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Inspired by the holographic entanglement entropy, for geometries with nonzero abelian charges, we define a quantity which is
sensitive to the background charges. One observes that there is a critical charge below the system that is mainly described by
the metric, and the effects of the background charges are just via metric’s components. For charges above the critical one, the
background gauge field plays an essential role.This, in turn, might be used to define an order parameter to probe phases of a system
with fractionalized charges.

1. Introduction

In application of AdS/CFT correspondence [1] to condensed
matter physics, one typically is interested in a gravity dual
which describes a system at finite temperature and density.
Following [2] a natural guess for the dual gravity would be
a charged black hole. The existence of the charged horizon
would result in a dual theory at finite temperature and finite
density.

We note, however, that this is not the only way to
construct a gravity model whose dual theory is a system at
finite density. Indeed, finite density holographic duals may
be obtained by two, rather distinctive, ways. Actually, the
asymptotic electric flux—to be identified with the chemical
potential at the boundary theory—may be supported by
either nonzero charges from behind an event horizon or
charged matter in the bulk geometry. If we are interested in
a phase with unbroken 𝑈(1) global group, the matter fied in
the bulk is charged fermions (see, e.g., [3]).

Of course one can distinguish between these two cases
due to the fact that in the first case (fractionalized phase),
the charge density is of order 𝑁2, while in the second
case (mesonic phase), it is of order O(𝑁0), where 𝑁 is the
number of degrees of freedom (the number of color for𝑈(𝑁)
gauge theory). Alternatively, when the 𝑈(1) is unbroken, the

fractionalized phase may also be identified by the violation of
the Luttinger theorem [4–6].

Since the charge density of a system may be originated
from both behind an even horizon and a charged matter,
it could be in different phases depending on the origin of
the asymptotic flux. To classify possible phases, an order
parameter has been introduced in [7]. This order parameter
at leading order is essentially the holographic entanglement
entropy taking into account the electric fluxes through the
hypersurface of holographic entanglement entropy. In the
present paper, we would like to introduce an order parameter
which may probe a system with the fractionalized charges.

To proceed, let us consider a 𝑑 + 2 dimensional Einstein-
Dilaton-Maxwell theory whose action, inminimal form,may
be written as follows:

𝐼 =
1

16𝜋𝐺
𝑑+2

∫𝑑
𝑑+2
𝑥√−𝑔

× [R − 1
2
(𝜕𝜙)
2

+ 𝑉 (𝜙) −
1

4

𝑛

∑

𝑖=1

𝑒
𝜆𝑖𝜙𝐹
2

𝑖
] ,

(1)

where 𝐺
𝑑+2

is the 𝑑 + 2 dimensional Newton constant and
𝜆
𝑖
’s are parameters of model. This is, indeed, a typical action

we get from compactification of low energy effective action of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194567213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in High Energy Physics

string theory. Of course this is the case for particular values
of the parameters 𝜆

𝑖
and a specific form of the potential.

Nevertheless, in what follows, we will not restrict ourselves
to these particular values.

A generic solution of the equations ofmotion of the above
action could be a charged black hole (brane) with nontrivial
dilaton profile.Wemay assume the background solution to be
an asymptotically locally AdS

𝑑+2
.Therefore, the solutionmay

provide a gravitational dual for a 𝑑 + 1 dimensional theory at
finite charge and temperature with a UV fixed point.

The gravity description may be used to extract certain
information about the dual field theory. In particular, one
may study certain nonlocal observables. Prototype examples
include holographic entanglement entropy [8] and Wilson
loop [9, 10]. In both cases, the gravitational dual is found
useful for extracting the corresponding information. In both
cases, the problem reduces to minimizing an area of a
hypersurface in the bulk gravity. Actually, motivated by these
quantities, we would like to define a similar object which is
also sensitive to the background gauge field.

We note, however, that since typically we are interested in
backgrounds with electric field, it is not appropriate to work
with fixed time as one does for the holographic entanglement
entropy. In other words, it would be more natural to consider
the geometric entropy [11, 12] which is defined as follows. To
be specific, consider a finite temperature four-dimensional
quantum field theory on 𝑆1 × 𝑆3. The metric of 𝑆3 sphere may
be parametrized as follows

𝑑Ω
2

𝑑
= 𝑑𝜃 + sin2𝜃 (𝑑𝜓2 + sin2𝜓𝑑𝜙2) , (2)

with 0 ≤ 𝜃, 𝜓 ≤ 𝜋 and 0 ≤ 𝜙 ≤ 2𝜋.
Let us change the periodicity of 𝜙 into 0 ≤ 𝜙 ≤ 2𝜋𝑘which

results to conical singularities at 𝜓 = 0, 𝜋 for 𝑘 ̸= 1 with the
deficit angle 2𝜋(1 − 𝑘). Let us denote by 𝑍[𝑘] the partition
function of the theory on this singular space. Then one may
define a density matrix as follows:

Tr 𝜌𝑘 = 𝑍 [𝑘]

(𝑍 [1])
𝑘
, (3)

where 𝑍[1] is the partition function of theory on 𝑆1 × 𝑆3.
Using the definition of von-Neumann entropy, the geometric
entropy is defined by

𝑆
𝐺
= −Tr (𝜌 log 𝜌) = −𝜕

𝑘
log( 𝑍 [𝑘]

(𝑍 [1])
𝑘
)

𝑘=1

. (4)

Restricting to a subsystem, one can also define a reduced
density matrix. Of course it is clear that the corresponding
entropy is different from the entanglement entropy, though it
may be related to it by a double Wick rotation.

From gravity point of view, it is essentially similar to
the entanglement entropy, where one should minimize a
codimension two hypersurface in the bulk. However, in the
present case-one considers a hypersurface with a spatial
direction fixed. Indeed, to compute the geometric entropy,
one usually utilizes a double Wick rotation to promote a
spatial direction to time direction. Of course as far as the

computations in the gravity side are concerned, it is not
necessary to do that.

Now consider a codimension two hypersurface in the
bulk parametrized by coordinates 𝜉

𝑎
for 𝑎 = 1, . . . , 𝑑 (in what

follows, we use a notation in which the bulk coordinates are
given by 𝑥𝜇 = (𝑡, 𝑟, 𝑥𝑖) for 𝑖 = 1, . . . , 𝑑). Then one may define
two natural quantities: the induced metric and the pull back
of the gauge field on the world volume of the hypersurface
which are given by

𝑔
𝑎𝑏
=
𝜕𝑥
𝜇

𝜕𝜉
𝑎

𝜕𝑥
]

𝜕𝜉
𝑏

𝑔
𝜇], 𝐹

𝑖

𝑎𝑏
=
𝜕𝑥
𝜇

𝜕𝜉
𝑎

𝜕𝑥
]

𝜕𝜉
𝑏

𝐹
𝑖

𝜇], for 𝑥𝑑 = fixed.

(5)

The geometric entropy can be defined in terms of the
induced metric as 𝑆

𝐺
= ∫𝑑

𝑑
𝜉√det(𝑔) when the area of the

hypersurface is minimized. On the other hand, motivated
by DBI action in the string theory, it is natural to define
the following quantity (in general, one could have put free
parameters in front of each 𝐹𝑖

𝑎𝑏
’s in the square root, and

therefore, one has an 𝑛-parameter family object: we would
like to thank D. Tong for suggesting such a possibility);

Γ =
1

𝐺
𝑑+2

∫𝑑
𝑑
𝜉√det(𝑔 + 𝑅

𝑛

∑

𝑖

𝐹
𝑖

𝑎𝑏
), (6)

where 𝑅 is a typical scale of the theory (e.g., the radius of
curvature). An advantage of this definition is that it is directly
sensitive to the background charge. This is in contrast to
the holographic entanglement entropy orWilson loop, where
the effects of the background charge are due to the metric
components.

For sufficiently small charges, onemay expand the square
root which for 𝑛 = 1 and at leading order one arrives at

Γ =
1

𝐺
𝑑+2

∫𝑑
𝑑
𝜉√det (𝑔) (1 − 1

4
𝑅
2
𝐹
2

𝑎𝑏
) , (7)

which, in turns, shows that in this limit it essentially contains
the same information as the geometric entropy, as we will
explicitly demonstrate in the next section.

For arbitrary charges, following the general idea of
AdS/CFT correspondence, it is then natural to minimize
Γ. The resultant quantity might be used to define an order
parameter which could probe different phases of the system
as we will demonstrate in the following sections, within a
specific model.

The paper is organized as follows. In the next section,
we will consider charge black branes with one 𝑈(1) charge
and then compute the quantity (6), where we will explore
its different properties. In Section three, we will redo the
same computations for the charge black hole in a global AdS
geometry. The last section is devoted to discussions.

2. Electrically Charged Black Brane Solutions

In this section, in order to explore a possible information
encoded in the expression defined by (6), we will consider
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a particular model consisting of the Einstein gravity with a
negative cosmological constant coupled to a𝑈(1) gauge field.
In this case, the action (1) reduces to

𝐼 =
1

16𝜋𝐺
𝑑+2

∫𝑑
𝑑+2
𝑥√−𝑔(R − 2Λ − 1

4
𝐹
2
) . (8)

This model admits several vacuum solutions which could be
either electric or dyonic black branes (holes) charged under
the 𝑈(1) gauge field. In what follows, we will consider the
electric case andwill postpone the dyonic one to Section four.

Let us consider a 𝑑+2 dimensional (Euclidean) Reissner-
Nordstrom AdS black brane solution which for 𝑑 ≥ 2may be
written as follows [13] (actually for 𝑑 = 1, we still have the
same solution but with 𝑓 = 1 − 𝑟2 + (𝑄2/2)𝑟2 ln 𝑟 and 𝐹

𝑟𝑡
=

𝑄/𝑟):

𝑑𝑠
2
=
𝑅
2

𝑟2
(−𝑓 (𝑟) 𝑑𝑡

2
+
𝑑𝑟
2

𝑓 (𝑟)
+

𝑑

∑

𝑖=1

𝑑𝑥
2

𝑖
) ,

𝐹
𝑟𝑡
= −𝑄𝑅√2𝑑 (𝑑 − 1)𝑟

𝑑−2
,

𝑓 (𝑟) = 1 − (1 + 𝑄
2
𝑟
2𝑑

𝐻
) (

𝑟

𝑟
𝐻

)

𝑑+1

+ 𝑄
2
𝑟
2𝑑
,

(9)

where 𝑅 = √−𝑑(𝑑 + 1)/2Λ and 𝑟
𝐻
are the radii of curvature

and horizon, respectively.TheHawking temperature in terms
of the radius of the horizon is

𝑇 =
𝑑 + 1

4𝜋𝑟
𝐻

(1 −
𝑑 − 1

𝑑 + 1
𝑄
2
𝑟
2𝑑

𝐻
) . (10)

This geometry is supposed to provide a gravitational
description for a 𝑑+1 dimensional CFT at finite temperature
and density. The corresponding chemical potential is

𝜇 = √
2𝑑

𝑑 − 1
𝑄𝑅𝑟
𝑑−1

𝐻
. (11)

Let us consider the following strip as a subsystem in the
dual 𝑑 + 1 dimensional theory:

0 ≤ 𝑡 ≤ 𝜏, −
ℓ

2
≤ 𝑥
𝑑−1

≤
ℓ

2
,

0 ≤ 𝑥
𝑖
≤ 𝐿, 𝑥

𝑑
= fixed

(12)

for 𝑖 = 1, . . . , 𝑑 − 2. Then there is a hypersurface in the
bulk whose intersection with the boundary coincides with
the above strip.The profile of the corresponding hypersurface
may be given by 𝑥

𝑑−1
= 𝑥(𝑟). Thus, the induced (Euclidean)

metric on the hypersurface is

𝑑𝑠
2

ind = 𝑔𝜇]𝑑𝑥
𝜇
𝑑𝑥

]

=
𝑅
2

𝑟2
[𝑓𝑑𝑡
2
+ (

1

𝑓
+ 𝑥
2
)𝑑𝑟
2
+

𝑑−2

∑

𝑖=1

𝑑𝑥
2

𝑖
] ,

(13)

where prime represents derivative with respect to 𝑟. In this
case, expression (6), taking into account the solution (9) and
the boundary subsystem (12), reads

Γ =
𝜏𝐿
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

∫𝑑𝑟

√1 − 𝜙2 + 𝑓𝑥2

𝑟𝑑
,

(14)

where 𝜙 = √2𝑑(𝑑 − 1)𝑄𝑟𝑑.
Now, the aim is tominimize Γ. Actually there is a standard

procedure tominimize Γ by which the expression of Γmay be
treated as a one-dimensional action for 𝑥 whose momentum
conjugate is a constant of motion. Therefore, one arrives at

𝑓𝑥


𝑟𝑑√1 − 𝜙2 + 𝑓𝑥2
= 𝑐, (15)

where 𝑐 is a constant which can be fixed at a particular point.
Usually the particular point is chosen to be the turning point
where 𝑥 → ∞ in which 𝑥 drops from the left-hand side
leading to a constant which is given in terms of a function
of 𝑟 evaluated at the turning point. When we are not
explicitly considering the effects of gauge field, for example, in
the computation of holographic entanglement or geometric
entropies where there is no 𝐹 in the square root, then the
position of turning point is located between boundary and
horizon; whereas in the present case the situation is different.

Actually, as we will see when we increase the background
charges the effects of gauge field become important leading to
a new scale in the theory which could take over the role of the
horizon. More precisely, as it is evident from (15), for a given
background charge there is a special point at which 𝜙 = 1 that
is given by

𝑟
𝜙
= (

1

2𝑑 (𝑑 − 1)𝑄
2
)

1/2𝑑

. (16)

Note that although at this point the 𝑥 dependence is dropped
from the left-hand side of (15), it is not a turning point.
Moreover, we can convince ourselves that the minimization
makes sense only for 𝑟 ≤ 𝑟

𝜙
. In other words, in the present

case, the location of the turning point will be between
boundary and 𝑟min, where 𝑟min = Min(𝑟

𝐻
, 𝑟
𝜙
); that is, 0 ≤

𝑟
𝑡
≤ 𝑟min, with 𝑟𝑡 being the turning point. In what follows, we

will consider both 𝑟min = 𝑟𝐻 and 𝑟min = 𝑟𝜙 cases.

2.1. 𝑟min = 𝑟
𝐻
Case. Let us assume 𝑟min = 𝑟𝐻, which happens

if

𝑄 ≤ 𝑄
𝑐
=

1

√2𝑑 (𝑑 − 1) 𝑟
𝑑

𝐻

, or 𝜇 ≤ 𝜇
𝑐
=

𝑅

(𝑑 − 1) 𝑟
𝐻

.

(17)

In this case, one finds

ℓ = 2∫

𝑟𝑡

0

𝑑𝑟(
𝑓
𝑡

𝑓2
)

1/2

× (
𝑟

𝑟
𝑡

)

𝑑 √1 − 𝜙2

√1 − (𝑟/𝑟
𝑡
)
2𝑑

(𝑓
𝑡
/𝑓)

,

(18)
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where 𝑓
𝑡
= 𝑓(𝑟

𝑡
). On the other hand, using (15), one arrives

at

Γ =
𝜏𝐿
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

∫

𝑟𝑡

𝜖

𝑑𝑟

√1 − 𝜙2

𝑟𝑑√1 − (𝑟/𝑟
𝑡
)
2𝑑

(𝑓
𝑡
/𝑓)

, (19)

where 𝜖 is a UV cut-off. From these expressions, it is clear
that there is a new scale in the theory that controls the effects
of the background filed, as we anticipated. Of course since at
the moment we are in the range of 𝑄 ≤ 𝑄

𝑐
, the new scale

is irrelevant in what follows. The case of 𝑄 > 𝑄
𝑐
will be

discussed latter.
If one drops the factor of √1 − 𝜙2, the above expressions

reduce to that of the geometric entropy studied in [11, 12].
Moreover, for pure AdS

𝑑+2
, 𝑑 ≥ 2, one has [8]

Γ =
𝜏𝐿
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

[
1

(𝑑 − 1) 𝜖
𝑑−1

−
2
𝑑−1
𝜋
𝑑/2

𝑑 − 1
(
Γ ((𝑑 + 1)/2𝑑)

Γ (1/2𝑑)
)

𝑑
1

ℓ𝑑−1
] ,

(20)

which is the expression of holographic entanglement entropy.
Note also that for 𝑑 = 1, one gets a logarithmic behavior, Γ ∼
ln(ℓ/𝜖).

For the RN background given in (9), we cannot find an
analytic expression for Γ as a function of ℓ. Nevertheless, we
can utilize a numerical method to find Γ(ℓ) numerically. This
is, indeed, what we will do in this subsection. To proceed, let
us first explore the behavior of ℓ as a function of 𝑟

𝑡
.

From expression (18), one finds that for sufficiently small
𝑟
𝑡
, where Γ probes the UV region of the theory, the width ℓ

vanishes as ℓ ∼ 𝑟
𝑡
→ 0. Moreover, in the opposite limit, the

width ℓ also goes to zero as the turning point approaches the
horizon. It is, indeed, due to the fact that the function 𝑓

𝑡
goes

to zero as the turning point approaches the horizon, 𝑟
𝑡
→ 𝑟
𝐻
.

Moreover in this limit the integrand does not diverge faster
than 1/𝑓

𝑡
. Therefore for 0 ≤ 𝑟

𝑡
≤ 𝑟
𝐻
the width ℓ goes to zero

at both bounds and reaches amaximum value in this interval.
This behavior can be demonstrated by solving the integral

(18) numerically. To do so, bymaking use of a scaling, without
loss of generality, one may set 𝑟

𝐻
= 1. Then, the only param-

eter of the model is the charge of the solution. Note that in
this case, one has 0 ≤ 𝑄2 ≤ 1/2𝑑(𝑑 − 1). The neutral black
brane corresponds to 𝑄 = 0, while 𝑄2 = 1/2𝑑(𝑑 − 1) is the
case where 𝑟

𝐻
= 𝑟
𝜙
. The behavior of ℓ as a function of 𝑟

𝑡
for

different values of 𝑄 for 𝑑 = 2 is shown in Figure 1.
From (18), one may, in principle, find the turning point as

a function of ℓ. Then plugging the result into (19), we get an
expression for Γ as a function ℓ. It is important to note that
since ℓ is not a one-to-one function of 𝑟

𝑡
, one has tomake sure

that the resultant Γ is minimum. Of course it is clear that the
minimum Γ is obtained from the minimum 𝑟

𝑡
.

It should also be noticed that since the space time has
a horizon, one could always imagine the case where the
function Γ is minimized by another hypersurface consisting
of two disconnected parallel surfaces suspending between

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

rt



Figure 1: ℓ as a function of 𝑟
𝑡
for the cases of 𝑄 = 0, 0.3, 0.5 which

are shown by red, green, and, blue, respectively. The blue curve
corresponds to the case of 𝑟

𝐻
= 𝑟
𝜙
, while the red one represents

the neutral black brane.

boundary and horizon. Therefore, it is crucial to see which
one is smaller.

The disconnected solution is given by setting 𝑟
𝑡
= 𝑟
𝐻
in

the expression of Γ by which we arrive at

Γ
diss

=
𝜏𝐿
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

∫

𝑟𝐻

𝜖

𝑑𝑟

√1 − 𝜙2

𝑟𝑑
. (21)

In general, depending on the parameters of the model, either
connected or disconnected solutions could be smaller. In
order to compare these two solutions, it is useful to define
the difference between them as follows:

ΔΓ = Γ
con
− Γ

dis

=
𝜏𝐿
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

×
[
[

[

∫

𝑟𝑡

0

𝑑𝑟(

√1 − 𝜙2

𝑟𝑑√1 − (𝑟/𝑟
𝑡
)
2𝑑

(𝑓
𝑡
/𝑓)

−

√1 − 𝜙2

𝑟𝑑
)

−∫

𝑟𝐻

𝑟𝑡

𝑑𝑟

√1 − 𝜙2

𝑟𝑑

]
]

]

.

(22)

Note that although both connected and disconnected solu-
tions are UV divergent, the UV contribution drops out in the
difference leading to a finite number.The behaviors ofΔΓ as a
function of ℓ for different values of𝑄 for 𝑑 = 2 case are drawn
in Figure 2.

One observes that for sufficiently small ℓ, the closed
hypersurface minimizes the expression of Γ, though there
is a critical width over which the disconnected solution is
favored. Moreover, the critical width is always smaller than



Advances in High Energy Physics 5

0.2 0.4 0.6 0.8 1.0

0.0

0.1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Δ
Γ



Figure 2: ΔΓ as a function of ℓ for the cases of 𝑄 = 0, 0.3, 0.5

which are shown by red, green, and blue, respectively.The blue curve
corresponds to the case where 𝑟

𝐻
= 𝑟
𝜙
, and the red one corresponds

to the neutral case. Here, we have set 𝑟
𝐻
= 1 and 𝜏𝐿𝑑−2𝑅𝑑/𝐺

𝑑+2
= 1.

the maximum value that the width can reach. Therefore, one
may conclude that Γ undergoes a sort of a phase transition
before it reaches the maximum ℓ. It is worth to note that as
we increase the charge, themaximumwidth becomes smaller
and the phase transition occurs at smaller width; nevertheless
as long as 𝑄 ≤ 𝑄

𝑐
, the behavior is universal which is that of

geometric entropy.
Therefore, as far as the qualitative behavior of Γ is

concerned, the effects of gauge field are not important and
the main contributions come from the metric. In fact, the
background gauge field only affects the position of the
horizon. We note, however, that as we increase the back-
ground charge, one expects the effects of background charges
to become important as we will explore in the following
subsection.

2.2. 𝑟min = 𝑟𝜙 Case. To study the effects of the background
gauge field, one may increase the background charge so that
𝑄 > 𝑄

𝑐
, where 𝑟min = 𝑟𝜙. Since in our notations we have set

𝑟
𝐻
= 1, there is an upper bound on the background charge.

More precisely, the allowed values of background charge are
1/(2𝑑(𝑑 − 1)) ≤ 𝑄

2
≤ (𝑑 + 1)/(𝑑 − 1). Note that 𝑄2 = (𝑑 +

1)/(𝑑−1) corresponds to the extremal case where 𝑇 = 0.This
indicates that the maximum value that the turning point can
get is 𝑟

𝜙
. More precisely, one has 0 ≤ 𝑟

𝑡
≤ 𝑟
𝜙
< 𝑟
𝐻
. In other

words, since the turning point cannot reach the horizon, we
will not have the disconnected solution.

Indeed looking at (18), one finds that although the width
vanishes in the limit of 𝑟

𝑡
→ 0, it terminates at a nonzero

value as one approaches 𝑟
𝜙
. By making use of the numerical

method, the width ℓ can be found as a function of turning
point which has been depicted in Figure 3(a).

Moreover, since in the present case we do not have the
disconnected solution, it does not make sense to compute the
difference ΔΓ. Indeed the function Γ is the quantity we may
want to compute. We note that due to the UV contribution,

Γ diverges and has to be regulated by a UV cutoff. More
precisely, one gets

Γ =
𝜏𝐿
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

∫

𝑟𝑡

𝜖

𝑑𝑟

√1 − 𝜙2

𝑟𝑑√1 − (𝑟/𝑟
𝑡
)
2𝑑

(𝑓
𝑡
/𝑓)

=
1

𝐺
𝑑+2

𝜏𝐿
𝑑−2
𝑅
𝑑

(𝑑 − 1) 𝜖
𝑑−1

+ Γfinite.

(23)

Subtracting the divergence part, it is then straightforward to
calculate the finite part, Γfinite, numerically. The results are
shown in Figure 3(b).

From our numerical results, one observes that as long as
we are in the range of 𝑄

𝑐
< 𝑄 ≤ √(𝑑 + 1)/(𝑑 − 1), qualita-

tively the behavior of Γ is universal, though it decreases as one
increases the charge. Indeed, there is a critical width ℓ

𝑐
; above

that, both Γ and ℓ are not single valued functions. In other
words, for each width ℓ > ℓ

𝑐
, there are two turning points. Of

course the favored Γ corresponds to the smaller turning point.
Moreover, there is a maximum width over which there is no
closed hypersurface. It is important to note that the width
gets its maximum value before the turning point reaches its
maximum value at 𝑟

𝜙
.

An interesting observation we have made is as follows.
Although there is a maximum width (or correspondingly
a maximum turning point) over which there is no closed
hypersurface which minimizes Γ, there is a single closed
hypersurface when 𝑟

𝑡
= 𝑟
𝜙
. Actually, as we have already men-

tioned, in this case, 𝑟
𝑡
is not a turning point and indeed the

hypersurface can cross the 𝑟 = 𝑟
𝜙
point and reaches the ho-

rizon. In fact, it is easy to see that for this case, the horizon
is a turning point. Therefore, we will get a single distinctive
closed hypersurface which can probe the charged horizon
while the effects of charges are important. In this case, the
corresponding expressions for ℓ and Γ are given by

ℓ

2
= ∫

𝑟𝐻

0

𝑑𝑟

(𝑓
𝜙
/𝑓
2
)
1/2

(𝑟/𝑟
𝜙
)
𝑑

√1 − 𝜙2

√1 − (𝑟/𝑟
𝜙
)
2𝑑

(𝑓
𝜙
/𝑓)

,

Γ =
𝜏𝐿
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

∫

𝑟𝐻

𝜖

𝑑𝑟

𝑟
−𝑑
√1 − 𝜙2

√1 − (𝑟/𝑟
𝜙
)
2𝑑

(𝑓
𝜙
/𝑓)

,

(24)

where 𝑓
𝜙
= 𝑓(𝑟

𝜙
). In the Figure 4 we have depicted the

behaviors of ℓ and finite part of Γ as functions of 𝑄. Note
that as we increase the background charges the width also
increases linearly though the finite part of Γdecreases linearly.

3. Black Hole in Global AdS

In this section, we extend our study to a charged black hole
in a global AdS geometry. The action is still given by (8). The
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Figure 3: ℓ and Γ as functions of 𝑟
𝑡
and ℓ for 𝑄 = 0.5, 1, √3 which are shown by blue, green, and red, respectively. Note that 𝑄 = 0.5

corresponds to the case of 𝑟
𝐻
= 𝑟
𝜙
and we have plotted it just for a comparison. Here, we have set 𝑟

𝐻
= 1 and 𝜏𝐿𝑑−2𝑅𝑑/𝐺

𝑑+2
= 1.
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Figure 4: ℓ and Γfinite as functions of 𝑄 for the case of 𝑟
𝑡
= 𝑟
𝜙
. The numerical values are for 𝑟

𝐻
= 1 and 𝑅 = 𝐿 = 1. Note that for all values of

𝑄 in the above plots, we have 𝑟
𝜙
< 𝑟
𝐻
.

corresponding 𝑑 + 2 dimensional charged black hole may be
written as [13]

𝑑𝑠
2
=
𝑅
2

𝑟2
(−𝑓 (𝑟) 𝑑𝑡

2
+
𝑑𝑟
2

𝑓 (𝑟)
+ 𝑅
2
𝑑Ω
2

𝑑
) ,

𝐹
𝑟𝑡
= −𝑄𝑅√2𝑑 (𝑑 − 1)𝑟

𝑑−2
,

𝑓 (𝑟) = 1 +
𝑟
2

𝑅2
− (1 +

𝑟
2

+

𝑅2
+ 𝑄
2
𝑟
2𝑑

+
)(

𝑟

𝑟
+

)

𝑑+1

+ 𝑄
2
𝑟
2𝑑
,

(25)

where in our notation 𝑑Ω2
𝑑
= 𝑑𝜃
2
+ cos2𝜃 𝑑Ω2

𝑑−1
with 𝑑Ω2

𝑑−1

being the metric of a (𝑑 − 1)-sphere, and 𝑟
+
is the location of

the horizon which is a solution of 𝑓(𝑟) = 0. We note that in
general 𝑓 = 0 has two real positive solutions and the horizon

is given by the smallest root. The Hawking temperature and
chemical potential are

𝑇 =
𝑑 + 1

4𝜋𝑟
+

[1 −
𝑑 − 1

𝑑 + 1
(𝑄
2
𝑟
2𝑑

+
−
𝑟
2

+

𝑅2
)] ,

𝜇 = √
2𝑑

𝑑 − 1
𝑄𝑅𝑟
𝑑−1

+
.

(26)

Using the corresponding Euclidean action, the phase space
of this system has been studied in [13], where it was shown
that the theory has a rich phase space. Indeed the system
could be thought of as either a grand canonical ensemble or
a canonical ensemble depending on whether one wants to
keep chemical potential or electric charge fixed, respectively.
In either cases, there are critical values for the parameters over
which the model exhibits different behaviors.

Holographic geometric entropy in this background has
also been studied [12], where it was shown that it may provide
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a useful order parameter to probe different phases of the
system. Note that since in this case one, usually, performs a
double Wick rotation, there are two different ways to embed
the hypersurface in the bulk. One could either consider 𝑟(𝑡)
or 𝑟(𝜃). Actually, by making use of this embedding, it was
observed in [12] that the resultant phase structures are very
similar to those obtained from the Euclidean action [13]. We
note, however, that since in what follows, we are interested
in the effects of the gauge field; as defined in (6), the 𝑟(𝑡)
embedding should automatically be excluded.

Therefore, we will consider a subsystem in the form of
𝑆
𝑑−2

×R × 𝐼, with 𝐼 being an interval along 𝜃 direction given
by 0 ≤ 𝜃 ≤ 2𝜋(ℓ/𝑅) with ℓ < 𝑅. The extension of this
subsystem to the bulk leads to a hypersurface whose profile
is given by 𝜃 = 𝜃(𝑟). Thus, the induced (Euclidean) metric on
the hypersurface is

𝑑𝑠
2
=
𝑅
2

𝑟2
[𝑓𝑑𝑡
2
+ (

1

𝑓
+ 𝑅
2
𝜃

2

)𝑑𝑟
2
+ 𝑅
2cos2𝜃𝑑Ω2

𝑑−2
] .

(27)

Therefore, we arrive at

Γ =
𝜏𝑉
𝑑−2
𝑅
𝑑

𝐺
𝑑+2

∫

𝑟𝑡

𝜖

𝑑𝑟
cos𝑑−2𝜃
𝑟𝑑

√1 − 𝜙2 + 𝑓𝑅2𝜃2, (28)

where 𝑉
𝑑−2

is the volume of (𝑑 − 2)-sphere with radius 𝑅 and
𝑟
𝑡
is the turning point where 𝜃(𝑟) diverges.
Alternatively, for 𝑑 ≥ 3, one may use a notation in which

𝑑Ω
2

𝑑
= 𝑑𝜓
2
+ cos2𝜓𝑑𝜃2 + sin2𝜓 (𝑑𝜙2 + cos2𝜙𝑑Ω2

𝑑−3
) ,

(29)

and thus the corresponding subsystemmay be chosen so that
𝜙 = constant. The constant may be set to 𝜙 = 𝜋/2 and the
profile of the hypersurface is given by 𝜓(𝑟). Therefore, the
induced (Euclidean) metric is

𝑑𝑠
2
=
𝑅
2

𝑟2
[𝑓𝑑𝑡
2
+ (

1

𝑓
+ 𝑅
2cos2𝜓𝜃2)𝑑𝑟2

+𝑅
2
𝑑𝜓
2
+ 𝑅
2sin2𝜓𝑑Ω2

𝑑−3
] ,

(30)

so that

Γ =
𝜏𝑉
𝑑−3
𝑅
𝑑

𝐺
𝑑+2

∫

𝑟𝑡

𝜖

𝑑𝜓𝑑𝑟
cos𝑑−3𝜓
𝑟𝑑

√1 − 𝜙2 + 𝑓𝑅2cos2𝜓𝜃2.

(31)

Now the aim is to minimize Γ given in (28) or (31), which
can be done by treating them as actions for 𝜃. In what follows,
we will mainly consider the first case, where Γ is given by
(28) where unlike the previous cases, except for 𝑑 = 2, the
momentum conjugate of 𝜃 is not a constant of motion, and

therefore, one needs to directly solve the equation of 𝜃 which
is

𝑑

𝑑𝑟
(

cos𝑑−2𝜃
𝑟𝑑

𝑓𝑅
2
𝜃


√1 − 𝜙2 + 𝑓𝑅2𝜃2
)

+ (𝑑 − 2) sin 𝜃cos𝑑−3

× 𝜃

√1 − 𝜙2 + 𝑓𝑅2𝜃2

𝑟𝑑
= 0.

(32)

This equation may be solved with proper boundary con-
ditions to find 𝜃 as a function of 𝑟

𝑡
. The corresponding

boundary conditions could be 𝜃(𝑟 → 0) = 2𝜋(ℓ/𝑅) and
𝜃(𝑟
𝑡
) = 0. Then plugging the result into (28), one can find

Γ as a function of ℓ.
Although it is not explicitly clear from the above equation,

there is still a special point at 𝑟 = 𝑟
𝜙
, where 𝜙 = 1

and the minimization makes sense for 𝑟 ≤ 𝑟
𝜙
. Indeed, the

situation is very similar to what we have considered in the
previous section for the black brane. In particular, for 𝑟

+
≤ 𝑟
𝜙
,

the function Γ may also be minimized by a disconnected
hypersurface which in the present case is given by

Γ
diss

=
𝑉
𝑑−2
𝑅
𝑑−1

𝐺
𝑑+1

∫

𝑟𝐻

𝜖

𝑑𝑟
cos𝑑−2𝜃

0

𝑟𝑑
√1 − 𝜙2, (33)

where 𝜃
0
= 𝜃(𝑟 = 0). It is then natural to look for ΔΓ as a

function of ℓ.
To proceed, let us first consider 𝑑 = 2 case in which the

momentum conjugate of 𝜃 is, indeed, a constant of motion:

𝑅𝜃


√1 − 𝜙2 + 𝑓𝑅2𝜃2
= (

𝑟

𝑟
𝑡

)

𝑑
𝑓
1/2

𝑡

𝑓
, (34)

where 𝑟
𝑡
is the turning point, so that

ℓ =
1

𝜋
∫

𝑟𝑡

0

𝑑𝑟

(𝑓
𝑡
/𝑓
2
)
1/2

(𝑟/𝑟
𝑡
)
2
√1 − 𝜙2

√1 − (𝑟/𝑟
𝑡
)
4

(𝑓
𝑡
/𝑓)

, (35)

Γ =
𝜏𝑅
2

𝐺
4

∫

𝑟𝑡

𝜖

𝑑𝑟

√1 − 𝜙2

𝑟2√1 − (𝑟/𝑟
𝑡
)
4

(𝑓
𝑡
/𝑓)

, (36)

which have essentially the same form as the corresponding
expressions we have found in the previous section, though
the function 𝑓 is different. Therefore, one expects that the
system may exhibit the same behavior as in the black brane.
In particular, one can show that as long as we are in the range
of the parameters where 𝑟

+
≤ 𝑟
𝜙
, the corresponding width,

ℓ, vanishes at both 𝑟
𝑡
= 0 and 𝑟

𝑡
= 𝑟
+
points, while for

𝑟
𝜙
< 𝑟
+
although thewidth vanishes at 𝑟

𝑡
, it tends to a nonzero

constant as 𝑟
𝑡
→ 𝑟
𝜙
. Moreover, 𝑟

𝑡
= 𝑟
𝜙
is not a turning point

and the hypersurface can cross the point of 𝑟 = 𝑟
𝜙
to reach

the horizon which is, indeed, the turning point in this case.
In order to calculate Γ, one distinguishes two different

cases depending on whether 𝑟
+
≤ 𝑟
𝜙
or 𝑟
+
> 𝑟
𝜙
. Indeed,
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for sufficiently small charges, that is, 𝑄 ≤ 𝑄
𝑐
, where we

are in the region of 𝑟
+
≤ 𝑟
𝜙
, the main contributions come

from the metric and the effects of the charge are only due to
the location of the horizon which is encoded in the metric’s
components. Indeed, in this case, the behavior of Γ is the same
as the holographic geometric entropy.

On the other hand, as one increases the background
charge so that 𝑄 > 𝑄

𝑐
, one reaches the region 𝑟

𝜙
< 𝑟
+
, where

the effects of the background charge become important. In
this region since there is no place where the hypersurface
can end, the minimization procedure does not lead to the
disconnected solution.

It is worth to mention that for 𝑑 ≥ 3 using the expression
of Γ given in (31), we get exactly the same behavior as that in
𝑑 = 2 discussed above which is, indeed, the same as what we
have found in the previous section displayed in Figures 1 and
3.

On the other hand, using the expression (28) for 𝑑 ≥

3, although qualitatively, we get the same behavior; a new
feature appears when we change the ratio of 𝑅/𝑟

+
. Of course

as far as the effect of the gauge field is concerned, the situation
remains unchanged.Namely,𝜙 = 1 sets a scale which controls
the effects of the gauge field as before.

In order to explore the new feature, let us consider the
situation where 0 ≤ 𝑄

2
≤ 1/2𝑑(𝑑 − 1) which corresponds

to the case of 𝑟
+
≤ 𝑟
𝜙
. Note that in this region, the effect

of the background field is irrelevant and indeed we could
have done the same for the geometric entropy. To proceed,
it is useful to study the behavior of ΔΓ which we will do
by using a numerical method. By making use of a scaling,
one may set 𝑟

+
= 1. It is important to note that unlike the

black brane case whereΔΓ depends on𝑅 just through a trivial
overall factor, in the present case, it appears in the function
𝑓, and therefore it may affect the behavior of the order
parameter. To find the corresponding behavior numerically,
we will fix the dimension and the charge, and therefore,
we are left with a free parameter 𝑅 which controls the
behavior of the order parameter. Indeed, one observes that
for 𝑅 of order 𝑟

+
or bigger, the model undergoes a phase

transition; However, for a sufficiently small 𝑅/𝑟
+
, it exhibits

no phase transition. More precisely, there is a critical 𝑅/𝑟
+

that indicates whether the system exhibits a phase transition.
In Figure 5, we have summarized the above discussions by
plotting ΔΓ as a function of ℓ for different values of 𝑅.

4. Discussions

In this paper, we have introduced a quantity which is sensitive
to the background fractionalized charge not only due to its
effects in the components of themetric, but also directly from
the gauge field. To explore its properties, we have explicitly
computed the quantity for the RN black brane and a black
hole in an asymptotically AdS geometry.

For sufficiently small charges, the metric plays the essen-
tial roles; while as one increases the charge, one would expect
to see the effects of the gauge field. Indeed, following our
definition in the quantity (6), there is natural scale over
which the direct effects of gauge field become significant.
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Figure 5: ΔΓ as a function of ℓ for 𝑄 = 0.3, 𝑟
+
= 1 and

𝑅 = 0.6, 0.66, 0.69, 0.72, 0.8 which are shown by green, blue, red,
magenta, and brown, respectively. Note that as far as 0 ≤ 𝑄 ≤ 0.5,
where 𝑟

+
≤ 𝑟
𝜙
, one gets qualitatively the same behavior.

To elaborate this point, it is illustrative to study the induced
metric in more detail. To proceed, it is useful to recall the
following identity:

√det (𝑔 + 𝑅𝐹
𝑎𝑏
) = [det (𝑔) det (𝐺)]1/4, (37)

where

𝐺
𝜇] = 𝑔 + 𝑅

2
𝐹
𝜇𝜌
𝑔
𝜌𝜎
𝐹
𝜎]. (38)

In our case, using the explicit expression for 𝑥 (e.g. obtained
from (15)) the induced (Euclidean) metric may be recast in to
the following form:

𝑑𝑠
2

ind =
𝑅
2

𝑟2
[𝑓𝑑𝑡
2
+ (

𝑓 − 𝑓
𝑡
𝜙
2
(𝑟/𝑟
𝑡
)
2𝑑

𝑓 − 𝑓
𝑡
(𝑟/𝑟
𝑡
)
2𝑑
)

×
𝑑𝑟
2

𝑓
+

𝑑−2

∑

𝑖=1

𝑑𝑥
2

𝑖
] ,

(39)

which shows that there is a horizon at 𝑟 = 𝑟
𝐻
, as expected.

On the other hand, for the metric 𝐺
𝜇], one finds

𝑑𝑠
2

open =
𝑅
2

𝑟2
{

𝑓(1 − 𝜙
2
)

𝑓 − 𝑓
𝑡
𝜙2(𝑟/𝑟

𝑡
)
2𝑑

× [𝑓𝑑𝑡
2
+ (

𝑓 − 𝑓
𝑡
𝜙
2
(𝑟/𝑟
𝑡
)
2𝑑

𝑓 − 𝑓
𝑡
(𝑟/𝑟
𝑡
)
2𝑑
)
𝑑𝑟
2

𝑓
]

+

𝑑−2

∑

𝑖=1

𝑑𝑥
2

𝑖
} ,

(40)

which indicates a possibility of having a natural scale at 𝑟 = 𝑟
𝜙

where 𝜙 = 1, though the original geometry is smooth at this
point. Indeed, for 𝑄 ≤ 𝑄

𝑐
, one has 𝑟

𝐻
≤ 𝑟
𝜙
. Therefore, the

scale 𝑟
𝜙
is behind the horizon and does not play an essential

role indicating that the main contributions come from the
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metric. In fact in this case, the effect of the charge is only
through the components of the metric which in turn may
fix the position of the horizon, and indeed, qualitatively, the
function Γ has the same behavior as the geometric entropy.

On the other hand, in the opposite limit when 𝑄 > 𝑄
𝑐

where one has 𝑟
𝜙
≤ 𝑟
𝐻
, the effect of background gauge field

is important, and for a generic value of 𝑟
𝑡
, the solution is well

defined if 0 ≤ 𝑟
𝑡
< 𝑟
𝜙
. Note that in this case, one gets a “bubble

solution,” and therefore, the horizon cannot be probed. In this
case, the behavior of the function Γ is still qualitatively the
same as the geometric entropy, though since we are in the
large charge limit, for fixed 𝑟

𝐻
, the corresponding dual theory

should be at low temperature and therefore, it does not exhibit
a phase transition.

Note also that for the special value of 𝑟
𝑡
= 𝑟
𝜙
, the metric

(40) is well defined at 𝑟 = 𝑟
𝜙
and, indeed, it has a horizon at

𝑟 = 𝑟
𝐻
.

Probably the most interesting, but rather difficult, aspect
of our study, is to find an interpretation for the quantity
defined by (6) from dual field theory point of view. Of course
we should admit that we do not have a good answer to
this question, and indeed in this paper, we have considered
this quantity as a parameter which could probe the system.
It would be very interesting to find the corresponding
interpretation from field theory point of view.
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