

∫ t∧σk∧ρk

0
12ds

∫ t∧σk∧ρk

0

∣∣a
(
x
(
s−
)
, x
(
(s − τ)−

)) − a(Z(s), Z(s − τ))
∣∣2ds

)

≤ TE

(∫ t′∧σk∧ρk

0

∣∣a
(
x
(
s−
)
, x
(
(s − τ)−

)) − a(Z(s), Z(s − τ))
∣∣2ds

)

≤ TCkE

(∫ t′∧σk∧ρk

0

∣∣x
(
s−
)−Z(s)

∣∣2ds

)

+TCkE

(∫ t′∧σk∧ρk

0

∣∣x
(
(s−τ)−)−Z(s−τ) ∣∣2ds

)

≤ 2TCkE

(∫ t′∧σk∧ρk

0

∣∣x
(
s−
) − Z(s)

∣∣2ds

)

+ TCk

∫0

−τ
|ξ(s) − Z(s)|2ds

≤ 4TCkE

(∫ t′∧σk∧ρk

0

∣∣∣X(s) − Z(s)
∣∣∣
2
ds

)

+ 4TCkE

(∫ t′∧σk∧ρk

0

∣∣∣x
(
s−
) −X(s)

∣∣∣
2
ds

)

+ TCk

−1∑

n=−m

∫ tn+1

tn

|ξ(s) − ξ(tn)|2ds
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≤ 4TCk

(∫ t′

0
E
∣
∣
∣X
(
s ∧ σk ∧ ρk

) − Z
(
s ∧ σk ∧ ρk

)∣∣
∣
2
ds

)

+ 4TCk

∫ t′

0
E

(

sup
0≤u≤s

∣
∣
∣x
(
u ∧ σk ∧ ρ−k

) −X
(
u ∧ σk ∧ ρk

)∣∣
∣
2
)

ds + TCkL
2τΔt

≤
(
4T2CkK1(k) + TCkL

2τ
)
Δt

+ 4TCk

∫ t′

0
E

(

sup
0≤u≤s

∣
∣
∣x
(
u ∧ σk ∧ ρ−k

) −X
(
u ∧ σk ∧ ρk

)∣∣
∣
2
)

ds.

(4.3)

Moreover, by using the martingale properties of dW(t) and p̃φ(dv×dt), Assumptions 2.1 and
2.4, Fubini’s Theorem, and Lemma 3.1, we have

E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧σk∧ρk

0

(
b
(
x
(
s−
)
, x
(
(s − τ)−

)) − b(Z(s), Z(s − τ))
)
dW(s)

∣∣∣∣∣

2
⎞

⎠

≤ 4E
∫ t′∧σk∧ρk

0

∣∣b
(
x
(
s−
)
, x
(
(s − τ)−

)) − b(Z(s), Z(s − τ))
∣∣2ds

≤ 4CkE
∫ t′∧σk∧ρk

0

∣∣x
(
s−
) − Z(s)

∣∣2ds + 4CkE
∫ t′∧σk∧ρk

0

∣∣x
(
(s − τ)−

) − Z(s − τ)
∣∣2ds

≤ 8CkE
∫ t′∧σk∧ρk

0

∣∣x
(
s−
) − Z(s)

∣∣2ds + 4Ck

∫0

−τ
|ξ(s) − Z(s)|2ds

≤ 16CkE

(∫ t′∧σk∧ρk

0

∣∣∣X(s) − Z(s)
∣∣∣
2
ds

)

+ 16CkE

(∫ t′∧σk∧ρk

0

∣∣∣x
(
s−
) −X(s)

∣∣∣
2
ds

)

+ 4Ck

−1∑

n=−m

∫ tn+1

tn

|ξ(s) − ξ(tn)|2ds

≤
(
16TCkK1(k) + 4CkL

2τ
)
Δt

+ 16Ck

∫ t′

0
E

(

sup
0≤u≤s

∣∣∣x
(
u ∧ σk ∧ ρ−k

) −X
(
u ∧ σk ∧ ρk

)∣∣∣
2
)

ds,

E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧σk∧ρk

0

∫

ε

(
c
(
x
(
s−
)
, x
(
(s − τ)−

)
, v
) − c(Z(s), Z(s − τ), v)

)
p̃φ(dv × ds)

∣∣∣∣∣

2
⎞

⎠
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≤ 4E

∣
∣
∣
∣
∣

∫ t′∧σk∧ρk

0

∫

ε

(
c
(
x
(
s−
)
, x
(
(s − τ)−

)
, v
) − c(Z(s), Z(s − τ), v)

)
p̃φ(dv × ds)

∣
∣
∣
∣
∣

2

= 4E
∫ t′∧σk∧ρk

0

∫

ε

∣
∣c
(
x
(
s−
)
, x
(
(s − τ)−

)
, v
) − c(Z(s), Z(s − τ), v)

∣
∣2φ(dv)ds

≤
(
16TCK1(k) + 4CL2τ

)
Δt

+ 16C
∫ t′

0
E

(

sup
0≤u≤s

∣∣
∣x
(
u ∧ σk ∧ ρ−k

) −X
(
u ∧ σk ∧ ρk

)∣∣
∣
2
)

ds.

(4.4)

Therefore by substituting (4.3) and (4.4) into (4.2), we get

E

(

sup
0≤t≤t′

∣∣∣x
(
t ∧ σk ∧ ρk

) −X
(
t ∧ σk ∧ ρk

)∣∣∣
2
)

≤ Δt
(
12T2CkK1(k) + 3TCkL

2τ + 48TCkK1(k) + 48TCK1(k) + 12CkL
2τ + 12CL2τ

)

+ (12TCk + 48Ck + 48C)
∫ t′

0
E

(

sup
0≤u≤s

∣∣∣x
(
u ∧ σk ∧ ρ−k

) −X
(
u ∧ σk ∧ ρk

)∣∣∣
2
)

ds.

(4.5)

So by using the Gronwall inequality (see [18]), we have the result (4.1) by choosing

K2(k) =
(
12T2CkK1(k) + 3TCkL

2τ + 48TCkK1(k) + 48TCK1(k)

+12CkL
2τ + 12CL2τ

)
exp
(
12T2Ck + 48TCk + 48TC

)
.

(4.6)

Now, we state our main theorem which shows the convergence in probability of the
continuous-time Euler method (3.4).

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, and 2.4, for sufficiently small ε, ς ∈ (0, 1), there is a
Δt∗ such that for all Δt < Δt∗

P

(

sup
0≤t≤T

∣∣∣x(t) −X(t)
∣∣∣
2 ≥ ς

)

≤ ε, (4.7)

for any T > 0.

Proof. For sufficiently small ε, ς ∈ (0, 1), we define

Ω =

{

ω : sup
0≤t≤T

∣∣∣x(t) −X(t)
∣∣∣
2 ≥ ς

}

. (4.8)
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By Lemmas 2.9 and 3.2, there exists a pair of k� and Δt�1 such that

P(σk� ≤ T) ≤ ε

3
,

P
(
ρk� ≤ T

) ≤ ε

3
, ∀Δt ≤ Δt�1.

(4.9)

We then have

P
(
Ω
)
≤ P
(
Ω ∩ {σk� ∧ ρk� > T

})
+ P(σk� ∧ σk� ≤ T)

≤ P
(
Ω ∩ {σk� ∧ σk� > T}

)
+ P(σk� ≤ T) + P

(
ρk� ≤ T

)

≤ P
(
Ω ∩ {σk� ∧ ρk� > T

})
+
2ε
3
,

(4.10)

for Δt ≤ Δt�1. Moreover, from Lemma 4.1, we have

ςP
(
Ω ∩ {σk� ∧ ρk� > T

}) ≤ E

(

I{σk�∧ρk�>T} sup
0≤t≤T

∣∣∣x(t) −X(t)
∣∣∣
2
)

≤ E

(

sup
0≤t≤T

∣∣∣x
(
t ∧ σk� ∧ ρk�

) −X
(
t ∧ σk� ∧ ρk�

)∣∣∣
2
)

≤ K2(k�)Δt,

(4.11)

which gives

P
(
Ω ∩ {σk� ∧ ρk� > T

}) ≤ ε

3
, (4.12)

for Δt ≤ Δt�2. Hence, from the inequalities above, we get

P
(
Ω
)
≤ ε, (4.13)

for Δt ≤ Δt�, where Δt� = min{Δt�1,Δt�2}.
We remark that the continuous-time Euler solution X(t) cannot be computed, since it

requires knowledge of the entire Brownian motion and Poisson random measure paths. So
the last theorem demonstrates the convergence in probability of the discrete Euler solution
(3.2).
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Theorem 4.3. Under Assumptions 2.1, 2.2, 2.3, and 2.4, for sufficiently small ε, ς ∈ (0, 1), there is a
Δt∗ such that for all Δt < Δt∗

P
(
|x(t) − Z(t)|2 ≥ ς, 0 ≤ t ≤ T

)
≤ ε, (4.14)

for any T > 0.

Proof. For sufficiently small ε, ς ∈ (0, 1), we define

Ω̃ =
{
ω : |x(t) − Z(t)|2 ≥ ς, 0 ≤ t ≤ T

}
. (4.15)

As the same analysis as the proof in Theorem 4.2, we have

P
(
Ω̃
)
≤ P
(
Ω̃ ∩ {σk� ∧ ρk� > T

})
+
2ε
3
. (4.16)

Recalling that

ςP
(
Ω̃ ∩ {σk� ∧ ρk� > T

}) ≤ E
(
|x(T) − Z(T)|2I{σk�∧ρk�>T}

)

≤ E
∣∣x
(
T ∧ σk� ∧ ρk�

) − Z
(
T ∧ σk� ∧ ρk�

)∣∣2

≤ 2E

(

sup
0≤t≤T

∣∣∣x
(
t ∧ σk� ∧ ρk�

) −X
(
t ∧ σk� ∧ ρk�

)∣∣∣
2
)

+ 2E
∣∣∣X
(
T ∧ σk� ∧ ρk�

) − Z
(
T ∧ σk� ∧ ρk�

)∣∣∣
2

≤ 2K1(k�)Δt + 2K2(k�)Δt

(4.17)

and using Lemmas 3.1 and 4.1, we obtain

P
(
Ω̃ ∩ {σk� ∧ ρk� > T

}) ≤ ε

3
, (4.18)

for sufficiently small Δt. So the inequalities above demonstrate

P
(
Ω̃
)
≤ ε, (4.19)

for all sufficiently small Δt.
Hence we complete the result (4.14).

5. Numerical Example

In this section, a numerical example is analyzed under Assumptions 2.1, 2.2, 2.3, and 2.4
which cover many highly nonlinear SDDEs driven by Poisson random measure.



Abstract and Applied Analysis 23

Now, we consider the following equation:

dx(t) =
(
2x2((t − 0.05)−

) − 4x3(t−
))

dt + 3x2((t − 0.05)−
)
dW(t)

+
∫

ε

vx2((t − 0.05)−
)
p̃φ(dv × dt), t > 0,

(5.1)

with x(t) = t2, t ∈ [−0.05, 0], where d = m = r = 1. The compensated measure of the Poisson
random measure pφ(dv × dt) is given by φ(dv)dt = λf(v)dv dt, where λ = 5 and

f(v) =
1√
2πv

exp

(

− (lnv)
2

2

)

, 0 ≤ v < ∞, (5.2)

is the density function of a lognormal random variable.
Clearly, the equation cannot satisfy the global Lipschitz conditions, the linear growth

conditions and the classical Khasminskii-type conditions. But, the local Lipschitz conditions
are satisfied. On the other hand, for V (x) = |x|2, we have

LV
(
x, y
)
= 2x

(
2y2 − 4x3

)
+ 9y4 +

∫

ε

v2y4λ
1√
2πv

exp

(

− (lnv)
2

2

)

dv

≤ 2x2 + 60y4 − 8x4

= 60
(
1 + x2 + y2 + y4

)
− 8x4,

(5.3)

whereU(x) = x4, μ1 = 60, μ2 = 8. In other words, the equation satisfies Assumptions 2.1, 2.2,
2.3, and 2.4.

So according to Theorem 2.8, (5.1) has a unique global solution x(t) on t ∈ [−0.05,∞).
Given the stepsize Δt = 0.0025, we can have the Euler method to (5.1)

Xn = (nΔt)2, for n = −20,−19, . . . ,−1, 0,

Xn+1 = Xn +
(
2X2

n−20 − 4X3
n

)
Δt + 3X2

n−20ΔWn +
∫ tn+1

tn

∫

ε

vX2
n−20p̃φ(dv × dt),

(5.4)

for n = 0, 1, . . ., where ΔWn = W(tn+1) −W(tn).
And in Matlab experiment, we actually obtain the discrete Euler

Xn+1 = Xn +
(
2X2

n−20 − 4X3
n − 5

√
eX2

n−20
)
Δt

+ 3X2
n−20ΔWn +X2

n−20

pφ(tn+1)∑

i=pφ(tn)+1

ξi,

(5.5)

where ξi is distributed according to f(v). Subsequently, we can get the result in Theorems 4.2
and 4.3.
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