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For a graph G, let P(G, λ) be its chromatic polynomial. Two graphs G and H are chromatically
equivalent, denoted G ∼ H, if P(G, λ) = P(H,λ). A graph G is chromatically unique if P(H,λ) =
P(G, λ) implies that H ∼= G. In this paper, we determine all chromatic equivalence classes of 2-
connected (n, n + 4)-graphs with exactly three triangles and at least two induced 4-cycles. As a
byproduct of these, we obtain various new families of χ-equivalent graphs and χ-unique graphs.

1. Introduction

Let P(G), or simply P(G), denote the chromatic polynomial of a simple graph G. Two graphs
G and H are chromatically equivalent (simply χ-equivalent), denoted G ∼ H, if P(G) =
P(H). A graph G is chromatically unique (simply χ-unique) if P(H) = P(G) implies that
H ∼= G. Let 〈G〉 denote the equivalence class determined by the graph G under ∼. Clearly, G
is χ-unique if and only if 〈G〉 = {G}. A graph H is called a relative of G if there is a sequence
of graphs G = H1,H2, . . . ,Hk = H such that each Hi is a Kri -gluing of some graphs (say
Xi and Yi) and that Hi+1 is obtained from Hi by forming another Kri -gluing of Xi and Yi for
1 ≤ i ≤ k − 1. We say H is a graph of type G if H is a relative of G or H ∼= G. A family S of
graphs is said to be relative-closed (simply χr-closed) if

(i) no two graphs in S are relatives of each other,

(ii) for any graph G ∈ S, P(H,λ) = P(G, λ) implies that H ∈ S or H is a relative of a
graph in S.

If S is a χr-closed family, then the chromatic equivalence class of each graph in S can be
determined by studying the chromaticity of each graph in S.
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If G is a graph of order n and size m, we say G is an (n,m)-graph. The chromatic
equivalence classes of 2-connected (n, n + i)-graph have been fully determined for i = 0, 1 in
[1, 2] and partially determined for i = 2, 3 in [3–5]. Peng and Lau have also characterized
and classified certain chromatic equivalence classes of 2-connected (n, n + 4)-graph in [6, 7].
In [8], by using the idea of cyclomatic number, the authors obtained the χr-closed family of
2-connected (n, n + 4)-graphs with exactly three triangles.

In this paper, all the chromatic equivalence classes of 2-connected (n, n + 4)-graphs
with exactly three triangles and at least two induced C4s are determined. As a byproduct
of these, we obtain various new families of χ-equivalent graphs and χ-unique graphs. The
readers may refer to [9] for terms and notation used but not defined here.

2. Notation and Basic Results

Let Cn (or n-cycle) be the cycle of order n. An induced 4-cycle is the cycle C4 without chord.
The following are some useful known results and techniques for determining the chromatic
polynomial of a graph. Throughout this paper, all graphs are assumed to be connected unless
otherwise stated.

Lemma 2.1 (Fundamental Reduction Theorem (Whitney [10])). Let G be a graph and e an edge
of G. Then

P(G) = P(G − e) − P(G · e), (2.1)

where G − e is the graph obtained from G by deleting e, and G · e is the graph obtained from G by
identifying the end vertices of e.

Let G1 and G2 be graphs, each containing a complete subgraph Kp with p vertices. If
G is a graph obtained from G1 and G2 by identifying the two subgraphsKp, then G is called a
Kp-gluing ofG1 andG2. Note that aK1-gluing and aK2-gluing are also called a vertex-gluing
and an edge-gluing, respectively.

Lemma 2.2 (Zykov [11]). Let G be a Kr-gluing of G1 and G2. Then

P(G) =
P(G1)P(G2)

P(Kr)
. (2.2)

Lemma 2.2 implies that allKr-gluings of G1 and G2 are χ-equivalent. It follows from Lemma 2.2 that
ifH is a relative of G, thenH ∼ G.

The following conditions for two graphs G andH to be χ-equivalence are well known
(see, e.g., [4]).

Lemma 2.3. Let G and H be two χ-equivalent graphs. Then G and H have, respectively, the same
number of vertices, edges, and triangles. If both G and H do not contain K4, then they have the same
number of induced C4s.

A generalized θ-graph is a 2-connected graph consisting of three edge-disjoint paths
between two vertices of degree 3. All other vertices have degree two. These paths have
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lengths x, y and z, respectively, where x ≥ y ≥ z. The graph is of order x + y + z − 1 and
size x + y + z (see [2]). We will denote K2 as C2 for convenience.

Lemma 2.4.

(i) P(Cn) = (λ − 1)n + (−1)n(λ − 1), n ≥ 2, (2.3)

(ii) P
(
θx,y,z

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P(Cx+1)P
(
Cy+1

)
P(Cz+1)

λ2(λ − 1)2
+
P(Cx)P

(
Cy

)
P(Cz)

λ2
, if z/= 1,

P(Cx+1)P
(
Cy+1

)

λ(λ − 1)
if z = 1.

(2.4)

Lemma 2.4(i) can be proved by induction while Lemma 2.4(ii) follows from Lemmas
2.1 and 2.2. For integers x, y, z, n, and λ, let us write

Qn(λ) =
n−2∑

i=0
(−1)i(λ − 1)n−2−i,

Mx,y,z(λ) = Qx+1(λ)Qy+1(λ)Qz+1(λ) + (λ − 1)2Qx(λ)Qy(λ)Qz(λ).
(2.5)

Note that when λ = 1, we have Qn(1) = (−1)n and Mx,y,z(1) = (−1)x+y+z+1. Lemma 2.4 can
then be written as the following lemma.

Lemma 2.5 (see [4]). (i)P(Cn) = λ(λ − 1)Qn(λ) and (ii)P(θx,y,z) = λ(λ − 1)Mx,y,z(λ).

We also need the following lemma.

Lemma 2.6 (Whitehead and Zhao [12]). A graph G contains a cut-vertex if and only if (λ − 1)2 |
P(G).

Lemma 2.6 also implies that if H ∼ G, then H is 2-connected if and only if G is so.

3. Classification of Graphs

Let F be the χr-closed family of 2-connected (n, n+4)-graphs with three triangles and at least
two induced C4s. In [8], we classified all the 31 types of graph F ∈ F as shown in Figure 1.
Since the approach used to classify all the graphs F is rather long and repetitive, we will not
discuss it here. The reader may refer to Theorems 1 and 3 in [8] for a detail derivation of the
graphs.

We are now ready to determine the chromaticity of all 31 types of χr-closed family
of 2-connected (n, n + 4)-graphs having exactly 3 triangles and at least two induced C4s as
shown in Figure 1. We first note that ifH ∼ Fi(1 ≤ i ≤ 31) in Figure 1, thenH must be of type
Fj(1 ≤ j ≤ 31) in Figure 1 as well. For convenience, we will say that the graph Fi, or any of its
relatives, is of type (i).
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F1 F2 F3 F4 F5 F6 F7

F8 F9 F10 F11 F12 F13 F14

F15 F16 F17 F18 F19 F20 F21

F22 F23 F24 F25 F26 F27 F28

F29 F30 F31

a ≥ 3

b ≥ 3 c ≥ 3

e ≥ 3 f ≥ 3

h ≥ 3 j ≥ 3 k ≥ 3

d ≥ 2

Figure 1: 31 types of 2-connected (n, n + 4)-graphs with exactly three triangles and at least two induced
4-cycles. The light lines of the graphs refer to the paths of indicated length.

In what follows, we will use Fi(α), instead of Fi, to denote a graph of type (i) that has
a path of length α. We now present our main results in the following theorem.

Theorem 3.1. (1) H ∈ 〈F1〉 if and only ifH is of type F1.

(2)H ∈ 〈F2(a)〉 if and only ifH is of type F2(a).

(3)H ∈ 〈F3〉 if and only ifH is of type F3.

(4)H ∈ 〈F4〉 if and only ifH is of type F4.

(5)H ∈ 〈F5〉 if and only ifH is of type F5.

(6)H ∈ 〈F6〉 if and only ifH ∼= F6, F25 or H is of type F22(3).

(7)H ∈ 〈F7〉 if and only ifH ∼= F7, F21, F27 or H is of type F31.

(8) 〈F8(b)〉 = {F8(b), F28(b)}.
(9) F9 is χ-unique.

(10) 〈F10〉 = {F10, F29}.
(11) H ∈ 〈F11〉 if and only ifH is of type F11, F13(3), or F24.
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(12) H ∈ 〈F12〉 if and only ifH is of type F12.

(13) H ∈ 〈F13(c)〉 if and only if H is of type F13(c) for c ≥ 4, and H ∈ 〈F13(3)〉 if and only
ifH is of type F11, F13(3), or F24.

(14) H ∈ 〈F14〉 if and only ifH is of type F14 or F18(3).

(15) F15(d) is χ-unique for d ≥ 3, and 〈F15(2)〉 = {F15(2), F31}.
(16) F16 is χ-unique.

(17) F17 is χ-unique.

(18) H ∈ 〈F18(e)〉 if and only if H is of type F18(e) for e ≥ 4, and H ∈ 〈F18(3)〉 if and only
ifH is of type F14 or F18(3).

(19) H ∈ 〈F19〉 if and only ifH is of type F19.

(20) 〈F20(f)〉 = {F20(f), F26(f)}.
(21) H ∈ 〈F21〉 if and only ifH ∼= F7, F21, F27 orH is of type F31.

(22) H ∈ 〈F22(h)〉 if and only if H is of type F22(h) for h ≥ 4, and H ∈ 〈F22(3)〉 if and only
ifH ∼= F6, F25 or H is of type F22(3).

(23) H ∈ 〈F23〉 if and only ifH is of type F23.

(24) H ∈ 〈F24〉 if and only ifH is of type F11, F13(3), or F24.

(25) H ∈ 〈F25〉 if and only ifH ∼= F6, F25 or H is of type F22(3).

(26) 〈F26(j)〉 = {F20(j), F26(j)}.
(27) H ∈ 〈F27〉 if and only ifH ∼= F7, F21, F27 orH is of type F31.

(28) 〈F28(k)〉 = {F8(k), F28(k)}.
(29) 〈F29〉 = {F10, F29}.
(30) 〈F30〉 = {F15(2), F30}.
(31) H ∈ 〈F31〉 if and only ifH ∼= F7, F21, F27 orH is of type F31.

4. Chromatic Polynomials of the Graphs

Before proving our main result, we present here some useful information about the chromatic
polynomial of Fi (1 ≤ i ≤ 31). Let W(n, k) denote the graph of order n obtained from a wheel
Wn by deleting all but k consecutive spokes. Also letWm(5, 3) denote the graph obtained from
W(5, 3) by identifying the end-vertices of a path Pm to two non-adjacent degree 3 vertices of
W(5, 3). Using Software Maple or Lemmas 2.1, 2.2 and 2.5, it is easy to obtain the chromatic
polynomial of each graph in F as shown in the following lemma.

Lemma 4.1. (1)

P(F1) = λ(λ − 1)N1(λ), (4.1)

whereN1(λ) = (λ − 2)(λ2 − 3λ + 3)(λ3 − 6λ2 + 13λ − 11) and N1(1) = 3.
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(2)

P(F2(a)) =
(λ − 2)P(Ca+1)P(W(5, 3))

λ(λ − 1)

= λ(λ − 1)(λ − 2)2
(
λ2 − 4λ + 5

)
Qa+1(λ)

= λ(λ − 1)N2(λ),

(4.2)

whereN2(λ) = (λ − 2)2(λ2 − 4λ + 5)Qa+1(λ) and N2(1) = (−1)2(1 − 4 + 5)(−1)a+1 = 2(−1)a+1.
(3)

P(F3) = λ(λ − 1)N3(λ), (4.3)

whereN3(λ) = (λ − 2)2(λ2 − 4λ + 5)(λ2 − 3λ + 3) and N3(1) = 2.

(4)

P(F4) = λ(λ − 1)N4(λ), (4.4)

whereN4(λ) = (λ − 2)3(λ2 − 3λ + 3)2 and N4(1) = −1.
(5)

P(F5) = λ(λ − 1)N5(λ), (4.5)

whereN5(λ) = (λ − 2)3(λ3 − 5λ2 + 10λ − 7) and N5(1) = 1.

(6)

P(F6) = λ(λ − 1)N6(λ), (4.6)

whereN6(λ) = (λ − 2)(λ2 − 4λ + 5)(λ3 − 5λ2 + 9λ − 7) and N6(1) = 4.

(7)

P(F7) = λ(λ − 1)N7(λ), (4.7)

whereN7(λ) = (λ − 2)2(λ3 − 6λ2 + 14λ − 13) and N7(1) = (−1)2(1 − 6 + 14 − 13) = −4.
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(8)

P(F8(b)) = (λ − 2)3P(Cb+2) − (λ − 3)P(W(b + 3, 3))

= (λ − 2)3P(Cb+2) − (λ − 2)(λ − 3)[P(Cb+2) − P(Cb+1)]

= λ(λ − 1)(λ − 2)
[(

λ2 − 5λ + 7
)
Qb+2(λ) + (λ − 3)Qb+1(λ)

]

= λ(λ − 1)N8(λ),

(4.8)

where N8(λ) = (λ − 2)[(λ2 − 5λ + 7)Qb+2(λ) + (λ − 3)Qb+1(λ)] and N8(1) = (−1)[3(−1)b+2 +
(−2)(−1)b+1] = 5(−1)b+1.

(9)

P(F9) = λ(λ − 1)N9(λ), (4.9)

whereN9(λ) = (λ − 2)2(λ3 − 6λ2 + 14λ − 14) and N9(1) = −5.
(10)

P(F10) = λ(λ − 1)N10(λ), (4.10)

whereN10(λ) = (λ − 2)(λ4 − 8λ3 + 26λ2 − 41λ + 27) and N10(1) = −5.
(11)

P(F11) = λ(λ − 1)N11(λ), (4.11)

whereN11(λ) = (λ − 2)2(λ4 − 7λ3 + 20λ2 − 28λ + 17) and N11(1) = 3.

(12)

P(F12) = λ(λ − 1)N12(λ), (4.12)

whereN12(λ) = (λ − 2)3(λ2 − 4λ + 6) and N12(1) = −3.
(13)

P(F13(c)) = (λ − 2)
[
(λ − 2)2P(Cc+2) − P(K4)P(Cc+1)

λ(λ − 1)

]

= (λ − 2)3P(Cc+2) − (λ − 2)2(λ − 3)P(Cc+1)

= λ(λ − 1)(λ − 2)2[(λ − 2)Qc+2(λ) − (λ − 3)Qc+1(λ)]

= λ(λ − 1)N13(λ),

(4.13)
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where N13(λ) = (λ − 2)2[(λ − 2)Qc+2(λ) − (λ − 3)Qc+1(λ)] and N13(1) = (−1)2[(−1)(−1)c+2 −
(−2)(−1)c+1] = 3(−1)c+1.

(14)

P(F14) = λ(λ − 1)N14(λ), (4.14)

where N14(λ) = (λ − 2)4(λ2 − 3λ + 4) and N14(1) = 2.

(15)

P(F15(d)) = (λ − 2)P(W(d + 4, 3)) − (λ − 3)P(W(d + 3, 3))

= (λ − 2)2[P(Cd+3) − P(Cd+2)] − (λ − 2)(λ − 3)[P(Cd+2) − P(Cd+1)]

= λ(λ − 1)(λ − 2)[(λ − 2)Qd+3(λ) − (2λ − 5)Qd+2(λ) + (λ − 3)Qd+1(λ)]

= λ(λ − 1)N15(λ),

(4.15)

where N15(λ) = (λ − 2)[(λ − 2)Qd+3(λ) − (2λ − 5)Qd+2(λ) + (λ − 3)Qd+1(λ)] and N15(1) =
(−1)[(−1)(−1)d+3 − (−3)(−1)d+2 + (−2)(−1)d+1] = 6(−1)d+1.

(16)

P(F16) = λ(λ − 1)N16(λ), (4.16)

whereN16(λ) = (λ − 2)(λ3 − 7λ2 + 19λ − 19) and N16(1) = 6.

(17)

P(F17) = λ(λ − 1)N17(λ), (4.17)

whereN17(λ) = (λ − 2)(λ4 − 8λ3 + 26λ2 − 41λ + 25) and N17(1) = −3.

(18)

P(F18(e)) = (λ − 2)[(λ − 1)P(W(e + 3, 3)) − (λ − 2)(λ − 3)P(Ce+1)]

= (λ − 1)(λ − 2)2[P(Ce+2) − P(Ce+1)] − (λ − 2)2(λ − 3)P(Ce+1)

= (λ − 1)(λ − 2)2P(Ce+2) − 2(λ − 2)3P(Ce+1)

= λ(λ − 1)(λ − 2)2[(λ − 1)Qe+2(λ) − 2(λ − 2)Qe+1(λ)]

= λ(λ − 1)N18(λ),

(4.18)

whereN18(λ) = (λ−2)2[(λ−1)Qe+2(λ)−2(λ−2)Qe+1(λ)] andN18(1) = (−1)2[0−2(−1)(−1)e+1] =
2(−1)e+1.
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(19)

P(F19) = λ(λ − 1)N19(λ), (4.19)

whereN19(λ) = (λ − 2)2(λ3 − 6λ2 + 14λ − 11) and N19(1) = −2.
(20)

P
(
F20

(
f
))

= P
(
Wf+1(5, 3)

) − P(W(5, 3))P
(
Cf+1

)

λ(λ − 1)

= (λ − 2)P
(
θf+1,2,2

) − (λ − 2)2P
(
Cf+2

) − (λ − 2)
(
λ2 − 4λ + 5

)
P
(
Cf+1

)

= λ(λ − 1)
[
(λ − 2)Mf+1,2,2(λ) − (λ − 2)2Qf+2(λ) − (λ − 2)

(
λ2 − 4λ + 5

)
Qf+1(λ)

]

= λ(λ − 1)N20(λ),
(4.20)

whereN20(λ) = (λ − 2)Mf+1,2,2(λ) − (λ − 2)2Qf+2(λ) − (λ − 2)(λ2 − 4λ + 5)Qf+1(λ) andN20(1) =
(−1)(−1)f − (−1)f − (−1)(2)(−1)f+1 = 4(−1)f+1.

(21)

P(F21) = λ(λ − 1)N21(λ), (4.21)

whereN21(λ) = (λ − 2)2(λ3 − 6λ2 + 14λ − 13) and N21(1) = −4.
(22)

P(F22(h)) =
P(W(h + 3, 3))P(W(5, 3))

P(K3)

= (λ − 2)
(
λ2 − 4λ + 5

)
[P(Ch+2) − P(Ch+1)]

= λ(λ − 1)(λ − 2)
(
λ2 − 4λ + 5

)
[Qh+2(λ) −Qh+1(λ)]

= λ(λ − 1)N22(λ),

(4.22)

where N22(λ) = (λ − 2)(λ2 − 4λ + 5)[P(Qh+2(λ) − P(Qh+1(λ)] and N22(1) = (−1)(2)[(−1)h+2 −
(−1)h+1] = 4(−1)h+1.

(23)

P(F23) = λ(λ − 1)N23(λ), (4.23)

whereN23(λ) = (λ − 2)(λ2 − 4λ + 5)2 and N23(1) = −4.
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(24)

P(F24) = λ(λ − 1)N24(λ), (4.24)

whereN24(λ) = (λ − 2)2(λ4 − 7λ3 + 20λ2 − 28λ + 17) and N24(1) = 3.

(25)

P(F25) = λ(λ − 1)N25(λ), (4.25)

whereN25(λ) = (λ − 2)(λ2 − 4λ + 5)(λ3 − 5λ2 + 9λ − 7) and N25(1) = 4.

(26)

P
(
F26

(
j
))

= P
(
Wj+1(5, 3)

) − P(W(5, 3))P
(
Cj+1

)

λ(λ − 1)

= (λ − 2)P
(
θj+1,2,2

) − (λ − 2)2P
(
Cj+2

) − (λ − 2)
(
λ2 − 4λ + 5

)
P
(
Cj+1

)

= λ(λ − 1)
[
(λ − 2)Mj+1,2,2(λ) − (λ − 2)2Qj+2(λ) − (λ − 2)

(
λ2 − 4λ + 5

)
Qj+1(λ)

]

= λ(λ − 1)N26(λ),
(4.26)

where N26(λ) = (λ − 2)Mj+1,2,2(λ) − (λ − 2)2Qj+2(λ) − (λ − 2)(λ2 − 4λ + 5)Qj+1(λ) and N26(1) =
(−1)(−1)j − (−1)j − (−1)(2)(−1)j+1 = 4(−1)j+1.

(27)

P(F27) = λ(λ − 1)N27(λ) (4.27)

whereN27(λ) = (λ − 2)2(λ3 − 6λ2 + 14λ − 13) and N27(1) = −4.
(28)

P(F28(k)) = (λ − 2)3P(Ck+2) − (λ − 3)P(W(k + 3, 3))

= (λ − 2)3P(Ck+2) − (λ − 2)(λ − 3)[P(Ck+2) − P(Ck+1)]

= λ(λ − 1)(λ − 2)
[(

λ2 − 5λ + 7
)
Qk+2(λ) + (λ − 3)Qk+1(λ)

]

= λ(λ − 1)N28(λ),

(4.28)

where N28(λ) = (λ − 2)[(λ2 − 5λ + 7)Qk+2(λ) + (λ − 3)Qk+1(λ)] and N28(1) = (−1)[3(−1)k+2 +
(−2)(−1)k+1] = 5(−1)k+1.
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(29)

P(F29) = λ(λ − 1)N29(λ), (4.29)

whereN29(λ) = (λ − 2)(λ4 − 8λ3 + 26λ2 − 41λ + 27) and N29(1) = −5.
(30)

P(F30) = λ(λ − 1)N30(λ), (4.30)

whereN30(λ) = (λ − 2)(λ4 − 8λ3 + 26λ2 − 42λ + 29) and N30(1) = −6.
(31)

P(F31) = λ(λ − 1)N31(λ), (4.31)

whereN31(λ) = (λ − 2)2(λ3 − 6λ2 + 14λ − 13) and N31(1) = −4.

Lemma 4.2. Let F1 = {F4, F5},F2 = {F2, F3, F14, F18, F19}, F3 = {F1, F11, F12, F13, F17, F24}, F4 =
{F6, F7, F20, F21, F22, F23, F25, F26, F27, F31}, F5 = {F8, F9, F10, F28, F29}, and F6 = {F15, F16, F30}.
Then, for each F ∈ Fi, i = 1, 2, 3, 4, 5, 6,H ∼ F implies thatH must be of type F or F ′ for an F ′ in Fi.

Proof. It follows directly from Lemma 4.1 that if i /= j, Fp ∈ Fi and Fq ∈ Fj , then |Np(1)| =
i /= j = |Nq(1)|.

From Lemmas 2.3 and 4.1, we also get the following lemma directly.

Lemma 4.3. (1) F6 ∼ F25.
(2) F7 ∼ F21 ∼ F27 ∼ F31.
(3) F8(b) ∼ F28(k) if and only if b = k.
(4) F10 ∼ F29.
(5) F11 ∼ F24.
(6) F20(f) ∼ F26(j) if and only if f = j.

5. Proof of the Main Theorem

We are now ready to prove our main theorem.
(1) Let H ∼ F1. By Lemma 4.2, H is of type (1), (11), (12), (13), (17), or (24). If H =

F1, then H is of type F1. Lemma 4.1 further implies that P(F1, λ)/=P(Fi, λ), i = 11, 12, 17, 24.
Hence,H cannot be of type (11), (12), (17), or (24). IfH = F13(c), by Lemma 2.3, c = 3. Using
Software Maple, we have

P(F13(3)) = λ(λ − 1)(λ − 2)2
(
λ4 − 7λ3 + 20λ2 − 28λ + 17

)

/= (λ − 2)
(
λ2 − 3λ + 3

)(
λ3 − 6λ2 + 13λ − 11

)

= P(F1).

(5.1)

Thus, H must be of type F1.



12 ISRN Discrete Mathematics

(2) Let H ∼ F2. By Lemma 4.2, H is of type (2), (3), (14), (18), or (19). If H = F2(a′),
then by Lemma 2.3, a′ = a. Thus, H must be of type F2. Since F2(a) has two induced C4s
while each of F3 and F19 has at least three induced C4s, by Lemma 2.3, H cannot be of type
(3) or (19). Since P(F14) is divisible by (λ − 2)4 but not P(F2(a)), H cannot be of type (14). If
H = F18(e), then by Lemma 2.3, e = a. Note that

P(F2(a)) = (λ − 1)(λ − 2)3P(Ca+1) − (λ − 2)2(λ − 3)P(Ca+1),

P(F18(a)) = (λ − 1)(λ − 2)P(W(a + 3, 3)) − (λ − 2)2(λ − 3)P(Ca+1).
(5.2)

This implies that (λ − 2)2P(Ca+1) = P(W(a + 3, 3)), a contradiction since P(W(a + 3, 3)) is not
divisible by (λ − 2)2. Thus, H ∈ 〈F2(a)〉 if and only ifH is of type F2(a).

(3) LetH ∼ F3. By Lemma 4.2 and the above result,H is of type (3), (14), (18), or (19).
If H = F3, then H is of type F3. By Lemma 4.1, F3/∼F14 and F19. If H = F18(e), by Lemma 2.3,
e = 3. Using Software Maple, we have

P(F18(3), λ) = λ(λ − 1)(λ − 2)4
(
λ2 − 3λ + 4

)

/= (λ − 2)2
(
λ2 − 4λ + 5

)(
λ2 − 3λ + 3

)
= P(F3, λ).

(5.3)

Thus, H must be of type F3.
(4) Let H ∼ F4. By Lemma 4.2, H is of type (4) or (5). If follows directly from

Lemma 4.1 that F4/∼F5. Thus, H must be of type F4.

(5) Let H ∼ F5. By Lemma 4.2 and the above result, H must be of type (5). Thus, H
must be of type F5.

(6) By Lemma 4.2, H is of type (6), (7), (20), (21), (22), (23), (25), (26), (27), or (31).
If H = F6, then H ∼= F6. Note that Lemma 4.1 implies that F6/∼Fi, i = 7, 21, 23, 27, 31. If H =
F20(f), F22(h), or F26(j), by Lemma 2.3, f = h = j = 3. Using Software Maple, we have

P(F20(3), λ) = P(F26(3), λ) = λ(λ − 1)(λ − 2)2
(
λ4 − 7λ3 + 20λ2 − 28λ + 18

)

/=λ(λ − 1)(λ − 2)
(
λ2 − 4λ + 5

)(
λ3 − 5λ2 + 9λ − 7

)

= P(F22(3), λ) = P(F6, λ).

(5.4)

Thus, by Lemma 4.3,H ∈ 〈F6〉 if and only if H ∼= F6, F25 or of type F22(3).
(7) Let H ∼ F7. By Lemma 4.2 and the above results, H is of type (7), (20), (21), (22)

where h ≥ 4, (23), (26), (27), or (31). IfH = Fi, i = 7, 21, 27, 31, Lemma 4.3 implies thatH ∼= F7,
F21, F27, or H is of type F31. Lemma 4.1 further implies that H cannot be of type (20), (22),
(23), or (26). Thus, H ∈ 〈F7〉 if and only if H ∼= F7, F21, F27, orH is of type F31.

(8) LetH ∼ F8(b). By Lemma 4.2,H is of type (8), (9), (10), (28), or (29). IfH = F8(b′),
by Lemma 2.3, b′ = b. Thus, H ∼= F8(b). Since F8(b) is of order at least 8 but Fi, i = 9, 10, 29 is
of order 7, by Lemma 2.3, P(F8(b))/=P(Fi), i = 9, 10, 29. By Lemma 4.3, P(F8(b)) = P(F28(b)).
Hence, 〈F8(b)〉 = {F8(b), F28(b)}.

(9) Let H ∼ F9. By Lemma 4.2 and the above results, H is of type (9), (10), or (29). By
Lemma 4.1, F9/∼F10, F29. Thus, H ∼= F9 and F9 is χ-unique.
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(10) Let H ∼ F10. By Lemma 4.2 and the above result, H is of type (10) or (29). By
Lemma 4.3, 〈F10〉 = {F10, F29}.

(11) LetH ∼ F11. By Lemma 4.2 and the above result,H is of type (11), (12), (13), (17),
or (24). If H = F11 or F24, by Lemma 4.3, H must be of type F11 or F24. Lemma 4.1 further
implies that P(F11, λ)/=P(F12, λ) and P(F17, λ). Hence, H cannot be of type (12) or (17). If
H = F13(c), Lemma 2.3 implies that c = 3. Using Software Maple, we have

P(F13(3), λ) = λ(λ − 1)(λ − 2)2
(
λ4 − 7λ3 + 20λ2 − 28λ + 17

)

= P(F11, λ).
(5.5)

Hence, H ∈ 〈F11〉 if and only if H is of type F11, F13(3), or F24.
(12) LetH ∼ F12. By Lemma 4.2 and the above result,H is of type (12), (13)with c ≥ 4

or (17). Since F12 and F13(c) have different order, Lemma 2.3 implies that F12/∼F13. Lemma 4.1
also implies that F12/∼F17. Thus, H must be of type F12.

(13) Let H ∼ F13(c), c ≥ 4. By Lemma 4.2 and the above result, H is of type (13) with
c ≥ 4 or (17). If H = F13(c′), then c′ = c. Since F13(c) and F17 have different order, Lemma 2.3
implies that F13(c)/∼F17. Thus, H ∈ 〈F13(c)〉 if and only if H is of type F13(c) for c ≥ 4 and
H ∈ 〈F13(3)〉 if and only if H is of type F11, F13(3), or F24.

(14) Let H ∼ F14. By Lemma 4.2 and the above result, H is of type (14), (18) or (19). If
H = F14, thenH is of type F14. IfH = F18(e), by Lemma 2.3, e = 3. Using Software Maple, we
have

P(F18(3), λ) = λ(λ − 1)(λ − 2)4
(
λ2 − 3λ + 4

)
= P(F14, λ). (5.6)

By Lemma 4.1, we also have F14/∼F19. Hence, H ∈ 〈F14〉 if and only if H is of type F14 or
F18(3).

(15) LetH ∼ F15(d). By Lemma 4.2,H must be of type (15), (16), or (30). IfH = F15(d′),
by Lemma 2.3, d′ = d. Thus, H ∼= F15. Since F16 has exactly six induced C4s while F15(d) has
only two induced C4s, by Lemma 2.3, H cannot be of type (16). If H = F31, by Lemma 2.3,
d = 2. Using Software Maple, we have

P(F15(2)) = λ(λ − 1)(λ − 2)
(
λ4 − 8λ3 + 26λ2 − 42λ + 29

)

= P(F30).
(5.7)

Thus, 〈F15(2)〉 = {F15(2), F30} and F15(d) is χ-unique for d ≥ 3.

(16) Let H ∼ F16. By Lemma 4.2 and the above results, H ∼= F16. Thus, F16 is χ-unique.

(17) Let H ∼ F17. By Lemma 4.2 and the above results, H ∼= F17. Thus, F17 is χ-unique.

(18) Let H ∼ F18(e), e ≥ 4. By Lemma 4.2 and the above results, H must be of of type
(18)with e ≥ 4, or (19). IfH = F18(e′), Lemma 2.3 implies that e′ = e. Since F18(e) and F19 are
of different order, it follows that H cannot be of type (19). Thus, H ∈ 〈F18(e)〉 if and only if
H is of type F18(e) for e ≥ 4, and H ∈ 〈F18(3)〉 if and only if H is of type F14 or F18(3).

(19) Let H ∼ F19. By Lemma 4.2 and the above results, H must be of type F19.
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(20) Let H ∼ F20(f). By Lemma 4.2 and the above results, H must be of type (20),
(22) where h ≥ 4, (23) or (26). If H = F20(f ′), Lemma 2.3 implies that f ′ = f . If H = F22(h),
Lemma 2.3 implies that h = f . Note that

P
(
F20

(
f
))

= (λ − 1)P
(
W

(
f + 4, 4

)) − (λ − 3)P
(
W

(
f + 3, 3

))
,

P
(
F22

(
f
))

= (λ − 1)(λ − 2)P
(
W

(
f + 3, 3

)) − (λ − 3)P
(
W

(
f + 3, 3

))
.

(5.8)

This implies that P(W(f + 4, 4)) = (λ − 2)P(W(f + 3, 3)), a contradiction since P(W(f + 4, 4))
is not divisible by (λ − 2)2 but (λ − 2)P(W(f + 3, 3)) is divisible by (λ − 2)2. Since F20 and F23

are of different order, Lemma 2.3 further implies that H cannot be of type (23). Lemma 4.3
then implies that 〈F20(f)〉 = {F20(f), F26(f)}.

(21) The result follows directly from (7) above.

(22) Let H ∼ F22(h), h ≥ 4. By Lemma 4.2 and the above result, H is of type (22) with
h ≥ 4, or (23). If H = F22(h′), Lemma 2.3 implies that h′ = h. Since F22(h) and F23 are of
different order, Lemma 2.3 further implies that H cannot be of type (23). Thus, H ∈ 〈F22(h)〉
if and only ifH is of type F22(h) for h ≥ 4, andH ∈ 〈F22(3)〉 if and only ifH ∼= F6, F25 orH is
of type F22(3).

(23) Let H ∼ F23. By Lemma 4.2 and the above results, H must be of type F23. Thus,
H ∈ 〈F23〉 if and only if H is of type F23.

(24) The result follows directly from (11) above.
(25) The result follows directly from (6) above.
(26) The result follows directly from (20) above.
(27) The result follows directly from (7) above.
(28) The result follows directly from (8) above.
(29) The result follows directly from (10) above.
(30) The result follows directly from (15) above.
(31) The result follows directly from (7) above.
This completes the proof of our main theorem.

6. Further Research

The above results and the main results in [6, 7] completely determined the chromaticity of
all 2-connected (n, n + 4)-graphs with (i) exactly 3 triangles (and at least one induced 4-
cycle) and (ii) at least 4 triangles. However, the study of the chromaticity of 2-connected
(n, n + 4)-graphs with exactly 3 triangles is far from completion although all 23 χr-closed
families of such graphs have been obtained in [8] as shown in Figure 2. Base on the above
results, it is expected that many different families of 2-connected (n, n+4)-graphs with exactly
3 triangles are χ-equivalent. Perhaps, the approach used in the study of the chromaticity
of K4-homeomorphs (see [13]) or a more efficient approach of comparing the chromatic
polynomials of graphs can be applied in solving the following problem.

Problem 1. Determine the chromatic uniqueness of all 2-connected (n, n + 4)-graphs with
exactly 3 triangles.
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J1 J2 J3 J4 J5 J6 J7

J8 J9 J10 J11 J12 J13

J14 J15 J16 J17 J18 J19

J20 J21 J22 J23

Figure 2: Relative-closed family of 2-connected (n, n + 4)-graphs with exactly 3 triangles. The light lines of
the graphs refer to the paths with edges not belong to any triangles.
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