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Abstract

In this thesis we introduce a novel approach to software performance engineering that is based

on the execution of code in virtual time. Virtual time execution models the timing-behaviour

of unmodified applications by scaling observed method times or replacing them with results

acquired from performance model simulation. This facilitates the investigation of “what-if”

performance predictions of applications comprising an arbitrary combination of real code and

performance models. The ability to analyse code and models in a single framework enables

performance testing throughout the software lifecycle, without the need to to extract perfor-

mance models from code. This is accomplished by forcing thread scheduling decisions to take

into account the hypothetical time-scaling or model-based performance specifications of each

method. The virtual time execution of I/O operations or multicore targets is also investigated.

We explore these ideas using a Virtual EXecution (VEX) framework, which provides perfor-

mance predictions for multi-threaded applications. The language-independent VEX core is

driven by an instrumentation layer that notifies it of thread state changes and method profiling

events; it is then up to VEX to control the progress of application threads in virtual time on

top of the operating system scheduler. We also describe a Java Instrumentation Environment

(JINE), demonstrating the challenges involved in virtual time execution at the JVM level.

We evaluate the VEX/JINE tools by executing client-side Java benchmarks in virtual time

and identifying the causes of deviations from observed real times. Our results show that VEX

and JINE transparently provide predictions for the response time of unmodified applications

with typically good accuracy (within 5-10%) and low simulation overheads (25-50% additional

time). We conclude this thesis with a case study that shows how models and code can be

integrated, thus illustrating our vision on how virtual time execution can support performance

testing throughout the software lifecycle.
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Chapter 1

Introduction

Software Performance Engineering (SPE) [125] regards the activities involved towards analysing,

estimating and meeting performance goals for a software development project. Performance

engineers identify critical use-case scenarios from software specifications and determine, to-

gether with the management and clients, the initial performance requirements of the project.

At this early stage predictions on whether these objectives can be accomplished or not, rely on

performance models like Queueing Networks, Generalised Stochastic Petri Nets and Stochastic

Process Algebras, properly parameterised based on the expertise of the performance engineering

team. Throughout the software lifecycle measurements are used to refine the model parameters

to better match the implemented code and more accurately identify discrepancies with the des-

ignated performance targets. Ideally, a well-planned and continuously performance engineered

software would always reach its performance goals.

Alas, SPE is not widely used in practice: a recent survey amongst IT managers [30] shows that

half of them claimed to have had performance problems with at least 20% of the applications

they had deployed and attributed them to poor performance engineering strategy. Due to the

significant effort and cost in model selection, design, simulation and validation, performance

analysis is often delayed for after the implementation completion, thus rendering SPE a post-

development exercise.

Research efforts over the last decade (as surveyed by [31], [8] and [146]) have focused on fa-
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cilitating the SPE process by automatically analysing performance information and extracting

performance from software engineering models (UML diagrams), appropriately extended to in-

clude non-functional attributes (like estimated response times). This approach simplifies the

adoption of SPE by utilising existing architectural models, but assumes the availability of such

models, a clear mapping of measurements to their components and an in-depth understanding

of the application at hand.

Another common practice in performance engineering is the use of testing and profiling to iden-

tify bottlenecks in a completed system. More appropriate algorithms, caching and buffering

mechanisms, code and compilation optimisations or system tuning, are then typically employed

to improve the performance of critical paths, in the process of software performance optimisa-

tion. The likely effects of such optimisations on the overall performance of the software rely on

the expertise of performance engineers to analyse the software behaviour, diagnose the causes

of bottlenecks and suggest solutions.

Despite the many significant advances in performance modelling techniques and tools the model-

based SPE methodology is currently not part of mainstream software engineering. This is in

contrast to performance profiling which represents the de facto method for understanding the

performance behaviour of a system, but at the post-development stage. The objective of this

thesis is to develop a novel approach for lightweight integration of performance models and

profiling measurements throughout the software lifecycle. Crucially, our approach facilitates the

application of performance testing techniques on partially-complete software and constitutes a

first step towards a new performance engineering methodology, where models and code can be

used interchangeably.

1.1 The idea

The main idea that underpins this thesis is to simulate the execution of partially-implemented

or completed programs in virtual time. Under the auspices of execution-driven simulation [32],

our approach determines the progress of a program’s execution, whilst profiling its performance
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in virtual time. Virtual time is accounted for either as a measurement of the native execution

of code on the simulation host (simulating the normal execution of the program), or as a

transformation of that duration (e.g. simulating time-scaling optimisation effects) or as the time

predicted by a performance model. The total virtual time of the program is the performance

prediction for its duration, whilst the behaviour of the application is linked to its progress in

virtual time. Using dynamic instrumentation techniques, our approach is able to offer both

profiling and optimisation capabilities at the method-level. No changes to the source code

of the simulated program are needed, nor does the approach require the extraction of models

from code or transformations of the program source code. However, we do propose an empirical

prediction scheme that compensates for I/O operations and DMA behaviour.

A key objective is to avoid the need for low-level system models, such as CPU [6, 149],

memory [26, 118] or I/O [2, 101] models. We are thus concerned with the understanding of the

application’s performance on a given host platform, essentially using the available code itself

as a “model”. Since one of our key contributions is a system for integrating code and models

it would be straightforward in principle to integrate models of the underlying (host) system.

This, however, is a whole different exercise that lies beyond the scope of this thesis.

The objective of this research is to frame our work on the SPE map, present the virtual time

execution idea, create a prototype simulator, investigate the trade-offs between accuracy and

overhead and evaluate the potential for future research based on this approach.

Our thesis is that the virtual execution paradigm can be used as a new software performance

engineering approach, that integrates performance models and code in order to provide perfor-

mance predictions of typically good accuracy and low overhead via high-level execution-driven

simulation throughout the software lifecycle.

1.2 Contributions

In this thesis we explore the feasibility of the virtual time execution idea for software perfor-

mance engineering. We introduce this methodology using a bottom-up approach: from the
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scheduling and profiling aspects of virtual time execution, to the application interface and the

concepts of defining and including performance models. Each chapter presents the correspond-

ing prototype systems, elaborating on the implementation details that highlight the features

and challenges of virtual time execution. Our specific contributions are as follows:

• We introduce the virtual time program execution methodology and its prototype in a

language-independent Virtual time Execution (VEX) core that enforces a round-robin

schedule on the threads of an existing application, as if they were executed under user-

defined time-scaling specifications at the method-level. This is presented in Chapter 3.

• We describe a methodology to include I/O in virtual time, by estimating I/O durations to

reproduce thread-parallelism due to DMA in virtual time. This is elaborated in Chapter 4

together with the investigation of empirically-based runtime prediction approaches for I/O

durations in the VEX prototype.

• We present a system for interfacing VEX’s functionalities to unmodified Java applications,

called Java Instrumentation Environment (JINE). The design and implementation of the

JINE and the Java-related problems encountered are elaborated in Chapter 5.

• We verify and validate VEX and JINE as measured by their ability to predict real exe-

cution times of unmodified small and medium size Java benchmarks; this is presented in

Chapter 6

• We describe an extension to VEX that simulates multicore architectures, by synchronising

the timelines of the virtual cores and its validation on synthetic and real benchmarks

(Chapter 7)

• We propose a SPE methodology and system prototype that offers continuous performance

testing throughout the lifecycle by integrating executable code and performance models

(Chapter 8).
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1.3 Publications and Statement of Originality

I declare that this thesis was composed by myself, and that the work that it presents is my

own, except where otherwise stated.

The following publications arose from work conducted during the course of this PhD:

• Modelling Analysis and Simulation of Computer and Telecommunication Systems 2011

(MASCOTS) [10] discusses the idea of executing programs in virtual time as a means to

investigate the overall effect of optimising specific methods. The methodology and part

of the results presented in Chapters 3 to 6 are based on this paper.

• Quantitative Evaluation of Systems 2012 (QEST) [11] presents our approach for inte-

grating performance models and code in virtual time. Chapter 8 is largely based on this

paper.



Chapter 2

Background

The virtual time execution approach lies at the intersection of the Software Performance Engi-

neering (SPE) and the simulation research areas. This chapter discusses related work in these

fields. As our virtual time execution requires an I/O prediction module, we present work on

the black-box modelling of the I/O subsystem. A brief overview of Java, on which our virtual

time implementation focuses, is also provided.

2.1 Software Performance Engineering (SPE)

Performance is the result of the interaction of system behaviour with resources ([146]), where

by resources we refer to CPU, memory, network bandwidth, buffers and locks, threads and

processes. The limited number of such resources results in the contention for their usage, which

in turns leads to performance problems (bottlenecks). These can be quantified in terms of

various metrics like response time, throughput or resource utilisation.

Performance analysis deals with two aspects of a system: responsiveness and scalability. The

response time and the throughput constitute the main points of interest for the former, while

their variations as the system load increases determine the latter. Moreover, since resource

consumption affects system responsiveness and scalability, finding the optimal solution for each
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Figure 2.1: The role of the Virtual Time execution in Software Performance Engineering.

system in order to satisfy the designated performance requirements, comprises a challenging

task for performance engineers.

The field of software performance engineering (SPE) is based on the pioneering work of Smith

and Williams [125]. SPE is a systematic, quantitative approach to constructing software systems

that meet performance objectives. It uses predictions to evaluate trade-offs in software func-

tions, hardware size, quality of results and resource requirements. The modelling formalisms

presented in this chapter are extensively used in this procedure. These models are adapted

over time to better match our knowledge of the system under study, by using measurements on

implemented parts (profiling). To provide performance predictions, SPE uses the model solu-

tion methods presented in Section 2.1.1. In principle, SPE can make use of models that target

the lower-level implementation details (e.g. caching effects, I/O requests) of the software under

test on a particular platform. However, this would require detailed knowledge of the system to

build such models and low-level system events profiling to populate their parameters.

The description of SPE highlights the importance of two central notions in the process: mod-

elling and profiling. These techniques are used in conjunction and in different stages of software

development to ensure that the end product meets its initial performance requirements through-

out the cycle. We demonstrate how the “Virtual Time performance prediction” methodology of

this thesis relates to these notions in Figure 2.1: performance models and performance testing
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of available code are combined under a virtual execution platform to estimate the performance

of the end product throughout the lifecycle. Early stages mainly simulate models and run code

to a lesser extent, while latter ones primarily performance test code and only simulate models

of partially completed components.

To clarify this relation, we provide an overview of the fundamentals of performance modelling

and profiling. Specifically, in Section 2.1.1 we describe how “Performance Models” and their

“Solution methods” have been traditionally used to describe and analyse the performance of

systems and how such models can be extracted from “Annotated UML” diagrams as a means

to automatise the process. In Section 2.1.2, we describe measurements-related concepts in a

top-bottom fashion: from the “Performance Testing” process, to “Profiling” mechanisms used

for it and “Performance counters” used in profiling.

2.1.1 Model-based SPE

During the initial stages of software development, architectural and design choices need to

be made. Performance models are used in this case to describe how the operations of each

architecture affect the consumption of available resources and thus the final performance of

the system. This approach might lead to early detection of performance problems that could

otherwise require extensive re-engineering at a later stage. Performance models are used in

different stages of the software lifecycle as means of evaluating how changes in existing systems,

like different implementations or additional resources, affect responsiveness, how well an existing

system scales-up in dealing with a particularly high workload etc.

Performance models

Performance models are based on some well-known and widely researched formalisms, which

accommodate their construction and analysis.

Queueing networks are graphical models that describe systems in terms of waiting queues and

servers linked in a network. For computer systems, this relation corresponds to the number of
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processes waiting to be served by a resource. A queueing network is parameterised to denote

the different characteristics of each system, like the process arrival rate, probability distribution

of the service time in each server and size of each queue (if limited).

Answers to questions regarding service utilisation, average response time and system throughput

are amongst the most useful ones that can be provided by the analysis of a queueing network.

Overall, queueing networks provide a good balance between accuracy and cost [78].

There are a number of extensions to the basic queueing networks like Layered Queueing Net-

works (LQN) [116] or Extended Queueing Networks (EQN) [78] targeted respectively at layered

server architectures and systems with simultaneous resource possession.

Another graphical-oriented modelling paradigm is provided by Petri nets [88]. These are di-

rected bipartite graphs, comprising of two different types of nodes: places and transitions.

States are represented by tokens located in places. These determine the dynamics of the sys-

tem: whenever all places with arcs to a transition have at least one token, then the transition

fires, thus removing a token from each of these places and forwarding a token to the places to

which this transition has arcs.

Petri nets are particularly useful for modelling systems where issues like synchronisation and

mutual exclusion are of primary interest, like distributed system or communication protocols.

A stochastic extension (Generalised Stochastic Petri Nets) associates firing time with each

transition. When a transition is enabled, i.e. each place with arcs to this transition has at least

one token, then a delay period is determined according to the firing time. Once this expires

and if these places still have at least one token, the transition fires.

Process Algebras [59] have been introduced into the field of system analysis as a formal (al-

gebraic) way to model the behaviour of complex computer and communication systems. In

performance analysis, Stochastic Process Algebras (SPA) have been used in order to provide

quantified information for times in terms of random variables, for example as numbers specify-

ing delays when various actions occur. In Markovian Process Algebras (MPAs) the firing times

are negative exponentially distributed random variables. The underlying transition system is
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then a Markov process which leads directly to numerical (and sometimes) analytical solutions.

The Performance Evaluation Process Algebra (PEPA) [60] is a leading example of an MPA,

featuring characteristics like composition of many smaller models in order to describe larger

and more complicated systems.

Solution methods

Performance engineering involves quantifying system performance parameters, like response

time, resource utilisation, queueing lengths etc, typically at equilibrium.

Analytical methods can be used to acquire such results, but only for a restricted class of models,

like Markovian queueing networks. In such cases, computationally simple equations are used

to evaluate the system’s performance as a function of its performance parameters. Different

values can then be used to identify the effects that a parameter change will have on the system.

Numerical methods are used for classes of models for which the equations that describe them

do not possess an analytical solution. Depending on the stochastic information present in

the high-level system description, various types of system state equations which mimic the

dynamics of the modelled system can be derived and solved by appropriate algorithms. For

example, a detailed description on the application of such typical linear algebra methods for

Markov Chains can be found in [17]. However, numerical methods may suffer from state-space

explosion, while having a higher computational complexity than analytical methods.

Simulation [76] is the most general way to analyse a performance model, covering systems whose

performance is described by stochastic processes to ones where it is described by UML profiles

[9]. In a Discrete-Event Simulation (DES) events occur at discrete points in Virtual Time,

updating at each of them the global state of the system. Distribution sampling and random-

number generators are used to simulate the model time-delays and the possible variability in

the execution patterns of the simulator sample paths. Since different sample paths may provide

different results, statistical analysis of the simulation output is required. Tools like JMT [16]

and JINQS [45] use DES approaches to solve performance models.
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Extraction of models from Annotated UML and code

The Unified Modelling Language (UML) is traditionally used for system modelling and has

found wide applicability in the software engineering world. Since its inception and proposal by

OMG, UML has seen significant changes to adapt to the needs of modern software modelling.

Hence, a variety of diagram types (class, sequence, deployment, use case etc) is supported to

better match modelling needs for different notions in various stages of the software development.

Annotated UML profiles, namely packages that extend the UML metamodel in a constrained

way, have comprised the major approach to addressing performance issues. In this respect,

OMG has proposed three profiles for UML to incorporate descriptions for non-functional re-

quirements (NFRs): the UML Profile for Schedulability, Performance and Time (SPT) [103],

the UML Profile for Quality of Service and for Fault Tolerance (QoS) [105] and more recently

the UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE)

[104, 85]. Overall, UML SPT has been widely used, though its simplicity has come to the cost

of its customization and flexibility capabilities. UML QoS has a broader scope [15], supporting

notions like Fault Tolerance and Dependability. Following critical aspects on these profiles [147],

the OMG proposed the most recent UML MARTE profile. MARTE allows users to define their

own non-functional-properties (NFP) types, qualifiers and measurement units, thus lifting the

inherent limitations of the predefined descriptions of SPT. Among others, this approach over-

comes the problem of lack of semantic description for the expression of time intervals between

arbitrary events. Finally, the UML MARTE profile enables the logical and physical view and

description of hardware components, denoting their performance or requirements specifications

like throughput, power consumption etc.

Although the UML profiles enable software engineers to denote expectations of NFPs, they do

not directly provide performance predictions. Smith and Williams [125] propose the identifica-

tion of performance-critical use-case scenarios in UML diagrams. These guide the construction

of performance models called Execution Graphs (EG), which are then transformed to queue-

ing networks and are solved via one of the methods described in Section 2.1.1. The field has

acquired significant research interest, leading to a variety of techniques to transform different



36 Chapter 2. Background

types of annotated UML diagrams to queueing networks, stochastic process algebras or simu-

lation models. Such methods are surveyed by Balsamo et al. in [8], by Woodside et al. in [146]

and more recently in [31].

Performance models can also be extracted directly from code execution. Previous work on

this involves building models like Layered Queueing Networks (LQN) from execution traces of

specific scenarios in [61, 66, 96] or PEPA models from multiple refinement passes of annotated

C code [126]. As the idea that underpins this thesis regards the co-existence of performance

models and code rather than the extraction of the former from the latter, such techniques are

only relevant to the context of our work.

2.1.2 Measurements

Performing measurements is the most accurate way of characterising the performance behaviour

of a software system, as they take into account all performance contributing factors from the

application-level, to the operating system and system-architecture level. Following the classifi-

cation found in [97], the main metrics of interest can be classified to “service-oriented” ones, like

response times and availability, and “efficiency-oriented” ones like throughput and utilisation.

In this section we present the measurement-based techniques that are used in the latter stages

of the software lifecycle in a top-bottom fashion: from the high performance testing level to

the lower-level profiling approaches and performance counter issues.

Performance testing

The experiments that take place post-implementation on a (preferably) stable codebase to de-

termine whether the developed software system fulfills its predefined performance requirements

are called performance testing. Identifying bottlenecks and investigating software optimisa-

tions or system parameter tuning to overcome them, constitutes another significant part of the

process. Contrary to functional testing, that targets on the widest possible code coverage, per-

formance testing addresses only a few predefined performance-critical scenarios, that typically
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relate to a Service Level Agreement (SLA) for the system under test.

To acquire meaningful results during performance testing, the usage scenarios are tested via

real or synthetic workloads. Real workloads probe a typical usage of the system, but are less

controllable than synthetic ones. On the other hand, characterising and generating a usage

representative synthetic workload is performed through special-purpose scripts or commercial

load generation tools. Depending on whether the workloads simulate the behaviour of the

system under normal or extreme workloads, we distinguish between load and stress tests re-

spectively [91]. Analysis of the results in each case leads to conclusions, regarding performance

bottlenecks and optimisation possibilities. Topics like the types and selection of workloads and

performance tests or statistical analysis techniques exceed the direct scope of our research, but

are covered extensively in existing literature [67, 80, 81, 97].

Performance testing typically prerequisites a complete and stable codebase. To the best of

our knowledge the only published work which, similarly to this thesis, relates to performance

testing of incomplete software, is proposed by Denaro et al. in [36]. In this work performance

testing on middleware-based software is applied early in its development lifecycle. The solution

replaces unimplemented methods with stubs [46], whose expected performance is disregarded,

under the assumption that the main performance results are based on the deployment of the

off-the-shelf implemented components. Although this assumption applies for commercial off-

the-shelf (COTS) based software, it cannot be possibly generalised. No models are used in

relation to the stubs and no functional or non-functional requirements are enforced on them,

besides calling the methods required and having valid input and return values.

Profiling

The process of extracting measurements that quantitatively describe the performance behaviour

of a software system is called profiling. Such metrics are execution times, instruction or clock

cycle counts, system events like cache misses or page faults, memory usage statistics, bytes

read and written to an I/O device (disk or network) etc. Matching measurements of these

parameters to specific software processes, methods or actions yield the desired response times,
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utilisation and throughput metrics. Call-graph profilers are extensively used to report program

execution patterns. To allow for per method or per stack-trace aggregation of event or time

counters, we distinguish between flat method and path profiles. Reported method profiles can

be inclusive or exclusive, depending on whether method counters include their submethods or

not.

Profiling is done via sampling or instrumentation on the application- or the system-level. Sam-

pling profilers poll the values of system timers, resources and event counters at regular time

intervals. A program profile is a histogram of the execution of a program: it describes the

progress of the performance metrics in time or reports statistics for the usage of a resource

based on the samples gathered. Linux system tools like top, oprofile and vmstat are sampling

profilers, reporting CPU utilisation, processor events and virtual memory related parameters

respectively. The Java hprof tool is a sampling application-level profiler, that acquires samples

in millisecond-level intervals and reports the percentage of a method execution time to the

total time, based on the number of stack-trace samples that included that method. Although

sampling is lightweight and widely applicable, it can be inaccurate in the case of events of

interest being lost between consecutive samples,

Instrumentation regards the addition of code that is only used to measure the system’s per-

formance. This code can be built directly into the profiled application to time events or into

the host-operating system to monitor parameters like device or CPU utilisation. To account

for the difference in the resource of interest (e.g. time), instruments are usually inserted before

and after a method invocation. Event instruments can be added anywhere to denote the occur-

rence of an event. Instrumentation code may be inserted manually on a limited-scale or if this

is supported by a special purpose API, like with the Application Response Manager (ARM)

[71]. Typically, however, instruments are added automatically by using some form of tool. For

example, the IBM Rational Quantify [64], or the aspect-oriented programming tools proposed

by Pearce et al. in [110] for Java, automatically insert the profiling code into the source code

of the profiled applications. An alternative way is to add instruments at compile-time. This

happens with the gprof profiler, where timing and counting instruments are added by the gcc

compiler, when a specific compilation flag is selected. Statistical sampling is then used to poll
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these values at runtime. Other profilers like the commercial Intel VTune Amplifier XE [65] or

JProfiler [42] let the user decide whether the profiling will use sampling or instrumentation.

More recent approaches to instrumentation suggest the addition of instruments during runtime,

with tools like ATOM [44], Pin [111] or Dyninst [144] (the latter used in the popular Paradyn

tools project [94]). ASM [23] and BCEL [33] are dynamic bytecode instrumentation libraries

for the Java Virtual Machine (JVM).

Exhaustively instrumenting all methods or events can lead to a significant performance penalty

to the execution time of the profiled application. It is also possible that this overhead perturbs

the reported results, by changing the program’s execution behaviour. Previous work shows that,

due to such observer effects [83], different profilers may end up reporting different performance

hot-spots [100]. Malony et al. [87] measure the overhead per instrument and compensate for

it in the reported results. They conclude that though in many cases this is useful, differences

at the nanosecond-level on the overhead per instrument measurements, may significantly affect

the success of the compensation. Besides, the method does not deal with overheads in thread

synchronisation times: overheads from instruments executed by threads running in parallel

with waiting thread A, are still reflected in the total waiting time of A. As the problem

exacerbates, when short methods are executed at a high-rate, a selective [37] or adaptive [41, 94]

instrumentation technique can be used to avoid deploying or removing instruments from such

methods.

Performance counters

On the lowest-level of the measurement process we have system timers and hardware perfor-

mance counters. They are exposed to the user-level via system library functions, like the Linux

functions found in <sys/time.h> or through specific APIs, like the Performance Application

Programming Interface (PAPI) [108] used in this thesis. PAPI has been introduced as a con-

sistent high-level interface for usage of hardware performance counters that can be found in

most modern microprocessors. In Linux, PAPI builds upon the libpfm and libperfctr user-level

libraries, which use the perfmon and perfctr kernel modules.
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System timers and event counters are updated, according to the frequency that the system

internal timer generates interrupts to schedule the next process [24]. As such interrupts occur

at the ms-level and many low-level system events at the ns-level, the system counters offer an

approximate value (missing events since the last context switch), which is nevertheless adequate

for large-scale performance tests. Apart from time, system counters usually measure operating

system events, like signals, memory allocation, page faults, bytes transferred to and from devices

etc.

Lower-level performance tests need a finer-grained time measurement and might be more inter-

ested in processor events, which are offered by the hardware performance counters. Different

processors may have different event counters, though they all have a time stamp counter (TSC)

[20], which is updated at every clock cycle. Event counters typically relate to instruction counts,

cache and TLB events and are stored in CPU registers.

Both system and hardware performance counters distinguish three types of time. Elapsed- or

real- time is tantamount to wallclock time. User- or CPU- time is the time that a process or

thread is executing in user mode. The CPU-time measurement disregards the execution times

of processes that share the CPU with the process of interest in a multitasking environment.

The CPU-time counter is also left unmodified when the thread is executing in kernel mode:

executing a system call, being context-switched or blocked, queueing for a resource or waiting

for I/O. The system time counter of the process can be used to acquire such times. The time

system call exemplifies the difference between the three on a Unix system.

An important aspect of measurements is their non-determinism, i.e. the fact that successive

measurements can yield different results. Although the same CPU instructions are always

processed in the same way, the multitasking environments of modern operating systems lead

to processes being context-switched, so that others can make progress. By doing so, they may

increase the load on shared resources (e.g. disks), whilst altering the caching, memory access

and branch predictions patterns [24]. Clearly, different processes have different such behaviours.

Hardware interrupts and asynchronous I/O interrupts affect the cycle count of the executing

processes [141, 133]. Mytkowicz et al. [99] have found that even the size of environmental
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variables or the order in the executable linking, may change the measured results, as they alter

the memory alignment of the program. In [150], Zaparanuks et al. identify factors that affect the

measurements of hardware performance counters, like the selection of API for access to hardware

performance counters, the number of enabled counters and the duration of the benchmarks.

Furthermore, Java applications are also susceptible to additional non-determinism, due to the

timer-based method sampling that affects JIT compilation, asynchronous garbage collection,

code optimisations and memory access pattern [51]. For all these reasons, measurements are

repeated and statistical methods are employed to acquire meaningful results [67, 80, 119, 51].

2.2 Simulation

Computer simulation offers accurate and flexible analysis techniques for complex systems [67].

Computer system simulators are programs that model the inner workings of a system, updating

its state upon the arrival of new events. The objective of computer system simulation is

to support system design, by exploring different hardware implementations or performance

tuning, by investigating the performance behaviour of future (target) computer architectures

under various workloads. As simulators are expandable, easier to work with and less expensive

than hardware implementations, they provide an excellent testbed for computer architects and

system designers. Typical trade-offs of simulation concern level of detail against development

time and simulation execution time versus prediction accuracy.

The virtual time execution relates to simulation in various ways:

• It borrows ideas from direct execution execution-driven simulation.

• It has similar objectives to real time simulation and network emulation.

• It uses the notion of Virtual Time presented in previous work in a new context.

This section presents related work in each of these research areas.
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2.2.1 Execution-driven simulation

Event generation

The simulated workloads define the sequence of events that are processed by the computer

system simulator. We can identify two types of simulation in terms of event generation.

In trace-driven simulation [134], the workload is used to generate a trace of its execution (i.e. the

functional behaviour of the system), including instruction types, memory addresses accessed,

the sequence of disk blocks requested etc. Trace-driven simulation has a high requirement in

terms of memory and may suffer from inaccuracies for multiprocessor workloads [52], as it does

not reflect the effects of timing-dependent issues on the target host on the trace.

These problems are overcome in execution-driven simulation [32], which interleaves the func-

tional and timing behaviour of the system. A program that should be able to run on the

target host is executed unmodified on the simulator. The simulator traps events (like instruc-

tion fetches, cache misses, memory accesses etc) and controls the functional behaviour and

time progress of the simulation. The selection of such events and the actions taken upon their

occurrence determine the tradeoff between accuracy and speed. We review existing work on

execution-driven simulation in the following sections.

Cycle-accurate simulation

Execution-driven simulators reproduce the behaviour of a target system, by providing the

same output under the same workload on a simulation host (assuming deterministic code).

A simulator can provide functional consistency with the target system, by interpreting each

instruction of the designated workload to precisely update the state of a model of the target

system and the simulation time. This solution, called cycle accurate simulation CAS, models

the microarchitecture of the target system at the CPU-level, allowing simulation of features

like pipelining, execution re-ordering, branch prediction etc. This provides high flexibility and

accuracy, but at the cost of low simulation speed.
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SimpleScalar [6] is a mature simulation tool, supporting various architectures (Alpha, Portable

ISA, ARM, and x86). Amongst its available simulators, the sim-outorder is a cycle-accurate

simulator for a single out-of-order executing processor. SimpleScalar simulates only user-mode

execution and uses emulation for I/O operations and system calls. The importance of such

system effects is investigated in PHARMsim [25], which is a full-system simulator for the Pow-

erPC ISA. Full-system simulators simulate the entire software stack covering both application

and OS-level effects. In PHARMsim this is accomplished, by simulating OS operations and

utilising a DMA-engine to determine the effect of cache state errors on disk I/O activity.

TFSim [90] is a full-system simulator with decoupled functional and timing simulation con-

cerns, which introduces the timing-first paradigm: each instruction is first simulated with an

integrated “timing” simulator, which models out-of-order execution and predicts the interleav-

ing of threads. To improve its performance, this timing simulator does not simulate aspects

of the system with low performance cost. As this might reduce the simulation precision, com-

mitted instructions of the timing simulator are forwarded to a full-system functional simulator

(like Simics [84]), which detects deviations in the simulation process and, if required, triggers

recovery actions. The timing-first approach is used in the General Execution-driven Multi-

processor Simulator (GEMS) [89] framework, where the timing aspect is offered by a flexible

multiprocessor memory system simulator.

PTLSim [149] is a coupled full-system simulator, that supports cycle-accurate functional mod-

elling for the x86-64 architecture. Similar to the SimpleScalar paradigm [6], the PTLSim offers

a superscalar out-of-order core, a simultaneously multi-threaded version of that core and an

in-order sequential core, along with cache memory models and TLBs. TLB miss delay is as-

sumed to be proportional to a chain of four dependent loads (one per level of the 4-level x86-64

page table tree). Incoming interrupts and DMA requests are handled with trace recording and

injection: a timestamp is assigned to each such operation, which will only be issued if the

simulation time reaches that timestamp. PTLSim can simulate multiprocessors in parallel, by

assigning a core model to each core, advancing each core by one cycle in round robin order and

handling shared memory operations.
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Instruction-set simulation

Instruction-set simulation (ISS) reduces the overhead of simulation, by focusing on the instruction-

set architecture (ISA) of the target host. Such approaches sacrifice the flexibility of CAS for

performance, by abstracting the inner functionality of the CPU. The contents of registers are

still correctly accounted for, thus rendering instruction-set simulators (like Simics [84]) useful

for debugging purposes.

Simics [84] is a full-system simulator which simulates both workloads and operating systems

on a variety of target architectures. It can model embedded systems, desktop or set-top boxes,

telecom switches, multiprocessor systems, clusters and networks of all of these items. Simics

views each target machine as a node, representing a resource such as a Web server, a database

engine, a router or a client. A single Simics instance can simulate one or more nodes of the

same basic architecture, while heterogeneous nodes can be connected into a network controlled

by a tool called Simics Central. Simics offers accurate instruction counts, but only estimates

the interleaving of memory operations of next generation systems by including approximate

cache and I/O timing models.

ISS is used for system-level design of embedded applications, where the CPU cycles of each

operation on the target host are instrumented to the application code, before it is simulated.

Cache- and memory-related operations are typically simulated. Bammi et al. [12] propose

compiling the source to a virtual instruction-set and generating a processor basis file that

contains an estimated cycle count for each virtual instruction. The cycle counts for each

instruction are either defined from processor manuals or through cycle-accurate simulators.

Alternatively, statistical methods are used to determine the cost of each virtual instruction,

based on execution times of benchmarks with known instruction mix. However, this method

does not take into account compiler optimisations. To overcome this, Lazarescu et al. [77] use

an assembly-to-C translation approach to add timing information on the target binary, after

the target compiler applies its optimisations.

Wang and Herkersdorf [139] propose an intermediate instrumented source code, that adds
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timing information at the basic-block level, after the front-end compilation stage. Timing

information is defined statically for local effects of basic blocks and dynamically for global

effects like memory accesses, whose cost depends on the context. A similar hybrid approach

is followed by Meyerowitz et al. [93] for heterogeneous multiprocessors, where communication

delays between processors have a predefined cost.

Another level of abstraction is offered via instruction-set emulation, which emulates the exe-

cution of each instruction on a target host with a set of instructions on the simulation host.

This typically involves emulators like QEMU [13] or the binary translation module of SimOS

[117]. Dynamic binary translation is used in Embra [145] for fast full-system simulation of

MIPS R3000/R4000 processors, Mambo [137] for PowerPC and COREMU [140] for x86 64 and

ARM architectures.

The Structural Simulation Toolkit (SST) [115] is a configurable and extensible discrete-event

simulator for MPI-based HPC applications. The SST uses multiple processor, memory, I/O

and network models to investigate the performance, power consumption and reliability of fu-

ture large-scale systems. Specifically, SST has been introduced with a CPU model based on

SimpleScalar [6], DRAMSim2 [118], DiskSim [2], QEMU [13] or even a stochastic CPU model.

The decision on the selections between these models, determines the granularity of simulator

and its position in the time-accuracy tradeoff.

Using a different approach the Virtual Timing Device (VTD) [63] decouples functional and

timing simulation. The code is simulated on the QEMU functional virtual platform and the

timing aspect is provided by a variety of mathematical models, which differ in terms of precision

and accuracy. These timing models combine linear regression on the event counters of the

functional simulator with system components simulators. The simulation alters the timestamps

returned to the application, but does not affect the sequencing of thread events in the functional

virtual platform. VTD returns less accurate predictions than other approaches (errors of 18%)

at a very low overhead of less than 10x. The simulation takes place on a single host.
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Direct execution

Direct execution is a technique used to speed up simulation, by executing the target program

instructions on the simulation host, assuming that the ISAs of the target and simulation hosts

are the same. This type of simulation is used to investigate parallel architectures in terms of

shared memory systems, node interconnect etc.

The Rice Parallel Processing Testbed (RPPT) [32] is a typical example of direct execution

execution-driven simulation. In the RPPT, the code of a concurrent application is instru-

mented to dynamically generate the workload that drives a simulation model of a parallel

architecture. The application is divided into basic blocks of execution, i.e. blocks of code with-

out interaction points between processes. The instruments also include a fixed timing of each

block, acquired by its execution on a single-processor host. Interaction points can be accesses

to shared memory or messages between processes. Each basic block is directly executed on the

host of the simulation and its fixed timing is added to the simulation time. The way that the

simulation time progresses is defined by a user-provided model that maps processes and data on

the architecture model. The architecture model is also used to simulate the cost of interprocess

communication. As parallel processes are serialised and executed on the same host, time and

memory issues affect the scalability of the approach.

Tango [35] follows a similar methodology to the RPPT to offer multiprocessor simulation on a

uniprocessor. Each processing element in Tango is a different process, which is instrumented

at the basic block level to update the local simulation clock of the process. Basic blocks are

defined in a flexible manner, as users can decide which operations are considered interaction

points: only synchronisation points between processors, only shared data accesses or both.

By allowing these three different configurations Tango offers a “pay only for what you need”

approach that reduces simulation times if only synchronisation points are needed. However,

Tango suffers from higher overheads due to the use of processes and semaphores.

PROTEUS [21] was proposed as a solution to the shortcomings of Tango, by using lightweight

threads instead of processes. PROTEUS offers a modular approach, allowing for usage of various
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OS kernel, shared-memory, cache and network modules: each related instruction accesses one

such module, which determines the functional and timing behaviour to be simulated. These

traps are also used for synchronisation reasons between the different simulation threads. The

synchronisation mechanism is augmented with a quantum-based technique that guarantees that

no thread is much further ahead in simulation time than the others. For the parallel sorting

benchmarks presented, PROTEUS achieves very good accuracy at a typical overhead of 35x to

100x, compared to the 500x to 2,000x reported in their paper for Tango.

The RPPT, Tango and PROTEUS approaches simulate multiprocessors on a uniprocessor. The

Wisconsin Wind Tunnel (WWT) [113] uses a parallel computer to simulate shared memory

multiprocessors, in an attempt to improve simulation time, exploit the inherent parallelism of

parallel applications and reduce the stress on the memory requirements of the single host. The

WWT exploits features of the hardware and modifies the OS to simulate behaviour only in

the case of a cache miss; any other code is directly executed on a processor. Parallel processes

advance in time-quanta, synchronising either at time points when events that require simulation

(e.g. cache misses in shared memory architecture) are triggered. If no such events are triggered

for Q cycles (that correspond to a quantum), then the processor blocks at a barrier, waiting to

synchronise with the other ones. Instrumentation is used to locally account for these Q cycles in

each process. In an attempt to improve the portability of the WWT approach, [98] presents the

Wisconsin Wind Tunnel II, which employs binary instrumentation and an architecture-neutral

programming model to replace platform specific requirements. However, this comes at the cost

of higher overhead compared to the WWT.

The Warwick Performance Prediction (WARPP) toolkit [58] introduces a semi-automatic discrete-

event simulation technique to provide performance predictions for large scale scientific parallel

applications. The idea is to combine instrumentation at the basic-block level with a scripting

language that describes the control flow of the application to generate a simulation model that

is then used to estimate the performance of a future architecture. I/O timings modeled as

“times per byte” and network profiles of different regions of the system under simulation de-

scribed by bandwidth and latency are also input to the simulator. The simulator then starts a

number of virtual processors which progress the various control flows of the program, processing
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the different events that include CPU time, idle time and I/O or network activity. WARPP

scales well offering good predictions to simulations of thousands of nodes. However, in order to

achieve this scalability, it does not model the synchronisation interactions between threads or

the changes in the profiled latencies as a result of the contention on the system’s resources.

Shared memory multiprocessors are also the research subject of the Graphite [95] approach,

which simulates the execution of multithreaded applications for target multicore architectures

on a distributed system. Each thread of the application is mapped on a host of the dis-

tributed simulator and its functional behaviour is “simulated” by direct execution. Graphite

uses dynamic binary instrumentation with Pin [111] to offer a single memory address space

and consistent OS interface amongst all nodes. Instructions and events from the core, network

and memory subsystem functional models are passed to analytical timing models that update

individual local clocks in each core. Although Graphite provides a modular approach to enable

the change of the tradeoff between performance and accuracy, typical simulation overheads

have a median of 1200x for the simulation, which compares well to other full-system simulation

approaches.

BigSim [152] is a parallel simulator built on top of the CHARM++ runtime system that targets

on predicting the performance of machines with a very large number of processors. The pro-

posed approach involves the real execution (functional emulation) of a parallel message-based

application on a number of nodes, whilst running a parallel algorithm that corrects the time-

stamps of the messages sent between the simulated processes. Three ways are supported for

modelling the timing behaviour of the sequential code executed on each node of the simulator:

user supplied expressions for every block of code, scaled wallclock measurements to match the

running time of the target machine or hardware performance counters to be used as inputs to

heuristics that determine execution times. Network performance for the communication of the

nodes is either predicted via mathematical models or with a network simulator.

COMPASS [7] is another direct execution simulation method that focuses on the simulation of

MPI-parallel applications. The framework natively executes instructions of different processes

and traps MPI I/O and network communication. The timing of I/O operations includes simple
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models based on disk parameters and a detailed disk model, while the network communication

uses a contention-free latency-based timing model. The physical times of such operations, which

are executed for correctness, are disregarded, thus decoupling functional and timing concerns

of the framework. The basic component of COMPASS is the kernel, which schedules threads

and conservatively synchronises cores that are simulating in parallel. Presented results for

COMPASS indicate prediction accuracy of within 5% and highly variable overhead, ranging

from 2.5x to 40x, depending on the application and host processors used.

Parallel simulation

Simulation exhibits a clear tradeoff between speed and accuracy. The overhead of a full-

system cycle-accurate simulator can be several orders of magnitude higher than direct execution,

reducing the applicability of simulation for heavier workloads. Parallelizing the process has been

an essential way to speedup the process, whilst maintaining the required accuracy [113, 152,

29, 106]. Various synchronisation techniques have been proposed to coordinate the nodes of

the parallel simulator.

SlackSim [29] offers a platform for fast parallel simulations. The POSIX threads of a multi-

threaded application are distributed amongst the cores of the simulation host, where they each

execute an integrated CPU simulator of the target architecture (pipeline and L1 cache). The

L2 cache banks and their interconnection to cores are simulated by a central manager thread.

Memory management, file system handling and other system functions are emulated outside

the simulator. Each core has its local clock, incremented according to the simulator, and a local

maximum timestamp, which determines how far the thread can progress the simulation without

suspending. SlackSim offers thus a coupled low-level instruction simulation for each core. A

global simulation thread is responsible for synchronising the threads, by setting the maximum

local timestamp of each core, according to the synchronisation scheme followed. Apart from

the trivial cycle-, N-cycle- (quantum) or no- (lax) synchronisation schemes, SlackSim proposes

a bounded slack simulation scheme. This is a moving window approach that forces threads

to synchronise only if they exceed a difference from the constantly updated global simulation
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time. SlackSim offers very accurate results (less than 3% error), but at a significant overhead.

Graphite [95] simulates a multithreaded application on a distributed system. In order to keep

the local clock of each node synchronised with the rest it supports three types of synchronisation:

lax, where all threads progress freely, synchronising only when they interact to each other, lax

with barrier, where they all synchronise after a configurable number of cycles (quantum), and

lax with point-to-point, where each node synchronises with another random node.

BigSim [152] adapts the traditional optimistic Parallel Discrete Event Simulation (PDES)

paradigm, by modifying the language and runtime support, to identify and exploit the de-

terminacy of parallel programs and reduce the cost of synchronisation. This means that event

dependencies are recognised on the source code level and an event can only be allowed to execute

after all events that it depends on have been executed. This accelerates the synchronisation

scheme as the system avoids checkpointing and rollback costs.

2.2.2 Network emulation

Network emulation deals with the integration of real-time application prototypes and network

simulators for network protocol evaluation. As the prototypes need to execute in real time and

the network simulators in simulation time, the problem is to integrate the two and enforce a

correct ordering between the real events from the applications and the simulated events from

the simulators. Apart from the functional correctness of the emulation, each proposed approach

for network emulation is concerned with prediction accuracy, overhead and scalability issues.

A first attempt to network emulation is provided by Dummynet [114], which hacks the TCP/IP

protocol to intercept network communication of unmodified applications within the OS kernel.

The intercepted packets from node A to node B are queued and routed, according to the

network from A to B that we want to simulate. However, such delays are enforced in real time,

thus limiting the applicability of the method based on the timing granularity of the simulation

host.

Using virtual machines on top of a single physical machine constitutes a common way to scale-
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up the emulation capabilities. Within this framework, a number of solutions have used virtual

time as a means to alter the perceived time duration by the virtual machines participating in

the emulation and thus further increasing its scalability capabilities. Gupta et al. [57] propose

the time dilation factor (TDF), which leads virtual machines to perceive external events as if

they occurred much faster than in reality, thus replacing real time with virtual time. Changing

time perception on the Virtual Machine Monitor (VMM) level, namely on the software layer

responsible for multiplexing many virtual machines on the same physical resources, the authors

achieve pervasiveness and transparency: all virtual machines will be unaware of physical time

while no changes are required on the application level. By using real time delays on the VMM-

level, the emulation running time will be increased as many times as the highest TDF value of

the monitor. This increases the overhead of the method. Another problem is the low hardware

utilisation resulting from the stability of the TDF.

In order to alleviate this issue, Grau et al. introduced the time-virtualised emulation environ-

ment [54], which dynamically changes the TDF according to some load metric to better balance

the emulation’s resource utilisation. Nevertheless, in both cases the passing of time is altered

at the level of a virtual machine and for all its components. This results into poor granularity

in the level of alteration and restricts these techniques from uses beyond network emulation

like extending or accelerating the duration of an application method to identify its performance

effect.

Time-dilation is also used in the Scalable Virtualised Evaluation Environment for TCP (SVEET)

[43], a framework for large-scale TCP experimentation. Distributed applications are executed

by virtual machines, that have any TCP communication trapped towards a global network real-

time simulator. By selecting a single TDF factor for all virtual machines, SVEET virtualises

the load rate to the network simulator, allowing large-scale, flexible experimentation.

Bergstrom et al. [14] propose the distributed Open Network Emulator (dONE), which integrates

direct code execution of unmodified network applications with network emulators/simulators.

They introduce the idea of scaling real time to allow enough time to the physical network

to emulate packet transmissions. The event timings of the transmissions are determined by
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a network simulator. This time-scaling approach is defined as relativistic time. Relativistic

time also enables time warps over quiescent intervals amongst all virtual hosts. A central

coordinator is used to determine epochs, during which real time progresses under the same

time-scaling factor. Therefore, time keeps flowing normally (as in physical time), but remains

controllable in order to be able to include times from the simulator’s discrete events. The

composition of unmodified applications and protocol stacks is offered by the Weaves framework

[136], while the Linux kernel is customised to enable logging of virtual times. The approach

assumes that only the API to the network protocol stack needs to be considered as an external

event; any other time progress is local and should be entirely taken into account, since no

instrumentation overhead is added. This makes relativistic time (as presented in [14]) less

applicable for profiling or time-scaling at the method level.

The SliceTime [143] platform decouples wall-clock time from the perceived progression of soft-

ware prototypes’ time, allowing network simulators and prototypes to be synchronised in vir-

tual time. A timeslice approach is enforced by a central scheduler to enable parallel hosts to

progress in a synchronised way and let the network simulator process only the events within

that timeslice. The objectives and synchronisation patterns of SliceTime are quite similar to

our approach. However, the implementation is based on executing software prototypes within

virtual machines, while modifying the hypervisor layer to virtualise the passing of time. Note

that individual method executions within these hosts cannot be resolved and thus it is not

possible to create a per method time mapping on the virtual time dimension.

2.2.3 Real time simulation

In this section we review existing research that focuses on simulating hypothetical method

durations or performance models on the method level in real time (and not in virtual time

like this thesis). Fine-grained performance time-scaling is offered by the dynamic performance

stubs approach [132], which replaces existing code with a functionally similar stub, that simu-

lates the performance behaviour of the original code. Based on a calibration run to profile the

host and an initial profiling run to identify performance characteristics of methods involved,
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the methodology replaces functions with stubs. Modifying the performance behaviour of stubs

and simulating this effect on the system (e.g. with busy waiting or sleeping), this approach ad-

dresses specific performance questions to support software optimisation. However, thread-level

interactions (e.g. synchronisation points) of the original code with the remaining application

are not reproduced in the real time simulation.

Dunn [39] simulates performance models in real time, as a means of replacing missing methods,

during the early software development stages, to enable performance testing through the lifecy-

cle. Assuming the existence of performance models for unimplemented methods, then whenever

such a method is invoked, the running thread is set to sleep or busy wait for an amount of

time determined by sampling the corresponding performance model. As implemented methods

consume CPU cycles as well, this approach integrates models and code in real time, leading

them to contend for the CPU. Similarly to the approach found in [132], locks or I/O contention

between different threads “executing” the same model in parallel is not addressed. Moreover,

the simulation has to occur in real time, increasing performance testing time.

2.2.4 Controlling program execution in Virtual Time

Virtual Time (VT) is any perception of real time that is different from the physical duration of

that amount of time. This includes stretching or shortening time periods, accounting for time

in any arbitrary way, synchronising with times that do not necessarily correspond to the real

ones or even shifting the occurrence of events backwards in time.

The idea of Virtual Time was initially introduced in [70] as an optimistic synchronisation scheme

for distributed systems. Processes are allowed to speculatively continue execution, disregarding

possibilities of synchronisation faults. If such a case is identified, the process has to roll-back,

thus “returning” the Virtual Time acquired for the speculative execution and moving back in

time. This main idea was later evolved in [69] and [112] to the Time Warp operating system

that supported rollback mechanisms at the system level to facilitate optimistic event scheduling

for parallel discrete-event simulations on multiprocessors. Chandy and Lamport use the notion

of Virtual Time (denoted though as process local time) to acquire consistent global snapshots
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in distributed systems [27]. In this work, local clock values that are synchronised only on inter-

process communication constitute virtual times, since the timings of events that do not affect

causality in the distributed network might acquire random (though still sequential within that

process) values.

In [107], the Pin [111] binary instrumentation framework is extended to define a user-level thread

library to control scheduling through instrumentation. A scheduler controls the execution of

the application’s threads, by adding checkpoints and mapping at each of them the previously

stored thread contexts to a single user thread. This simulates context switching, allowing the

thread scheduler to create custom thread-interleavings as our scheduling profiler does. Any

timing information (including time dilations) is provided by a system simulator. Without an

external simulator the thread library cannot simulate the contention on the I/O subsystem

from parallel threads, since all threads are mapped to a single-thread. Thread control is offered

at checkpoints potentially creating a discrepancy between real system scheduler behaviour and

simulation one.

A prototype of the virtual time execution for uniprocessors was first introduced in [18]. Di-

viding the execution of a Java application in basic blocks, this approach followed closely the

paradigm of direct execution execution-driven simulation [32, 21, 35]. In this approach the

scheduler of the simulation is tightly coupled with Java and uses JVMTI calls to synchronise

the application’s threads. POSIX signals are used to poll the CPU times of threads. This

combination of JVMTI and POSIX at the native level leads this prototype implementation

to suffer from “spurious deadlocks”, due to synchronisation effects within the JVM. No I/O

contention, multicore targets or integration of performance modelling are supported.
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2.3 Java Virtual Machine overview

2.3.1 Java

Java is an object-oriented programming language specified to achieve platform-independence by

executing programs on a virtual machine (the Java Virtual Machine - JVM), which is built on

top of any underlying platform and operating system. The JVM only recognises and executes

bytecode, namely a set of instructions each codified in an opcode of 1 byte length. User source

is compiled to Java bytecode, which should then be executed on the JVM on any platform.

Java’s ubiquity, instrumentation capabilities and usage in a variety of widely industry-deployed

applications like Web and Application Servers, have comprised the contributing factors towards

the selection of this language as the target of this thesis.

2.3.2 JNI

The Java Native Interface (JNI) [130] concerns the capability of Java programs to include

libraries written in native code, i.e code executable on a particular platform. Although this

approach limits the scope of Java code platform-independence, it allows usage of existing code

(written in C or assembly) or system libraries within a Java application, thus limiting the

extensive need for code re-writing from the one language to the other.

2.3.3 JVMTI

The Java Virtual Machine Tool Interface (JVMTI) [129] regards the features initially introduced

in Java 5 used to facilitate the generation of Java debugging and profiling tools. This is

accomplished by a JNI-written agent library, which is defined as an argument (-agentpath)

on the JVM execution. The agent library interacts with a Java application on a number

of predefined events (callbacks), like class loading, method calling, monitor entering, garbage

collecting etc, offering instrumentation capabilities on each of these events. JVMTI is typically
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used for debugging and profiling purposes.

2.3.4 Java instrumentation

Java instrumentation regards the series of techniques that automatically modify existing classes,

like adding time accounting code in the beginning and end of each method. Such methods are

provided since Java 5 by the classes of the java.lang.instrument package. Defined as a Java-

agent (-javaagent JVM argument), a class derived from this package may be used to transform

other class files as they are loaded. Tools like ASM [22] or BCEL [33] are typically used to offer

such transformation capabilities.

2.4 Pthreads

Threads are streams of program instructions that are handled independently by the operating

system. A program comprises one or more threads, which have their own stack frames, but

share the heap. This allows for multiple threads to process different parts of memory in parallel,

thus utilising the available processing resources and improving the performance of a program.

In this section we introduce the POSIX threads (Pthreads) implementation of the threading

paradigm, which is a well-established API designed for portability.

The lifecycle of a thread starts, when it’s parent process spawns it. This process initialises the

context of the thread with the routine it is supposed to execute and sets it into the queue of

runnable processes. The thread is then resumed when the operating system scheduler decides

to do so. POSIX uses the pthread create function to spawn a new thread. The parent of the

thread may invoke the pthread join function to block until its child thread terminates execution.

The sharing of the heap between different threads introduces the need for synchronisation.

Generally, this is accomplished via mutual exclusion mechanisms, according to which one thread

acquires exclusive access to a part of memory. Any other threads that attempt to access in the
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meantime are blocked until the exclusive access requirement is revoked. Pthreads introduce the

following functions to achieve this type of synchronisation:

• pthread mutex lock(pthread mutex t : acquire a mutual exclusion variable. If another

thread attempts to acquire it while it is being held, then that thread will be blocked.

• pthread mutex unlock(pthread mutex t : release a mutual exclusion variable. If another

thread is waiting at a pthread mutex lock invocation then it is allowed to resume and

acquire the variable itself.

• pthread cond wait : a thread that has already acquired exclusive control of a mutual ex-

clusion variable, relinguishes the control and waits on a conditional variable to be notified

by another thread on when it should continue. Once this happens, the currently waiting

thread will attempt to acquire the mutual exclusion variable and resume execution.

• pthread cond signal : a thread signals another thread that is waiting on a conditional

variable to resume execution when the associated mutual exclusion variable becomes

available.

These operations guarantee that the state of the mutual exclusion variable can be read and

updated without the need of further synchronisation. This means that if two or more threads

try to acquire the mutual exclusion variable “at the same time”, only one of them will achieve

to do so.

2.5 I/O

2.5.1 I/O in Linux

I/O devices concern a variety of media: hard disks, disk arrays, DVDs, network cables, printers,

monitors, terminals, mice etc. They are generally distinguished in block devices, i.e disks of any

kind, and character devices, like terminals and mice, where I/O operations concern sending and
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receiving streams of bytes. Linux has a unique interface for all types of I/O devices, accessing

them via file system calls. Nevertheless, the performance behaviour of I/O operations differs

significantly between block and character devices or amongst character devices themselves.

Accesses to block devices typically bear the highest overheads, due to the high volume of data

that get transferred. The high-level handling of the Linux kernel for block I/O operations is

shown in Figure 2.2. It employs several optimisation techniques, like caching, I/O scheduling

and Direct Memory Access (DMA) support. Directory entries, file information and disk pages

are stored in the dentry, inode and page caches respectively, improving the performance of

lookup and retrieval of file blocks. In case that the requested data are not in the page cache,

a new I/O request is generated and enqueued as a pending request. To exploit the fact that

sequential disk blocks are accessed faster, an I/O scheduler determines the order that pending

requests are issued to the device driver. By merging I/O requests to consecutive blocks together,

Linux limits the number of issued requests. Keeping the CPU idle (or in a busy-loop), while

waiting for I/O is not suitable for disks, whose transfer latency is typically in the order of

milliseconds. Instead, DMA allows the CPU to program a special-purpose external controller

to perform the I/O operation, while the CPU is assigned to another runnable process. When

the I/O operation is finished and the block transferred to memory, the DMA controller sends

an interrupt to the CPU, to set the originally issuing process as runnable. Modern disks use

on-board buffering as well, to avoid rotational delays.

Character devices like mice and keyboards only transfer a few bytes per operation and thus

bear low run time overheads. In contrast, sound cards and network controllers use buffering,

filling a cyclic buffer with data and using DMA when more data are requested or data are

available for reading. They also differ in that sound cards use standard rate in their streaming

of data, while network arrivals are asynchronous.

2.5.2 I/O in execution-driven simulation

Execution-driven simulators handle the issuing of I/O operations via emulation, modelling or

“virtualisation”. We note here that we are not interested in I/O simulators (like DiskSim
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Figure 2.2: Linux kernel components involved in block I/O (Based on [20])

[2]), but rather higher-level system simulators that have an I/O component. SimpleScalar

[6] emulates I/O operations and system calls, executing them directly on the simulation host.

PHARMsim [25] introduces a DMA engine that models disk I/O latency, to include the effect of

disk activity to cache coherency in the simulation. Network traffic is simulated via mathematical

models [152] or via network simulation [152, 5]. Simple or detailed disk- and a contention-free

latency-based network-timing model are used in the COMPASS [7] simulator for parallel MPI

applications. PTLSim [149] virtualises the occurrence of I/O operations on the VM hypervisor

level, by assigning a timestamp to each incoming interrupt or DMA request. Only when the

simulation time reaches this timestamp, will the event take place.
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2.5.3 Prediction methods

I/O operations are random by nature, depending on the context of execution, optimisations

used [62], mechanical considerations like the current position of a disk head with respect to the

block to be transferred, events like new request on the network card, or even human factors.

The main focus of our approach is on modelling and predicting at runtime the observed time

of each I/O system call, including kernel file-system management, I/O scheduling, page caches,

DMA-requests, bus and disk or network latencies.

An attempt to model the entire I/O subsystem is introduced by Nguyen et al. in [101]. The

authors model I/O caching effects, using a stochastic Petri Net for the read and write operations

in the ext3 Linux file system and implement the I/O scheduler and disk components of the

model using a simple queueing node. The model’s parameters are populated using the iozone

benchmark. This approach requires a model calibration and is file system specific, contrary to

our method that treats the I/O subsystem as a black-box.

Black-box models provide a flexible and easily applicable way to predict I/O performance, as

they do not assume any knowledge for the underlying system. Anderson [3] populates a table

with I/O measurements related to parameters like storage array information and I/O request

types and then returns a prediction of the maximum throughput for an arbitrary set of input

parameters. Similar parameters are used to induce probabilistic models of storage arrays in

[74]. Wang et al. [138] employ machine-learning techniques using as parameters the arrival

rate, the logical disk block number, and the I/O request type and size. Black-box models based

on regression trees have been introduced for solid-state drives in [79].

Garcia et al. also simulate disk drive times in [50]. Using both real and synthetic workloads,

they gather measurements of the disk service times to produce a variate generator that returns

histogram samples. Three different types of histograms are supported: a global one, one for

each I/O operation (i.e. read and write) or one per combination of I/O-operation and size

of bytes transferred. The fact that the profiling run precedes the analysis and generation of

simulated samples renders this approach unsuitable for I/O prediction at runtime.
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The same applies for the work presented by Shan et al. [120] populate parameters like API, file

size and parallel tasks of a configurable I/O stress benchmark, according to the characteristics

of the application under study. This allows them to execute the benchmark and acquire I/O

time predictions. Using the same benchmark Meswani et al. [92], collect statistics regarding

I/O operations on various hosts. By statically instrumenting the I/O calls of HPC applications,

they gather and compare the profiled I/O durations to the ones of the benchmark for the base

system. The ratio between the two is then used as a weighting factor on the benchmark’s

results of the target system, yielding performance predictions for the total I/O time on that

host.

Zhang et al. [151] use time-series based predictors, to estimate the system resource consumption

(including I/O times). As the precision of the prediction model is workload-dependent, this

paper investigates the usage of classification algorithms like PCA and k-Nearest Neighbors to

forecast the best system resource performance predictors. This approach allows the forecasting

of the best predictor (amongst the available one) for the workload under study. However, it

also requires a training execution to generate the best predictor database.

I/O analytical models that cover effects like prefetching, caching and scheduling on top of disk

latency are introduced in [122]. The formulas of the model are populated by workload char-

acteristics and disk parameters, and their predictions are compared to real time durations, to

effectively identify performance anomalies in the Linux kernel. The approach is extended in

[121], where Shen et al. define a reference performance behaviour for a system, by utilising

change profiles that probabilistically characterise its expected performance deviations. Em-

pirical results are then compared to this reference, in terms of how likely it is for the system

to deviate enough from the reference value to provide the measured one. Extreme deviations

manifested as low p-values are identified as performance anomalies. Although these models can

uncover performance anomalies on the Linux I/O subsystem via statistical analysis, it is not

clear how accurately they can predict the duration of the next I/O request at runtime.
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Virtual Time Execution

The key idea that underpins this thesis is to execute an application in the form of an execution-

driven simulation (covered in Section 2.2.1) to provide empirical predictions to hypothetical

performance questions without resorting to lower-level system simulation [6, 26, 2]. In contrast

to other execution-driven simulation approaches [32, 35, 21, 113] that add instruments to mea-

sure clock cycles between process interaction points statically, our aim is to directly execute the

threads of the software under test and profile them on the simulation host hardware at runtime.

We define a virtual time execution as the approach that maps execution times to virtual times

via time-scaling or replacement with a time prediction from a performance model and then uses

these virtual timestamps to determine the sequence in which threads are scheduled. This may

affect both the functional and timing behaviour of the program. From a performance testing

perspective, a virtual time execution tool can be perceived as a scheduling profiler : a profiler

that also controls the scheduling of the program it is monitoring.

The difference between a real execution and a hypothetical virtual one is shown in Fig. 3.1.

An application with two threads T1 and T2 is executed on a uniprocessor machine and the two

threads compete for the acquisition of the same lock to protect a critical section (bold part

of the line). In the real time execution and assuming a fair scheduling policy, T1 acquires the

lock first and is then context switched to allow T2 to make progress. T2 is blocked waiting

for the lock to be released. After this happens, the real time scheduling results into both

62
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threads issuing I/O requests in parallel. Now consider that we accelerate by a factor of two the

execution of the method that T2 runs before requesting the lock. This produces a new thread

interleaving, where T2 acquires the lock first, releases it within the same timeslice, and allows

T1 to make progress immediately. Moreover, T2 is now the first thread to issue an I/O request,

that finishes before T1 issues its own. The virtual time program execution simulates correctly

this new behaviour.

The example of Fig. 3.1 highlights some important aspects of virtual time execution. The

total execution time of T2 has been altered by a factor that is higher than the proportion

of the accelerated part, due to the elimination of the waiting time in the “post-optimisation”

virtual schedule. The load and the sequence of requests to the I/O subsystem has also changed,

affecting the resource access patterns and its response time. The overall effect is a change in the

execution characteristics of the code which, in cases where there is queueing for resources, may

lead to non-linear changes in queueing times and thus in the overall application performance.

Such effects may be hard to predict with simple ‘back-of-the-envelope’ calculations.

Time-scaling effects on unmodified applications have been studied as a means to scale network

emulation tests beyond the limits of available hardware [57, 56, 54, 14]. Typically scaling occurs

at the virtual machine level [57, 56, 148] and in an epoch-based manner [54, 14]. In contrast

to these methods, virtual time execution offers finer-grained analysis capabilities, by allowing

users to scale application threads at the method level and simulating the effects of scaling

on the thread schedule. The virtual time execution methodology also poses entirely different

challenges, as enforcing the thread schedule and adding profiling instruments at the method

level directly affect the performance behaviour of the profiled execution.

We clarify here that figures throughout this thesis that present virtual (or real) time executions

always assume a fair scheduling policy: processes/threads and cores are assumed to progress

at a timeslice of exactly s and the background load of the system is disregarded. Though

unrealistic as it might be in light of preemptive context switches, exception handling, scheduling

of threads with higher priorities etc, this “sterile” environment allows us to determine a correct

order of execution and expect a particular sequence of thread events (like the lock acquisition
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Figure 3.1: Real- vs Virtual Time Execution

of Fig. 3.1). In turn, this enables us to show how the virtual time execution affects or simulates

such behaviours. A schedule that generates the expected order of our isolated environment,

when executing a program in virtual time is defined as a correct virtual schedule.

Applying a correct virtual schedule, instead of the real one, may alter the sequence of events

and thus lead to a different functional behaviour, for example, by affecting the sequence of

file I/Os. Clearly, dependence on the order of system events contradicts sound software design

principles, that require no assumptions on the order in which threads make progress in non-

critical regions. It would be possible for VEX to be modified in order to identify such “buggy”

behaviour, by enforcing various virtual time schedules and detecting differences between them.

However, this is beyond the scope of our research.

Broadly, performance engineers can use virtual time simulation in two scenarios:

1. During the development phase, performance models describing incomplete components

are simulated in virtual time together with the implemented parts. The output of the

virtual time execution is an estimate of the performance of the end product, according to

the provided models and code implementation. In this case, the accuracy of the estimation
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relies on the quality of the models provided for the components.

2. At the completion of the implementation stage, hypothetical scenarios for the execu-

tion times of components can be performance-tested in virtual time. For example, this

approach could lead to faster bottleneck identification and better optimisation choices.

The hypothetical scenarios are acceleration or deceleration factors for execution times, called

time-scaling factors (TSF s), or estimated performance results acquired by a performance model.

The former specifications concern already-implemented code and provide answers to “what-if”

questions. The latter facilitate the simulated execution and profiling of partially complete code.

We refer to such hypothetical scenarios as virtual specifications.

In this chapter, we present the design and implementation details of our prototype virtual time

simulator, called the Virtual Execution Framework (VEX). VEX is a C++ shared library for

Linux. It is language independent in that its functionality is decoupled from any particular

programming language and it is self-contained, as it assumes no specific programming system

like other execution-driven simulators that rely on MPI [7, 14] or Charm++ [152]. Its main

objectives are thread scheduling and virtual time profiling. They function on the user-level and

can be utilised by a program under test, through an API that is typically invoked via code

instrumentation. In this presentation of VEX we assume that the language-specific instrumen-

tation upper layer exists and provides the information required by the framework. In Chapter 5

we will present the corresponding layer for Java.

The design of VEX is shown in Fig. 3.2. The framework has three main components: the

scheduler, the profiler and the I/O module. The former two are presented in this chapter and

the third one is discussed in Chapter 4, as it deals with the research issue of empirical I/O

prediction, which is somehow distinct from the core VEX methodology. We note here that

Fig. 3.2 omits the performance model simulating component, which is considered an extension

of the base VEX. This is presented in Chapter 8.
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3.1 Scheduler

The virtual time scheduler enforces a priority-free round-robin scheduling policy, with a default

virtual timeslice of 100ms (which is the base time quantum for the default static priority in

Linux [20]). The next thread to be resumed is the one that was suspended earliest on the virtual

timeline; this is essentially the Borrowed Virtual Time (BVT) scheduling policy, as described

in [38], with our method time scaling factors being equivalent to “weights” of BVT processes.

Our objective is to provide a simple “fair” priority-less scheduler that broadly approximates

the typically much more complex scheduler of the underlying operating system. However, there

is no inherent restriction on the scheduling policy that the framework enforces.

The virtual time scheduler works on top of the operating system scheduler and is executed

in user-space. Using low-level condition variables it blocks all threads except the one that it

wishes to run. It then relies on the underlying operating system scheduler to schedule that

thread using its own policy. Crucially, the underlying operating system scheduler has no other

choice but to run the application thread determined by the VEX scheduler.
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3.1.1 VEX states

In order to identify the next runnable thread to be resumed and handle thread communication

in virtual time correctly, the VEX scheduler stores information on the state of each controlled

application thread. When a thread is spawned, it invokes a VEX function, which provides its

lightweight-process id to the VEX scheduler. The thread’s state is recorded in a data struc-

ture that includes the thread’s execution status, its current virtual time and current method

identifier. A thread can be in one of the following execution states, presented in Fig. 3.3:

• Running: Executing on the CPU.

• Suspended: Runnable, but waiting to be resumed by the scheduler.

• Waiting (indefinitely): Indefinitely waiting/blocked until interrupted or contended lock

can be acquired.

• Timed-Waiting: Waiting or sleeping for a maximum of a particular amount of time,

unless interrupted in the meantime.

• Performing I/O: Performing an I/O operation (in the learning or predictive phase as

described in Chapter 4).

In order to prevent threads from running ahead in virtual time, only one thread per core is

allowed in the Running state (but see Chapter 4).

The states of the controlled threads are placed into a priority queue Q, sorted (in ascending

order) according to their virtual timestamps, i.e. the virtual times at which they were last

suspended. Among the non-running threads, the one whose execution point is the earliest on

the virtual timeline will be on the head of the queue, HQ. When a thread registers its state,

i.e. when it is started, it suspends itself and inserts itself into Q with the current global virtual

timestamp.

The VEX scheduler suspends a running thread when the total virtual time since its last re-

sume, exceeds the designated virtual timeslice. When this happens, the current global virtual
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timestamp is updated and the thread is inserted into Q with its current virtual timestamp.

Threads that enter an indefinite wait, or that are blocked waiting for the acquisition of a lock,

convey their imminent blocking state to VEX. Once signalled by another thread or acquiring

the lock, the waiting thread’s state is set to runnable and its local time is updated to the

current global virtual time. When a thread sleeps for a specific amount of time t, its sleep

time is mapped to virtual time, taking account of the scaling factor of the currently executing

method, before adding the thread state information to Q. Some care is needed, when a timed-

waiting thread is signalled or interrupted by another thread. At that point, the sleeping thread’s

wake-up time is rolled back to the current global virtual time and its position in Q is adjusted

accordingly. When a thread T yields, we set its local virtual time to the highest virtual time

between all runnable threads plus 1ns, thus allowing all other currently runnable threads to

be resumed at least once before T. The yield system call used in the real time execution is

not called in the simulation run. To compensate for the removal of the call in the virtual time

measurements, VEX profiles the approximate time of the sched yield system call prior to the

virtual execution and adds its expected duration to the virtual time of any thread invoking it.
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3.1.2 Controlling threads in virtual time

VEX uses the POSIX thread library to control the execution of threads in virtual time, wrapping

the operating system scheduler. The VEX scheduler is itself a thread that is spawned before

entering the main method of the program. The scheduler allows an application thread to run

for one timeslice by invoking a timed wait for the duration of the timeslice, suitably scaled by

the Time Scaling Factor (TSF) of the thread’s currently executed method. For example, if the

default scheduler timeslice is 100ms and the current method has a TSF equal to 3 then the

thread executing it gets a timeslice of 300ms in real time. The method’s estimated virtual time

is then its measured execution time divided by 3, thus adding 100ms of virtual time for 300ms

of execution. This simulates the effect of the method executing 3 times faster within a single

timeslice.

What happens if the scaling factor changes during the timeslice, for example as a result of

a scaled method returning to its calling method that has scaling factor 1? In this case the

scheduler is notified and updates the duration of the remaining timeslot accordingly. The

scheduler is similarly notified if a method with scaling factor 1 calls a method with TSF 6= 1.

The VEX scheduler suspends a thread by sending a POSIX signal to its registered thread-id.

A thread T receiving such a signal updates its thread-local CPU time and compares its new

timestamp with the thread at the head of the queue. The following scenarios are possible:

• T ’s virtual time increase is less than a certain percentage p of its assigned timestamp.

The OS scheduler has been scheduling other processes (system background processes or

the VEX scheduler thread) instead of the running thread selected by VEX, or the running

thread has spent most of its time within VEX (whose execution time is disregarded from

virtual time measurements as explained in Section 3.2). As our default policy enforces a

constant virtual timeslice to all threads, T notifies the VEX scheduler that it will continue

execution, while the scheduler sleeps for the remainder of T ’s virtual timeslice.

• T ’s virtual time increase is more than p of its assigned timestamp s. In this case, there

are two possible courses of action:
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– If the virtual timestamp of the head HQ of the runnable threads queue Q is lower

than T ’s virtual timestamp, then T is suspended, i.e is set to runnable, and remains

blocked within the signal handler. HQ is then resumed.

– If the virtual timestamp of HQ is higher than T ’s virtual timestamp, for instance if

HQ is Timed-Waiting, then T exits the signal handler and resumes.

In our prototype implementation we have set p = 75%. In principle we could set p = 100%

and request that each thread executes in virtual time no less than its assigned timestamp. We

decided against this, to avoid requesting smaller timestamps, when a thread has progressed

for a large part of s. For example a thread that would be found to have executed for 90% of

s would be requested to run for another 10%. Asking for such small timeslices presents two

issues:

• There exist system-related limitations on the lowest duration that can be assigned by

VEX as a timeslice to a thread (see following paragraph).

• Assigning larger timestamps allows us to distinguish a thread that has been blocked

without VEX knowing it (we elaborate on such “Native Waiting” threads in Chapter 5)

and one that has not made enough progress due to OS scheduler decisions.

As the VEX scheduler is itself subject to the OS scheduler, it competes for CPU access with

other system processes, that might have an equal or higher priority than it. Even the VEX

controlled threads have the same priority as the scheduler thread. As a result, when the

timeslice timeout expires, the VEX scheduler thread might not be immediately scheduled, thus

increasing the average timeslice assigned to VEX-simulated threads. This creates limitations

on the lowest possible timeslices that can be assigned to threads in virtual time and in turn,

on the values that can be used as TSF s.

Based on our experimental results presented in Table 3.1, adapted timeslices of less than 1ms in

real time for decelerations by a factor TSF > 100 (assuming the default scheduler timeslice of

100ms) might not be accurately simulated. The second and third column of Table 3.1 show the
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Requested Timeslice [µs]
Normal priority timeslice [µs] RT priority timeslice [µs]

Mean C.O.V. (%) Mean C.O.V. (%)

20 77.05 31.52 24.28 12.63

40 98.48 187.08 44.39 27.02

80 131.14 30.09 84.52 23.18

160 228.11 109.87 164.63 16.43

320 388.56 16.27 324.89 11.18

640 739.88 53.02 644.24 5.33

1000 1079.03 42.46 1003.14 2.29

10000 10604.90 23.00 9953.69 1.19

Table 3.1: VEX actual scheduler timeslices according to requested timeslices: lower requested
timeslices are inexact, because the OS schedules other processes after the expiry time. Reported
values are for Host-1 (see Appendix A). The means and COVs refer to all samples gathered
from a single run with the requested timeslice. Lower timeslices from asynchronous scheduler
notification are not taken into account.

mean and coefficient of variance (COV) for the scheduler timeslices acquired for normal priority.

The high COVs demonstrate the dependence of each timeslice on the other processes requesting

to run at each point. Increasing the scheduler thread’s priority in Linux to the highest Real Time

(RT), decreases this limit to approximately 20µs (see Table 3.1), thus allowing for decelerations

by a factor of 5000. We expect that such values provide an adequately wide range of available

TSF s to cover meaningful hypothetical virtual specifications. We note here that integration of

the VEX and OS scheduler at the kernel-level would further relax these limitations.

3.1.3 Implementation issues

Synchronization issues

The asynchronous signal-based communication, between the VEX scheduler and the application

threads constitutes the main implementation challenge. The system shares some data structures

between the threads and the scheduler, offering mutual exclusion with locks. If a thread is

signaled and suspended whilst holding such a lock then the scheduler will block on that lock,

and the system will deadlock. To synchronise between the scheduler and threads, we use a

lock, LT , that is shared between thread T and the scheduler. The idea is that whenever T

needs access to a VEX resource shared with other simulated threads, it first acquires control
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of LT . Forcing the scheduler to acquire this same lock, before suspending a thread, overcomes

the problem of deadlocks caused by access to shared resources.

A similar issue occurs with heap-management system calls (like malloc or free), which acquire

a kernel-level lock, before allocating or freeing memory. If a thread is interrupted by the VEX

scheduler, whilst invoking such a system call and holding this kernel-lock, and then the scheduler

tries to invoke a heap-management system call, then the simulation is led to a deadlock. For

this reason, it is imperative that the code executed by the scheduler thread, does not invoke

any such system call, throughout the simulation (excluding any allocations during VEX data

structures initialisation, that occur before the simulation starts). This rule is strictly followed

during the development of the framework.

Trapping conditional waiting and signals

Consider the scenario illustrated at the upper part of Figure 3.4. The instrumentation layer

invokes the onThreadWaitingStart method, before a thread calls pthread cond wait and the

onThreadWaitingEnd method, after the thread is signalled to exit the pthread cond wait call.

The purpose of both onThreadWaitingStart and onThreadWaitingEnd are to convey the state

change to VEX. Right before the thread starts waiting, onThreadWaitingStart is invoked and

VEX changes the thread’s state from “Running” to “Waiting”. Conversely, after the thread

resumes in real time, the thread changes its state from “Waiting” to “Running”. In the latter

case, however, there exists an inconsistency between the real and VEX thread states, which is

illustrated by the shaded part in Figure 3.4. This seemingly low-level detail comprises one of the

most important insights in the difference of virtual time execution to discrete-event simulation:

in contract to DES where state changes occur exactly at the point where the simulator decides

to do so in virtual time, in the virtual time execution it is up to the OS to decide when the

thread state changes are conveyed to VEX.

The immediate effect of this is that VEX might falsely consider that all threads are currently

blocked in a “Waiting” state, though in fact a thread Tsig might have been resumed, but might

not yet have updated its state in VEX. Now imagine that a different thread Ttw is in the
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Figure 3.4: Difference between trapping synchronisation events externally and within VEX

“Timed-Waiting” state, waiting for the simulation time to reach its virtual timestamp, which

is ahead in virtual time by ∆t, with ∆t � s and s the VEX scheduler timeslice. If all threads

are falsely identified as blocked, then only Ttw is considered runnable and thus the simulator

leaps ∆t seconds forward in virtual time to the timestamp of Ttw and resumes it. When the

state change of Tsig is eventually acknowledged to VEX, the simulator will assign it a virtual

timestamp greater than the one of the recently resumed Ttw, thus wrongly increasing all profiled

durations of Tsig by ∆t.

By trapping conditional waits and signals internally, VEX becomes aware of any upcoming

state changes, before they occur on the runtime level and thus overcomes this problem. We will

be referring to this as the “update-before-event” principle. This is illustrated at the lower part

of Figure 3.4. Conditional variables (or monitors) are assigned from the upper layer a unique

id, which is passed as a parameter to the VEX waiting/notification related calls. The lock
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id is registered into an internal VEX data structure, that stores all threads that are waiting

on it. When the conditional variable (monitor) is signaled (notified), one of these waiting

threads is selected to be resumed within VEX. Depending on the programming language of the

application under study, the original waiting call may still need to be used. For instance, in

Java, the Object.wait() method would still need to be invoked, to release the monitor of the

object. Failing to do so would violate the original program semantics. However, the signaling

call is always replaced by the corresponding state altering call within VEX.

Single-core simulation

The scheduling policy of the VEX version presented in this chapter is based on the assumption

of a uniprocessor on the simulation target. Only one thread is allowed to execute on the CPU at

any time, which enables us to map CPU-times to the global virtual timeline and to model time-

scaling by modifying the elapsed time of the only running thread. This simplifies scheduling

decisions, synchronisation issues between application threads and VEX scheduler and disregards

virtual time coordination problems amongst multiple cores. Nevertheless, resource contention is

still exhibited, as thread scheduling decisions and time scaling factors affect the waiting times on

locks, the arrivals of notification signals to waiting threads and the queueing of requests to I/O

devices. The extensions to VEX to cover multicore architectures are presented in Chapter 7.

Relation to execution-driven simulation

VEX is an execution-based driven simulator, in that it projects execution traces of the ap-

plication’s threads on a virtual timeline. It emulates the functional behaviour of the virtual

codebase, i.e. the one that would realise the virtual specifications, while simulating the timing

behaviour. However, the methodology followed here is quite different from previous work (see

Section 2.2.1). The methodology for execution-driven simulation proposed in [32, 40], divides

execution into basic blocks, which can be executed independently, i.e. with no interaction be-

tween the threads executing them. VEX forces the threads to follow a specific schedule based

on the virtual specifications and the scheduling policy selected. This means that as long as
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the virtual timeslices are assigned, following a fair-scheduling round-robin scheduling policy,

the simulation does not need to take interaction points into account. Only thread state change

events need to be trapped into VEX. We note here that the existing scheduling policy of VEX

is unaware of thread priorities.

Relation to simulation and emulation

VEX relates to both simulation and emulation. The virtual time execution is based on the idea

of using the TSF -annotated application code and any method-describing performance models

(as we describe in Chapter 8) as a model of the optimised version of the code that corresponds

to a “what-if” scenario. VEX is thus a simulator that takes this model as input and simulates

it by identifying events that imply a state change and scheduling them according, based on

some arbitrary notion of time (i.e. virtual time).

Meanwhile, VEX emulates the OS scheduler of the system that would exhibit the timings deter-

mined by the annotated time-scaling factors. This means that the thread scheduling decisions

of the VEX scheduler are the same as the ones that would be observed on the system described

by these TSF s. This is similar to the approaches introduced in the field of network emula-

tion [57, 143] where time-scaling at the virtual machinelevel is used to emulate the behaviour of

faster networks or allow for larger-scale experiments with existing hardware [56, 43, 14]. Virtual

time execution is more fine grained in that the scaling is applied at the method-level.

3.2 Profiler

The VEX framework is an instrumentation-based profiler that returns the estimated method

execution times, as if the virtual specifications applied. We call these measurements virtual

execution times. If no virtual specifications like time-scaling factors and method performance

models are defined, then the VEX profiler is expected to return similar results to a regular

profiler. This constitutes our main validation technique throughout this thesis.
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The VEX profiler has three objectives:

• to measure and log execution times on a per method level

• to disregard and compensate for the VEX framework’s code execution

• to output the results of the virtual execution.

We present these in the following sections.

3.2.1 Measuring virtual time

The framework stores a virtual timestamp counter for each simulated thread. Maintaining up-

to-date virtual timestamps for each thread is paramount throughout the VEX simulation, as

they determine the scheduling decisions. A Global Virtual Time (GVT) counter is also held, a

notion borrowed from the Time-Warp parallel distributed event simulation paradigm presented

in [70, 69]. The GV T is the minimum committed virtual time amongst all processes, and can

only move forward in virtual time.

The virtual timestamp of a thread is initialised to the GV T at the point that the thread was

spawned. Every time a thread is resumed it sets its timestamp to the GV T . Threads update

their virtual times themselves, when:

• they enter/exit a method

• they invoke any of VEX’s calls

• they are suspended by the VEX scheduler.

Virtual timestamps are updated by accessing a thread-local CPU-time counter. CPU-times

are increased only during the cycles that a thread is executing in user-mode and disregard

overheads from OS scheduling decisions. We note here that though VEX allows only a single

running thread per available core, the OS scheduler may decide to schedule any runnable
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thread/process (like background system processes). Using elapsed real times would incur an

error each time this happened.

Each thread has a current time-scaling factor (TSF ), which is originally equal to 1. When a

thread enters a method M that has a time-scaling factor MTSF 6= 1, then its TSF is multiplied

by MTSF . To handle recursive calls correctly and avoid multiplying the TSF s of a method

multiple times with itself, each thread keeps a list of all method ids that have affected its

time-scaling factor up to this point. Only if the method id of M is not on that list does MTSF

change the current TSF. When a method Mx is exited and if the current TSF 6= 1, then Mx

is found and removed from that list, while the current TSF is divided with Mx’s associated

time-scaling factor. Time-scaling changes are notified to the VEX scheduler, so that it adjusts

its timeslice for the running thread (see Section 3.1.2).

The difference between the current and previous CPU-time is scaled according to the current

TSF and then added to the virtual timestamp of the thread. We note here that, due to the

decoupled nature of the timing aspect of the VEX simulator, the scaled CPU-time difference

is not the only way to model virtual execution times. Alternatively, we could obtain a virtual

execution time from a different timing model (based on other system counters, like instruc-

tions, cache events etc.), from the simulation of a performance model (as in Chapter 8) or

an external simulator. In any case, the thread updates its timestamp locally and commits its

virtual timestamp to the GV T , only when it becomes suspended, spawns a child-thread, or

terminates execution. This minimises the synchronisation needed between the thread and the

VEX scheduler, that might also access the GV T .

The accumulated time resulting from these techniques is accounted for in the virtual timeline

according to the model of the underlying hardware. For example, in the uniprocessor scenario,

where only one thread executes at a time, virtual times of different threads should be added

directly to the global timeline in order to simulate their concurrent (but sequential) execution

pattern. In contrast, multi-core architectures (see Chapter 7) imply a level of parallelism

between the execution of threads, which needs to be accounted for. In this chapter we focus on

uniprocessor architectures.
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CPU-times take into account all CPU effects on the user-level, covering performance-affecting

factors like branch mispredictions, TLB misses and cache misses. We should clarify here that by

changing the thread scheduling during a virtual time execution, we alter the CPU instruction

issue sequences and memory access patterns. The performance effects of these changes are now

reflected in new CPU-times for all threads executing at that core, regardless of whether they

were time-scaled or not. In other words, the virtual time scaling may inflict application wide

performance changes beyond the limits of the specified time-scaled methods.

The usage of CPU time does not take into account background system load and also ignores

kernel-level time, including system calls and I/O operations. To improve the accuracy of the

profiler, we trap these calls and measure their durations in real time (see Chapter 4 for details).

Measuring CPU and real times render the results platform-specific. VEX supports three ways

to measure CPU times:

• Invoking the clock gettime system call.

• Patching the kernel to support the perfctr module and accessing it directly via our own

lightweight library Perfctr-light.

• Using the PAPI interface [108]. PAPI can access CPU-time counters, using one of the

previous two methods or the perfmon module. PAPI is a more extensible solution, because

it provides access to other types of counters.

In this respect, VEX offers a performance estimate for the deployment of an application on the

simulation host, as described by the CPU time measurements for regular code together with

real times for system calls and I/O operations.

3.2.2 Logging method times

The programming-language-specific upper-layer of the virtual time execution framework assigns

an id to each profiled method and instruments it to invoke the method entry/exit calls of VEX
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with the method’s id as an argument. The difference between the thread timestamp upon

method entry and upon method exit, is logged as a sample for the estimated execution time of

this method. Samples can describe methods or stack traces, providing either flat or call-graph

based profiles.

Performance samples are stored on a per-thread basis and merged together when a thread

terminates execution. This improves the simulation performance by limiting synchronisation

needs, but increases VEX’s memory requirements, whilst complicating the exporting of aggre-

gated results at runtime. A solution to the latter that might integrate the VEX profiler into a

front-end Graphical User Interface (GUI), to visualise the execution progress is left as future

work.

Method entry events are pushed into a thread-local stack and popped when the method exits.

Objects describing method entry events are re-used, once their original method is exited as an

optimisation in order to avoid memory allocation system calls each time a method is entered.

3.2.3 Compensating for observer effects

VEX is an instrumentation-based profiler (see 2.1.2) and, as such, suffers from observer effects

[87, 86], which alter the acquired measurements due to the execution overhead of the profiler

itself. On top of that, and unlike other profilers, controlled threads may be asynchronously

suspended by the profiler at any time, or be blocked waiting to acquire a VEX-related lock.

Clearly, delays as a result of executing such code should not be taken into account. Access to

the CPU or real time counters also involves an overhead penalty that adds noise to the final

results.

The problem is illustrated in Figure 3.5, where a single thread calls method A(), which calls

method B(), which calls method C(). The blocks before and after each method describe the

instrumentation code (IC) and VEX parts, whose execution times need to be removed. For

example the difference between the total inclusive execution time of method A() with these

delays (upper line titled as “Total elapsed time”) and without the delays (lower line titled
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Figure 3.5: Lost time and overhead compensation

as “Correct virtual time...”) is significant, though it should be clarified that this depends on

the original execution time of the method: the higher the ratio of VEX delay time to original

execution time, the larger the error.

Malony et al suggested in [87] to measure the profiler’s overhead and compensate for it based

on the count of submethods once at the end in the reported results. This approach does not

work for VEX, because the intermediate uncompensated measurements would wrongly update

the GV T , thus affecting the timestamps of threads that would be resumed next. Specifically,

a blocked (waiting) thread would then be resumed at a GV T that would include the profiler’s

overhead, but without having executed a single method, whilst waiting (which would enable

the method count compensation scheme of [87]). To overcome this issue, we follow a scheme

based on two time measurements that compensates immediately for VEX and timing overheads,

which we refer to as lost time.

The key idea to the compensation approach is to remove the lost time immediately upon entry

to a VEX-method and to update the virtual timestamp before exiting a VEX-method. In

the example of Figure 3.5, this means that the CPU-time counter of the executing thread, is

updated at the beginning and end of each “VEX” block. For instance, time is updated:

• on Tstart at the end of the “VEX” block just before the execution of the a1 code

• on Tend at the beginning of the “VEX” block just after the “IC bef. B” block.

Tend - Tstart provides the execution time of the a1 code, increased by the duration of the “IC
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bef. B” block. VEX measures this duration and subtracts it from Tend. It assumes that the

time of all instrumentation code (“IC”) blocks is the same.

Measuring the duration of an “IC” block is accomplished by repeatedly invoking a sequence

of “IC bef.”-“VEX” and “IC after”-“VEX” blocks, thus simulating the instrumentation of an

empty method, without any arguments and returning value. The empty method’s duration

should be zero and thus any virtual time measured is a result of noise from lost time. The

minimum of all lost time measurements, normalised by the number of iterations, is the estimated

time of an “IC” block for the current simulation host and the CPU-timer selection. The result

is stored in a file, to be reused for future simulations at the host. The same method is also

used for instrumented code around I/O calls.

The advantage is that lost times are not accumulated, leaving the virtual timeline devoid of

such overheads. If a thread were signaled to suspend whilst executing a VEX method, then the

virtual timestamp update in the signal handler would include additional time from the execution

of the VEX code. Therefore, a shared key between scheduler and each thread ensures that the

thread is not blocked when inside VEX code. Note that we do not use spin locks, in order to

avoid affecting the CPU-time counters of a possibly waiting thread.

Compensating for lost time is one approach to limiting observer effects. However, it is rather

simplistic as it does not deal with indirect effects to cache and memory alignment, caused by

the execution of VEX code. In particular, for methods whose original execution time is lower

or equal to the VEX code execution and whose total execution times are relatively low (e.g.

setter and getter methods), the compensation might yield inaccurate results. Our experiments

(see Section 3.3.2) agree with Malony et al, that remark in [87] that “A few nanoseconds

in overhead estimation are enough to cause major compensation errors”. Therefore, in such

cases it is preferable to remove the instrumentation altogether. This is accomplished with the

adaptive profiling scheme.

The adaptive profiling scheme comprises an invalidation policy at VEX level and a corre-

sponding support module that enforces the policy at the upper-instrumentation layer (see

Section 5.1.3). The invalidation policy determines whether a method should be profiled or not.
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Three criteria can be used for invalidating methods:

• The total number of method invocations is greater than N.

• The mean execution time of the method is smaller than a defined value t.

• The total execution time of the method is less than a defined percentage p of the total

execution time.

The decision on whether the instrumentation code of a method needs to be removed according

to the invalidation policy or not is then forwarded to the upper-instrumentation layer. In turn,

the instrumentation layer takes the necessary actions to stop profiling the method, thus limiting

VEX’s observer effects.

3.2.4 Simulation output

Profile

In the end of a simulation run VEX returns method-level execution time predictions, based on

the virtual time execution. Results are presented either on a per-method stack trace or per-

method basis, depending on whether the user requested a path or a flat profile. VEX results

include the following measurements for each method or stack trace:

• Number of invocations.

• Mean predicted CPU-time excluding called methods (ExCpu).

• Mean predicted total execution time excluding called methods (ExTotal).

• Mean predicted CPU-time including called methods (InclCpu).

• Mean predicted total execution time including called methods (InclTotal).

• Percentage of predicted inclusive total time (InclTotal) on total execution time.
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Figure 3.6: Per stack-trace profile visualisation

CPU-times disregard those periods where a thread is waiting or runnable. Results are printed

in a Comma-Separated-Value (CSV) file that is easily processed by spreadsheet management

applications, enabling further processing or graphical representation.

Method-level profiles can be exported in an hprof -like style, returning only execution time

percentages including and excluding called methods. This allows for direct comparison with

standard profilers.

Results on a stack-trace basis are also presented graphically (Figure 3.6), with a simple html-

based interface, that expands submethods in a tree-like way. Users can define a prune percent

threshold, to prune the branches of the tree that have a total estimated time less than this

threshold.

Virtual times

Apart from a profiler, VEX is a virtual execution runtime environment. This enables a dif-

ferent usage of the framework that is based on the upper instrumentation layer replacing calls

that return time on the application-level, with VEX calls returning virtual timestamps. For

example, all invocations to the gettimeofday call are replaced to return the global virtual time

at that point. This means that other runtime tools can be executed in virtual time, allowing

performance metrics, like response times or throughput to be replaced by their virtual counter-
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parts. This option is on by default: if it is disabled then real times can be returned as normal,

to measure for instance the overhead of the framework. Most of our validation tests keep the

default value on and measure overhead with timers external to the VEX simulation.

Virtual execution visualisation

The VEX visualiser is a component that offers a graphical representation of the virtual execu-

tion. It gathers event samples throughout the simulation and uses them after it terminates to

show the execution progress. Originally used as a debugging and validation tool, the visualiser

can be used for performance analysis or educational purposes.

The event log is accessed by a Java applet, which allows users to follow the progress of the

virtual execution step by step, by clicking to show the next event. Users can jump forward to

any time point of the virtual execution, or zoom in to particular time intervals.

Contrary to method time logging, the visualisation component stores events in a centralised

way, which increases the overhead of the framework. The analysis capabilities of the visualiser

are, in practice, limited to a few tens of threads. This allows the virtual timeline to fit in the

same window as the simulated threads. Events are gathered throughout the virtual execution

and are only stored and used after it finishes, which increases the memory requirements of the

simulation as well. For these reasons, the visualiser is useful for short, validation or experimental

runs.

In Figure 3.7 we show a virtual execution with four threads. In this program, thread main

creates three threads, that execute exactly the same code, which performs a fixed number of

loop calculations. In the virtual execution, the method executed by thread:

• SlowThread is assigned a TSF of 0.2, resulting in a 5 times slowdown

• FastThread is assigned a TSF of 5.0, resulting in a 5 times speedup

• NormalThread is left unaltered.
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singificantly different times

despite running the same code

VEX-induced context

switching to adhere

to the virtual time schedule

Figure 3.7: Visualiser snapshot: all threads apart from main execute the same code with
different virtual specifications and progress accordingly on a uniprocessor machine. The dashes
signify timeslices that a thread is in the “Running” state.

The visualiser shows how VEX simulates the execution of the three threads on a uniprocessor

correctly, assigning timeslices in a round-robin way. The blue line on the bottom of Figure 3.7

is the virtual timeline.

Statistics

VEX’s results include statistics for the virtual execution. By default the framework generates

a transition graph for the VEX states, a feature which summarises the simulation characteris-

tics. Especially for larger-scale experiments, where the visualiser is unsuitable, these kinds of

statistics provide a useful insight into the virtual execution.

Figure 3.8 illustrates such a graph for the execution of 32 threads spawned by main (in total 33

registering and terminating threads). “Suspended” threads became “Running” 292 times and

either remained in that state at the end of their timeslice (in 34 cases) or became suspended

again in 257 cases. Thread main enters the “Waiting” state, when trying to join with a child-

thread that is still running. The state transition graphs help us to identify how specific state
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Figure 3.8: A sample automatically generated state transition graph

changes affect the simulation results and execution time. They have been used in the evaluation

of VEX.

VEX also provides analytic time-related statistics, showing the virtual time progress. This

feature is user-enabled and may gather results on a global scale, on a per-thread basis or

separately for each new time sample created. Using time statistics we are able to compare real

and virtual executions. To facilitate this comparison, VEX offers a “pure profiling” version, in

which the scheduling part is entirely disabled. We call this no-scheduling VEX. Method entries

and exits are still trapped and statistics generated, but the framework does not act upon the

various thread state changes, nor does it assign timeslices or control the scheduling of threads.

The framework may optionally export scheduler-related statistics, namely timeslices assigned,

interrupts sent and virtual time progress as a result of this scheduler’s activities (used in

multicore simulations).

Another set of statistics is offered with the help of system and PAPI counters. These range from

instruction counts and L2 misses to thread signals, context switches, memory requirements etc.

We compare these measurements between the real-time and virtual executions, to understand

quantitatively how the VEX simulation affects the performance of the application.
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3.3 Evaluation

In this section we present the experiments that we have performed in order to validate that

VEX implements the intended design and to identify its overhead and limitations. We invoke

the functionalities of the core by manually instrumenting the corresponding code of small C++

test programs. This process would normally be performed automatically by the upper language-

specific layer, but this approach removes the complexities of higher-level layers and allows us

to isolate the behaviour of the VEX core. All following results are acquired on the uniprocessor

configuration of Host-1 (see Appendix A).

3.3.1 Validation

Scheduling sequence

The first claim we validate is the extent to which the VEX user-level scheduler bypasses the

decisions of the OS one. Our testing program spawns threads in groups of three: a “normal”

one, an “accelerated” one and a “decelerated” one. All threads from all groups execute exactly

the same method, calculateE(), which calculates the Euler number e. The only difference

is that the calling methods of calculateE() for “accelerated” and “decelerated” threads are

assigned a time-scaling factor of 2.0 and 0.5 respectively.

We illustrate the effect of VEX by executing this program first normally in real time and then

with VEX. In each run we create 5 triplets of threads in a round-robin fashion. In the real time

execution, we get a random ordering of the threads, as the OS scheduler treats them all in the

same way. In the virtual time execution, all 5 accelerated threads, finish before the 5 normal

threads, which finish before the 5 decelerated threads. Increasing the default 100ms timeslice

of the virtual execution to 1sec gives enough time for non-accelerated threads to finish within

the first timeslice they are assigned. This perturbs the strict ordering, though this effect is

expected and is overcome if the workload of each thread is increased.

By enabling the VEX visualiser and zooming in on an interval in which none of the threads
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Figure 3.9: Zoomed in visualisation of the scheduling sequence test as output by the VEX
visualiser

has terminated, we acquire the virtual execution depicted in Figure 3.9. Only one thread is

progressing at any point on the virtual timeline, as we have defined a uniprocessor simulation.

Another interesting observation is that, despite their type, all threads are assigned the same

virtual timeslice. However, this corresponds to a different amount of real time, according to

the defined method time-scaling factor. We note here that by simply adjusting the scheduling

priorities of the threads, we would not be able to simulate this kind of execution.

Profile accuracy

One of the main research challenges of VEX concerns the accuracy of the profile, considering the

highly-intrusive nature of instrumentation-based profiling and the fact that VEX controls the

scheduling of the application threads. Ideally, VEX predictions on a complete codebase without

any virtual specifications should agree with real time measurements on a regular execution.

We investigate this issue by generating a random program and executing it once in real time

and once in virtual time, without any virtual specifications. The random program is composed

of methods that invoke a random number of other methods or perform a short calculation

(see Figure 3.10). By setting the seed of the random number generator to be the number of
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Figure 3.10: C++ presentation of the random program executioner. The next element of
execution is either a sub-method or a loop-based calculation

requested methods M , we always create the same random program for each M . This logic

is followed recursively for each of a specified number of methods. The main motivation for

using a random program is that we can set the random generator to insert method entry/exit

instruments in each created method and so simulate a virtual execution in a scalable way.

Running an existing computation kernel, would require us to manually instrument the points

where threads change their states. We postpone such tests for the integrated version with the

automatic instrumentation layer.

The results of Figure 3.11 show the virtual execution accuracy for various random programs,

differentiated by their total method count M . By accuracy we mean how close the virtual

execution estimated time is to the real execution total elapsed time. We note here that despite

the fact that some confidence intervals span positive values (i.e. show the prediction being

higher than the observed real time), in fact all predictions are smaller than the observed times.

This is because the simulator uses CPU-time (see Section 3.2.1) and so does not take into

account background system effects like other processes being scheduled, or the execution time of

the OS scheduler itself. The smaller the total execution time of the test the higher the variability

in the observed real times, which leads to the wide confidence intervals of the prediction accuracy

for up to 16 threads.

1We note here that throughout this thesis we assume that all measurements are normally distributed and
use the Student’s t-distribution to define confidence intervals.
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Figure 3.11: Average prediction error of 10 measurements on Host-1 for 1 to 1024 threads and
200 to 500 random methods with approximate 95% confidence intervals1.

3.3.2 Overhead

The main source of VEX overhead is the method entry and exit event logging. During each such

method entry, the CPU-time counter is accessed twice (for lost time compensation purposes),

the virtual time of the thread is updated and a timestamp is generated and pushed into the

thread-local profiler stack for this event. This generated event is popped at method exit. I/O

methods have a higher mean load, as a result of registering an identification point for each

distinct I/O invocation point (presented in Chapter 4).

Table 3.2 shows the mean times in nanoseconds for various CPU-time counter selections. The

Timer Method instr. [ns] I/O method instr. [ns]

Perfctr-light 408 2294

PAPI+perfctr 519 2311

PAPI+clock thread cputime id 524 2308

PAPI+times 532 2357

PAPI+proc 737 3322

PAPI+getrusage 794 3668

Clock gettime 4915 10504

Table 3.2: Method instrumentation overheads for different CPU-timer selections

fastest “Perfctr-light” counter requires the patching of the Linux kernel with the “Perfctr”
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module. Although the “PAPI+Perfctr” setup also accesses CPU-time counters through the

“Perfctr” module, our “Perfctr-light” timer setup outperforms it by approximately 20%, by

caching the pointer to the performance counter within VEX on a thread-local variable and

removing some PAPI-related checks within the CPU-time returning code.

Overhead compensation

Compensating for delays incurred by VEX is essential for increasing the performance prediction

accuracy and maintaining a correct interleaving of the simulated threads. In this section, we

demonstrate the effect of the compensation scheme on VEX predictions. The instrumentation

overheads are profiled as described in Section 3.2.3, namely by measuring the virtual time

wrongly accounted for an empty method. We also show how small differences in code execution

can affect the compensation success.

The testing program executes a loop that calls a method M in each iteration. We select three

short computation-based methods for M , so that the ratio of VEX instrumentation code time

to the execution time of M is large. The three resulting programs are executed in real time first

and then in virtual time without and with compensation using the measured instrumentation

code delays.

Test - g++Flag
Real time VEX Prediction

Prediction error (%)
Mean [s] C.O.V. (%) Mean [s] C.O.V. (%)

Loops1-O3 0.121 1.14 0.893 5.72 639.32

Loops2-O3 0.069 3.78 0.901 4.04 1200.81

Loops3-O3 0.429 1.10 1.312 2.13 205.79

Loops1-O0 0.202 5.21 0.908 3.55 349.12

Loops2-O0 0.181 9.83 0.966 4.02 432.59

Loops3-O0 0.507 2.86 1.353 3.31 166.81

Table 3.3: Prediction errors for trivial short methods without any overhead compensation.
Results from 100 measurements on Host-1 are shown

To investigate the behaviour of the profiler under such circumstances, we define three differ-

ent methods that perform a short calculation (1-3 lines of code each) and which are invoked

iteratively within a loop (called Loops1, Loops2 and Loops3). All method invocations are

manually instrumented to call VEX method entry and exit calls. Setting up the experiment in
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Figure 3.12: Demonstrating the effect of a single nanosecond in the lost time compensation
scheme in the prediction error of VEX for three trivial short methods and two different compi-
lation options. Results are from 100 measurements on Host-1 and 95% confidence intervals.

this way, we expect the observer effects from VEX profiling to be high. Indeed, without any

compensation we get the predictions errors of Table 3.3, which are on average 5 times higher

in comparison to the real time execution.

In Figure 3.12 we demonstrate how sensitive the compensation mechanism is when methods

that are “short” in relation to the VEX overhead are invoked at a high rate. As explained in

Section 3.2.3, VEX compensates for the additional execution time caused by the invocation of

instrumentation code by profiling the corresponding code and acquiring a compensation value

C. C is measured once for a simulation host and is then retrieved (from a file) for all virtual

time executions on that host. Using C for overhead compensation in each of our test programs,

we acquire the prediction errors that correspond to ∆ = 0 on the x-axis of Figure 3.12. The

results for this compensation value vary from a relative overprediction of 20% for “Loops2-

O3” to an underprediction of 60% for “Loops1-O0”. As we change C by 1ns, we find that each
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program yields the best prediction results (E = 0 on the y-axis) for a simulation with a different

compensation value. For example, “Loops1-O3” and “Loops2-O0” return the lowest prediction

errors for −3 < ∆ < −2, “Loops3-O0” for ∆ = 0 and “Loops3-O3” for ∆ = 3. The sensitivity

of the prediction error to a change of 1ns (observed by the slope of the lines corresponding to

each test) also varies amongst the different test codes.

This could be attributed to the fact that the code of each test is optimised differently by the

compiler (because of the use of the “-O3” g++ flag), thus generating different binaries in each

case and affecting the code before and after the invocation of the VEX instruments. Disabling

the optimisation and disassembling the code, we find that the additional code is exactly the

same in all instrumented methods. The results for this setup are presented in Figure 3.12 for the

“Loops*-O0” measurements show that the behaviour is similarly erratic, leading us to believe

that the effect of the invocation of the instrumentation code to the CPU pipeline, instruction

execution order and memory access patterns is different in each case and can only be approxi-

mately compensated. We conclude that the effect of the compensation scheme is beneficial to

the accuracy of the prediction, but that it does not provide a precise solution: in extreme cases

like the ones presented here it is preferable to remove the instrumentation altogether. This is

the responsibility of the upper instrumentation layer presented in Section 5.1.3.

3.3.3 Limitations

Page faults

VEX uses CPU-time to measure the execution time of user-level code and real elapsed time for

system calls and in particular I/O calls. This approach covers the execution times incurred by

most program behaviours; however, it does not deal with major page faults. In Linux, these

happen when a page is not loaded in memory and needs to be fetched from the disk. This

leads to a kernel trap, which executes the page fault handler to load the page. This time is not

measured by the CPU-time counter and, without supporting the VEX simulation at a lower

level, we can not know when the page faults occur to measure their duration in real time.
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Pages [k] Minor Faults Major Faults I/O blks Real time[s] VEX time[s] Err%

64 262,672 0 0 0.79 0.63 -20.60

128 525,328 0 0 1.50 1.24 -17.06

192 795,769 565 39184 26.72 2.08 -92.22

256 1,058,422 609 42280 58.66 3.30 -94.37

320 1,321,090 642 43604 100.85 4.70 -95.34

384 1,583,735 679 45156 203.72 15.03 -92.62

Table 3.4: Major page fault effect on VEX prediction accuracy

We demonstrate this problem by executing a program that loads arrays of bytes equal to the

system page size (4KB for Host-1 of Appendix A) and touches random bytes in random pages.

As we increase the requested pages, the number of page faults increases and the performance

prediction of VEX becomes less accurate. This is shown in Table 3.4.

Although this limits the applicability of VEX in identifying page thrashing effects, measuring

the number of major page faults of a simulated process could indicate the extent to which VEX

predictions are expected to be accurate. Besides that, instrumenting the page fault handler to

measure its execution and map the corresponding time onto the virtual timeline, is possible

for a kernel-level VEX implementation. We expand on both these ideas for future work in

Chapter 9.



Chapter 4

I/O in virtual time

The I/O subsystem remains today the least efficient part of a computer system, with a wide

gap between the performance of I/O and CPU operations: accesses to disks or network requests

are millions of time slower than CPU cycles. In order to be used as an efficient profiling and

hypothetical scenarios investigation methodology, the virtual time simulation needs to include

I/O durations. To generate a “realistic” thread-interleaving pattern, the virtual time execution

should simulate Direct Memory Access (DMA) I/O operations [131]. By allowing for other

threads to obtain CPU control, while a thread is issuing an I/O and waiting for its results,

DMA approaches support parallelism between CPU execution and I/O. If any of the threads

that execute on the CPU issue further I/O requests, then the load on the I/O subsystem is

increased.

We employ an I/O prediction scheme to correctly simulate DMA behaviour, enable multiple

threads to issue I/O requests in parallel and allow time-scaling of I/O operations. When an

I/O invocation point is encountered, the simulator estimates the expected duration Tpred of

the request and predicts the virtual time PV T when the operation will complete as PV T =

GV T + Tpred, where GV T the current global virtual time. Other threads are then allowed

to make progress (executing on the CPU or issuing new I/O requests) in parallel with the

original I/O request, as long as their virtual timestamp is less than PV T . Threads with virtual

timestamps higher than PV T are stalled until the I/O request completes. This approach also

95
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generates a correct virtual schedule (see the introduction of Chapter 3 for the definition) in

light of I/O time-scaling (with time-scaling factor TSF ): only the threads that have virtual

timestamps less than PV T ′ = GV T +Tpred ·TSF will be executed on the CPU in parallel with

the I/O operation. This simulates the load that would be observed on the I/O subsystem, if

the operation’s duration was indeed scaled.

The reader should note the distinction between the predicted I/O completion time PV T and

the observed one OV T (with I/O duration Tobs). Theoretically, it is the OV T that should

determine which threads are allowed to progress in parallel with the I/O operation. Only

because OV T is not known when the I/O system call is invoked, do we estimate it with

PV T . The closer the predicted I/O completion time PV T to the observed one OV T , the

more consistent the prediction-based thread schedule to the one that would be generated in the

correct virtual schedule. Special handling is needed to compensate for over- or underprediction

of OV T by PV T . We note here that our attempts on reusing previous samples to acquire good

predictions of the imminent I/O load in virtual time are quite disparate from the field of I/O

trace replaying (see Joukov et al in [72]). In that case I/O traces are captured in a trace run

to enable the exact replication of the I/O load in a future one, an approach which is useful

for stress testing and debugging activities. In contrast, replaying in the context of VEX reuses

previously observed I/O durations to predict the next ones and create a correct virtual time

schedule. VEX thus only determines the threads that are allowed to run in parallel with I/O

operations: the execution of the simulated program is the one that eventually determines the

exact point when an I/O request is issued.

Our prototype implementation of this methodology in VEX supports a number of options to al-

low its users to configure how PV T is going to be estimated in each simulation run. Parameters

include the level at which previous measurements of I/O operations are grouped together to

offer a prediction, the number of samples that are needed and the way they are used. VEX of-

fers several different prediction methods, which can be categorised in the sliding-window replay,

the basic statistical, the distribution approximation and time-series ones. Although similar to

other black-box methods [3, 74, 138] in terms of input parameter selection, our approach differs

in that the prediction itself affects the progress of the simulation and consequently the future



4.1. I/O in VEX 97

measurements on the I/O subsystem. The users may select at simulation startup which method

will be used. Users can also set an I/O threshold IT , to distinguish between the I/O requests

that are serviced by the page cache and the ones that reach the I/O device. When the predic-

tion for the duration of an I/O request is higher than IT , VEX simulates it as if it performs

an I/O request to the device and allows other threads to progress in parallel. Otherwise, it

measures the duration of the system call without context switching the I/O issuing thread. In

addition, VEX allows users to analyse the effect of I/O to the total estimated virtual time,

by offering an I/O-exclusion parameter, which determines the percentage of random requests

whose duration should not be taken into account.

The main contribution of this chapter is the methodology for performing I/O in a virtual time

execution and the prototype implementation of the approach in VEX. Using benchmarks that

stress the I/O-subsystem, we evaluate the various I/O prediction methods and parameters in

an attempt to identify an optimal configuration. We conclude that though no consistently

optimal configuration is found, prediction methods that favour overpredictions (PV T > OV T )

instead of underpredictions, or that make use of an (even crudely approximated) I/O threshold,

yield better results on the total predicted time of the benchmark. We also experiment with

time-scaling and I/O-exclusion parameters, showing how they affect the virtual time.

4.1 I/O in VEX

4.1.1 Requirements

Profiling and scheduling in the virtual time execution framework are based on CPU-time coun-

ters, which measure execution times of user-level code. This renders virtual time scheduling

independent from the OS: regardless of the latter’s scheduler decisions, only the actual running

time of a thread is measured. As cycles in kernel mode, i.e. system calls including I/O requests,

are not accounted for by CPU-time counters, the virtual time simulator must be notified of

their entry and exit points and measure their duration in wall clock time. This in turn affects
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the reproducibility of the measurements, because the real time duration depends on when the

OS scheduler reschedules the I/O requesting thread to allow it to stop the timer.

An obvious approach would be to issue each I/O request separately, measure its duration in real

time and then map it on the virtual timeline, overlapping with other I/O requests if needed. Not

only would this add to the total simulation time, but it would incur inconsistencies in the way

virtual executions are simulated. Specifically, if under a hypothetical scenario all I/O operations

were to take place together, contending for the same resources, their expected time would be

different to the one provided by the real time measurement of a single thread performing a single

a I/O. Concurrently issuing I/O requests also probes the performance impact of the system’s

I/O merging and scheduling policies. These effects are disregarded if each I/O operation is

issued in isolation.

A third issue concerns DMA I/O operations to disks, that force an I/O-waiting thread to yield

the processor to a runnable one. This generates parallelism between I/O and CPU operations

or between multiple I/O operations even on a single-CPU platform. The challenge here is to

ensure that I/O contention and I/O parallelism are also reflected in the virtual time schedule.

4.1.2 Methodology

All system calls need to be profiled in wallclock time and thus be trapped into our simulation

framework. For the purposes of virtual time execution, we can distinguish the trapped system

calls in three categories:

• Regular: any process or memory handling system calls.

• Cached I/O: invocations of system calls like read that are serviced by the page cache

and should not yield the processor to another thread.

• Standard I/O: any invocations of system calls like read that perform an I/O request

and should allow for other threads to progress in parallel.

These three categories are discussed here in order.
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Regular system calls

Regular system calls do not allow other threads to progress in parallel. The only required

handling is to measure the duration of the system call in wallclock time and update the virtual

timestamp of its calling thread accordingly. It then resumes the simulation of the currently

running thread as normal. The distinction between regular system calls and any I/O-related

ones is the responsibility of the upper instrumentation layer. For example, a method id could

be assigned to each system call and the ids of regular system calls would belong to a particular

set. In this chapter we do not take into account regular system calls, but focus on the I/O ones

that comprise a more challenging research problem.

I/O system calls

The “Cached I/O” and “Standard I/O” categories are collectively referred to as I/O system

calls. The main objective here is to identify and handle each type differently. Specifically, all I/O

system calls are simulated using a learning and a prediction period. During the initial learning

period, threads issue I/O operations as normal and the observed I/O times are accounted for in

real time. Other threads are always allowed to execute in parallel during the learning period.

The observed I/O durations of this period are stored in internal data structures, that are

sampled in the prediction phase. Storage approaches and sampling depends on the prediction

method used (see Section 4.2). The number of samples that are needed before entering the

prediction phase is also configurable.

When an I/O system call is encountered at the prediction phase, then a new prediction Tpred

for its duration is made. This determines whether this system call belongs to the “Standard

I/O” or the “Cached I/O” sub-category as follows:

• If no I/O threshold is defined, then all I/O operations are treated as “Standard I/O”

requests.

• If an I/O threshold IT is defined, then:
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– if Tpred < IT , then the I/O operation belongs to the “Cached I/O” category

– if Tpred ≥ IT , then the I/O operation belongs to the “Standard I/O” one.

In this respect, the prediction is used to determine whether the request exceeds a “fast/slow”

threshold, which is also found in [74].

We elaborate on these two categories in the following sections.

Cached I/O system calls

Cached I/O operations are treated as “Regular” system calls, having their execution time

measured in real time, but without yielding the CPU to another thread. As I/O requests still

are at least one order of magnitude slower than memory accesses [55], we show in our evaluation

study how we can determine such an I/O threshold based on a histogram of previous I/O request

durations.

Standard I/O system calls

In the case of a standard I/O request, the virtual time of the calling thread is increased by Tpred

to PV T . Then the simulation resumes the next thread on the virtual timeline, but without

suspending the former. This will only happen upon completion of the I/O operation at OV T .

At that point the virtual timestamp of the thread is updated according to the observed real time

of the I/O operation and the thread is pushed into the queue of runnable threads to be scheduled

again according to its new timestamp OV T . If at any point the predicted I/O completion time

of a thread is the minimum amongst all threads, then the simulator waits for it to complete.

Otherwise, runnable threads that are currently suspended at a virtual timestamp lower than

PV T are allowed to resume before the I/O completes. This is illustrated in Figure 4.1a: T2

and T3 are resumed, before T1 completes its I/O operation.

An interesting issue here is that if N threads are simulated in total, with one of them, T1,

issuing an I/O request, then up to N −1 threads can resume before T1 does so after completing
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(a) Normal timeslice

(b) Minimised timeslice

Figure 4.1: I/O prediction methodology and effect of reducing the virtual time scheduler times-
lice to simulate priority boosting

the request. This can lead to a delay of at most (N − 1)s until T1 is rescheduled, where

s the scheduler timeslice. If s is higher than the average I/O duration (typically true for

s = 100ms), then this delay limits the significance of the prediction scheme altogether. This also

contradicts the Linux priority boosting approach, where threads that have just completed I/O

are rescheduled sooner than other runnable threads. To overcome this and properly simulate

priority boosting, we impose a temporary reduction of the scheduler timeslice to smin. This

allows the virtual time scheduler to monitor the progress of threads at a higher rate, thus

decreasing the maximum waiting time of T1 after the completion of the I/O operation, to

(N−1)smin (see Figure 4.1b). This approach also limits the effects of I/O duration misprediction

(see Section 4.1.3).

By repeating this process for more than one thread, we simulate the effect of issuing I/O

operations in parallel and of stressing the underlying I/O subsystem accordingly. This offers

a simulation of I/O parallelism that is consistent to the one that would appear in a regular
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execution. Parallel I/O operations are also profiled in real time and the values measured are

grouped together in buffers, according to the number of simultaneously operating threads N . If

a thread requests an I/O prediction when N other threads are performing I/O, then the buffer

that corresponds to N is used. In this respect our modelling approach of the I/O subsystem

resembles a flow-equivalent server (see [17] for example), whose service time depends on the

number of queueing clients – here parallel I/O operations.

This methodology generates valid interleavings for threads performing I/O in virtual time. If

threads were supposed to issue I/O requests simultaneously in the correct virtual schedule,

then this behaviour is replicated by our simulator. Moreover, by keeping profiled values up

to date, we may simulate caching effects or temporary network congestion. The disadvantage

of this method is that it relies on OS scheduler decisions and real time measurements, which

affect the reproducibility of the results. Specifically, as we rely on the OS scheduler to resume

a thread T after the completion of the I/O operation, the elapsed time between the system call

entry and its exit might include additional time from the scheduling of other threads, i.e. any

application or background system threads that get executed before thread T stops its timer.

However, the fact that the Linux scheduler temporarily boosts the priority of runnable threads

previously waiting for I/O [20] contributes towards limiting such effects.

We note here that both issues we have encountered in this section (i.e. lack of knowledge on

whether the I/O system call is served from the cache or not and increased noise in measurements

of I/O durations) are a result of our simulation framework functioning at a higher-level than

the kernel. There is nothing in principle that forbids us from modifying the Linux kernel code

to monitor the lower-level I/O functions, like the generic file read and generic file write

that only take place when an I/O operation is issued. This is likely to increase the accuracy of

the I/O measurements, reduce the VEX profile prediction errors and improve the reproducibility

of the simulation results, at the cost of portability, development effort and maintainability.
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4.1.3 Misprediction handling

The effectiveness of our methodology to generate a virtual time schedule for “Standard I/O”

system calls, that is consistent with the virtual time specifications set depends on the accuracy

of the approximation of OV T with PV T . When PV T = OV T , 1, then the decisions that the

VEX scheduler made at the I/O invocation point, that concerned which other threads should

progress in parallel with the I/O system call, are valid; their validity is in comparison to a

hypothetical real-time execution. This means that:

• we correctly distinguished a cached I/O from a standard I/O

• in a standard I/O no extra threads were allowed to run in parallel when they should not

and no threads were forbidden to run in parallel when they should

Alas, underpredictions PV T < OV T and overpredictions PV T > OV T are a common feature

of virtual time I/O. We elaborate on the consequences of each of them for the case where the

physical I/O operation has completed and for the one where it has not.

Completed I/O

In the case of underprediction (PV T < OV T ) of a normal or time-scaled I/O operation, the

issuing thread’s state is reinserted into the queue of runnable threads Q. This in turn will

lead the thread to be rescheduled when its virtual timestamp is the least amongst all runnable

threads.

In the case of overprediction (PV T > OV T ), some threads may already have been scheduled

after OV T (but before PV T ) which, strictly, violates the virtual time scheduling policy (Fig-

ure 4.2). This is the price that is paid for allowing overlapping I/O, but we expect the effect

to be small, as the minimised scheduler timeslice only allows short progress for each thread

resumed in parallel with the I/O operation.

1In practice, since the virtual time scheduler decides on the progress of the simulation threads in a timeslice-
based fashion (even a reduced timeslice smin when I/O requests are issued), it suffices that |PV T−OV T | < smin
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Figure 4.2: I/O overprediction showing the frame where the virtual scheduling policy might be
violated

Incomplete I/O

Suppose now that the predicted virtual I/O time (PV T ) is reached before the I/O has com-

pleted, so that the OV T is unknown. In order to determine whether the PV T is an underpre-

diction or not, we keep track of how much real time has passed since the I/O request was issued

and let Telapsed be the value of the elapsed real time, after any I/O scaling has been applied.

Telapsed is thus a virtual time. If Tpred is the predicted I/O time (duration) then there are two

cases that are handled differently in virtual time as follows:

• If Telapsed ≤ Tpred, then an additional (preferably short) period of real time is allowed

to pass, which is achieved by the scheduler temporarily using the reduced timeslice smin

mentioned in Section 4.1.2 to allow other threads to make progress in virtual time and,

crucially, the I/O to make progress in real time.

• If Telapsed > Tpred, we are sure that PV T < OV T and so are certain of an underprediction.

In that case, we update the PV T by an amount of virtual time that is equal to the total

elapsed virtual I/O time to date. This is tantamount to doubling the current predicted

for it to generate a correct virtual schedule. For the sake of presentation simplicity we assume that correct
predictions mean that PV T = OV T .
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I/O time at each such underprediction point.

4.1.4 I/O scaling

I/O scaling allows us to investigate how the program under test would perform if the durations

of its I/O operations were accelerated or slowed down. This would also reflect changes in the

functional aspect of the simulation as a result of I/O scaling, e.g. reading a value as it would

be updated in virtual time execution, regardless of its physical I/O duration. An I/O operation

is scaled when its calling thread has a Time-Scaling Factor (TSF ) different than one. What

this means is that the total observed duration of the I/O system call (including all levels of

the I/O subsystem) is scaled in virtual time. All observed durations are modified according to

the TSF, before being stored into the prediction buffers: future predictions will be time-scaled,

allowing threads to execute in parallel, according to the virtual duration of the I/O operation

and not its real one. As TSF s are the same for each invocation point, but vary for different

invocation points of the same I/O operation, time-scaling works correctly only when combined

with prediction at the invocation point level (see Section 4.2): aggregating measurements on

the I/O-level, or globally, may mix scaled with unscaled observations.

Standard I/O system calls use the scaled predicted duration as the PV T boundary, which

determines the threads that are allowed to execute in parallel with the issued I/O operation.

The scaled operation is still executed as normal in real time, but its effects on the system are

reflected according to the virtual time specifications. This means that values should only be

updated by I/O operations, only when the requests were supposed to complete in virtual time;

not when the physical I/O request is completed.

We illustrate this issue in Figure 4.3-a: thread A issues a read request, which is accelerated

so that it completes in virtual time before thread C resumes. Therefore, C should read the

updated value of the buffer variable, regardless of the duration of the physical I/O operation:

this is the value that it would read if the I/O operation was executed faster. Due to the limit

imposed by the prediction system (PV T at the dotted vertical line), C is only allowed to
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Figure 4.3: Correct I/O scaling in virtual time

continue, after the I/O completes, however long it might take in real time. Therefore, C will

read the updated value of the buffer as it should do according to the correct virtual schedule.

This does not apply when we are scaling time to increase the duration of an I/O operation.

This is depicted in Figure 4.3-b: as the I/O operation completes in real time at OV T before

the point PV T where the time-scaled operation is supposed to finish (dotted vertical line), any

threads that resume from OV T to PV T , will be accessing the updated buffer value. However,

if the I/O operations needed TSF−1 times longer to execute, then threads should only read

the updated value after PV T . This situation is dealt with as shown in Figure 4.3-c: the real

operation is issued only when the global virtual time reaches the predicted I/O completion point

of the time-scaled operation. This handles the update-value problem correctly, but reduces

the potentially parallel contention on the I/O subsystem for decelerated I/O operations and

increases the overhead of the simulation. Misprediction for the time-scaled I/O completion

point PV T , affect the correct virtual time execution as presented in Section 4.1.3.

It is important to state clearly that time-scaling the duration of an I/O operation is quite a

crude approximation, due to the existence of various contention points within the I/O subsystem

(buffers, buses etc.) or the use of optimisation techniques for Disk I/O (like merging, scheduling

etc. see [62] for details). This means that by scaling the observed I/O time, we scale the delays

in each contention point and the performance improvements of any applied optimisations, which

is clearly not the same as changing the speed of a single component of the subsystem. The

integration of models into the virtual time execution offers a more promising approach towards

integrated I/O models [101] or disk simulators [2] instead. However, remaining consistent with
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our design target to investigate the effectiveness of a generic high-level system simulator without

requesting any specific system models from its users, we left such approaches as future work.

4.1.5 I/O exclusion

An alternative way to investigate the overall performance effect of the I/O subsystem is by

selectively excluding the duration of I/O operations and observing the sensitivity of the pre-

dictions to this change. Users can provide the method-id of an I/O method to be excluded or

a percentage of randomly excluded I/O operations. Once an I/O request is trapped from the

higher-level instrumentation interface, the exclusion criteria are parsed to determine whether

the system call should be treated as an I/O or not. If its duration is to be excluded, then only

the operation’s CPU-time is going to be added to the virtual time. The virtual execution is

affected accordingly, in that the CPU is not yielded to other threads, whilst an excluded I/O

operation is running.

Although the I/O exclusion scheme disregards the elapsed time of an operation, the I/O request

is still issued on the system. Accordingly, the behaviour of the I/O subsystem in virtual time

remains unaffected by the exclusion of I/O request durations, in that the contention on the

resources, caching access patterns, I/O scheduling etc. are not modified. For example, if we

issue two I/O requests for the same disk block, the first will lead to an I/O operation and the

second will read from the page cache. If we randomly exclude the first request as explained

above, then the observed performance of the I/O subsystem will only be defined by the second

request, which hits the page cache. With this in mind, the I/O exclusion can still be useful as

we show in the evaluation section.

I/O exclusion is compatible with the prediction and threshold schemes used for I/O system calls.

If an I/O threshold is defined, the exclusion scheme filters only the operations predicted to be

“Standard I/O” operations. Otherwise, it filters all requests. Figure 4.4 shows the handling

of the VEX I/O component for the various combinations of I/O thresholds and exclusion

parameters. If the prediction P that is generated for each new I/O system call is filtered by

the I/O threshold, then the duration of the call is measured in real time, but the CPU is not
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Figure 4.4: Flowchart of I/O in VEX depending on user-defined parameters

yielded to other threads (serial real time); this is the same handling that we use for “Regular”

system calls. Excluded I/O operations are also executed sequentially, though their duration

is measured in CPU-time (serial CPU-time), so as to ignore whatever happened at the kernel

level (including the I/O subsystem). Recognised I/O operations are measured in real time,

allowing other threads to execute in parallel (parallel real time), according to our learning and

prediction techniques.

4.2 Empirical I/O prediction parameters

VEX implements the methodology for I/O in virtual time, by providing an empirical I/O

prediction approach, which stores previous measurements, during a learning phase and then



4.2. Empirical I/O prediction parameters 109

uses them to generate predictions in the predictive phase. The closer the PV T to the completion

time of the upcoming operation OV T , the more similar the virtual execution pattern to the

real execution. After the return of the I/O system call and unless otherwise determined by

user-defined parameters (see Figure 4.4), the potentially scaled observed time duration Tobs,

is used as the virtual time of the operation. Crucially, the PV T is only used to improve the

timing-dependent behaviour of the simulation, whilst the I/O operation is emulated on the

host: its value is always replaced in the end by OV T .

In this section we present the various prediction schemes that VEX users can select to improve

the approximation of the I/O completion time OV T with PV T and reproduce the real-time

behaviour of I/O execution in virtual time. Our approaches are distinguished according to

the way that measurements are aggregated and the method that generates new predictions

Tpred from the previously observed measurements Tobs. We selected a variety of prediction

methods and measurement aggregation levels; this allow us to perform an exploratory study

for the optimal I/O configuration for VEX to evaluate the various configurations and draw

conclusions.

4.2.1 Measurement aggregation

The I/O module of the simulation supports three levels of prediction, depending on the way

that previous measurements of I/O requests are grouped together. The most abstract is the

global prediction level, where all I/O calls share the same prediction-supporting data structures.

Depending only on the number of threads issuing I/O operations in parallel N , all profiled

durations are pushed into a common data structure for N threads, as mentioned in Section 4.1.2.

The lower level aggregates measurements by the method-id of the I/O operation (ioop level),

while the lowest level maintains a different buffer for each I/O invocation point (invpoint level),

identified by an invocation-point id provided by the upper instrumentation layer. The idea of

aggregating I/O measurements at the global and global ioop levels was also addressed in [50],

where partitioning I/O measurement data in global and read/write categories yields accurate

prediction results.
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The trade-off involved is that the lower the aggregation level, the higher the matching of the

prediction to the duration of each operation and the longer the time until we enter the predictive

phase. To provide a PV T at the invpoint-level for a defined buffer size of B measurements,

when N threads are executing I/O in parallel, we would need at least B previous results from

that I/O invocation point for exactly N threads. In the case of global -level prediction any B

measurements are enough. By remaining in the learning phase (gathering measurements to fill

a buffer) for a longer time, we reduce the chances of creating thread interleavings consistent to

the virtual time execution, but potentially improve the accuracy of the prediction.

The number of parallel threads N is defined upon entry to each I/O operation: we are using the

total count of I/O threads at the time that the operation started. This reflects the contention

on the I/O subsystem before the request is issued, which in turn affects its real time duration.

VEX supports a single global counter of threads performing I/O in parallel. We note that

there is no guarantee that the N threads contend to access the same resource; for example,

they might be reading files from different disks or different devices. Here, we assume a single I/O

resource. The identification of the resource that each I/O operation targets can be facilitated

by a kernel-level VEX which is left as future work (see Section 9.3.1).

4.2.2 Prediction methods

All prediction methods used by VEX follow the same general approach, in that they store

OV T s (irrespective of whether they are recognised as Cached or Standard I/O operations)

until a buffer is full. When the prediction buffer is full, the next measurement is estimated,

according to some statistical or modelling method. The OV T s of operations whose durations

were originally predicted are still pushed back into the buffer (according to the I/O prediction

level). The buffer size B can be parameterised by the user: larger buffers contain samples that

cover a wider period of time, but delay the beginning of the predictive phase, for the number

of threads N at the selected I/O level.

We review the prediction policies supported by VEX, which treat the underlying I/O subsystem

as a black-box. This reflects our design choice to refrain from modelling the structure of the
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entire I/O filesystem [101, 121], thus maintaining VEX’s portability and independence from

the simulation host’s system.

Sliding-window replay

When the buffer is full, the first stored result for the duration of an I/O request is used

unmodified as a prediction. The Tobs of the next I/O operation will replace the predicted value

Tpred that was used to define PV T . This is tantamount to a cyclic buffer and simulates a

sliding-window effect. According to this replay prediction scheme, the distribution of the Tobss

is exactly reproduced by the generated Tpreds. Nevertheless, this approach is subject to high

overprediction errors, when the Tpred corresponds to an I/O operation and the next operation

hits the page cache. High underprediction errors are expected to occur in the opposite case.

Basic statistical modelling

To investigate different trade-offs in the handling of extreme Tobss, we propose a series of sim-

ple statistical methods on the previous B measurements. The min method always uses the

minimum value of the last B measurements. This favours predictions to be perceived as cache

accesses, leading to an I/O request only if each of the last B measurements correspond to

one. Conversely, the max method results in more parallel I/O operations, because a single

I/O request in the last B measurements is enough to predict a long I/O duration for the new

operation. This, in turn, allows more threads to execute in parallel, leading potentially to an

increased load on the I/O subsystem. Consequently, min increases the number of underpredic-

tions and max the number of overpredictions. Using the average of the last B measurements

(avg method), creates a balance between the two extremes. To filter out the effect of extreme

values altogether, VEX can be configured to return the median value of the last B Tobs samples.
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Distribution modelling

Under this category we group all approaches that use previous samples to generate a distribution

of the Tobss of the I/O operations. In the sampling prediction scheme, the last B measurements

are assumed to belong to a positive truncated normal distribution and a random value based

on the mean and standard deviation of this sample is generated. To model the fact that I/O

measurements may create clusters, depending on whether the request hit the kernel buffer, the

on-disk buffer or just missed, VEX can be set to describe the duration of each request as an

M -state Markov chain. Oly et al [102] use Markov chains to describe the spatial patterns of I/O

requests in scientific workloads. Here, a similar idea is explored for probabilistically modelling

patterns of I/O durations. The transition probabilities of the Markov chain are computed by

partitioning the last B measurements in exactly M ranges. The transition probabilities are

then calculated by observing the sequence of the last B measurements. We note here that

there is no guarantee that the resulting Markov chain will be irreducible: for example if the

first value of the last B Tobss defines its own range that is never returned to within the next B−1

measurements, then the resulting chain will not be irreducible. Once a new prediction Tpred is

requested to determine PV T , we return a randomly selected previous sample from the current

state and move to the next state, according to the generated transition matrix. Accordingly,

the M-markov method can be perceived as a selection method between M different random

replay predictors. To model possible temporal effects of the I/O subsystem, a new Markov

chain is generated every B predictions.

An alternative configuration of VEX is to utilise a GSL [48] histogram, generated by a previous

(instrumented) run. To exclude simulation effects on the I/O subsystem, this “I/O-profiling”

execution can disable the scheduler of VEX, thus yielding the control of threads to the OS. The

measurements are exported according to the I/O-level (to a single file for all operations, to one

file per I/O type or to one file per invocation point) and then imported by the VEX simulation

run. The probability distribution of each GSL histogram determines the next Tpred. Though

the “gsl” approach captures the entire I/O behaviour for the selected workload, it does not

model temporal effects or behaviours not present in the trial run (e.g. extra load on the I/O
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system).

Time-series modelling

In our investigation of empirical I/O modelling during runtime, we also include a few simple

prediction techniques from time-series analysis, which have been used for similar purposes in

[151]. The cmean method, returns the mean of all measurements up to this point for the selected

I/O level, being updated after every I/O request. The linregr performs linear regression on the

last B samples, with time being the independent parameter: measurement i in the buffer

happened at time ti for i = 0, . . . , (B − 1). Inserting a new measurement M results in shifting

value i to i− 1 for i = 1, . . . , (B − 1) and storing M in the position (B-1) of the buffer. After

calculating the slope and intercept for the sample and generating the function y(t), we return

value y(B) as the next prediction.

VEX also supports autoregression (AR) analysis techniques, that use the last B measurements

in the buffer b0 to bB−1 to generate the autoregression coefficients αi. The prediction PV T is

then generated by: PV T =
B∑
i=1

αi ∗ bB−i + ε. To calculate the coefficients, we integrated an

open source version of the Burg Maximum Entropy algorithm, found in [19].

For future reference all prediction methods are tabulated in Table 4.1.

4.3 Evaluation

The purpose of this section is to evaluate the methodology for including I/O in a virtual time

simulation. We first present our two custom I/O-stressing benchmarks, which were set-up in

such a way as to enable us to highlight differences in the measurement aggregation schemes.

Using these benchmarks we show the necessity of an I/O module. Then we probe various

configurations for the I/O prediction in an attempt to identify an optimal configuration, that

consistently yields the most accurate results. We use the findings of this study to evaluate

I/O effects provided by VEX, like I/O scaling and I/O exclusion. We complete our evaluation
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Category Method Description

Sliding-window replay replay Reuse sample taken B measurements ago

Basic statistical modelling

avg Use average of last B measurements
max Use the maximum of the last B measurements
median Use the median of the last B measurements
min Use the minimum of the last B measurements

Distribution modelling
sampling Sample from the normal distribution generated by the last

B measurements
M-markov Reuse sample from the current state and randomly transi-

tion to the next state according to a Markov chain of M-
states (default 2) generated every B measurements

gsl Reuse sample from previous execution (with VEX scheduler
disabled) described by a GSL histogram

Time-series modelling
cmean Use average of all measurements up to this point
linregr Use y(tB) where y(t) is a linear regression of the last B mea-

surements treated as the dependent values from t0...tB−1

arburg Use y(tB) where y(t) is an autoregressive (AR) function
solved by the Burg method

Table 4.1: Virtual Time I/O prediction methods

with an experiment on a database-oriented benchmark, using two different database servers

and connectors. We conclude with the findings of our study.

4.3.1 Benchmarks

We introduce two benchmarks: the “Disk I/O” and the “No-Memory I/O”, which are small

programs that stress the disk I/O subsystem. Both are written in Java and communicate

with VEX via the upper layer called the Java Instrumentation Environment (JINE), which is

presented in Chapter 5. At this point it suffices to say that the role of JINE is to trap the I/O

system calls at the level of the Java system classes that invoke them and assign ids to each

system call and each invocation point (for details see Section 5.1.2).

Disk I/O benchmark

In this stress benchmark we have N threads that read R files from a list of F files in total and

print into a common file the checksum of their contents by parsing them in blocks of B bytes.

Each file in the list is randomly selected amongst all files that are stored in any subdirectory
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Figure 4.5: Measurements on the workload of the Disk I/O benchmark

of arbitrary depth under the root ’/’ directory of the simulation host. In contrast to the case

where all files are stored in the same path, this approach also takes into account the performance

impact of the directory cache. In this benchmark, called “Disk I/O”, the list of files is loaded

entirely into memory. To avoid effects from previous runs, the I/O system caches are flushed

and cleared before each experiment in real and virtual time. The sizes of the random files found

on the disk of the simulation host range from 4 to 256KB according to figure 4.5a. A histogram

of the I/O durations acquired via VEX with the scheduler disabled in a “pure profiling” run

(see Section 3.2.4) is illustrated in Figure 4.5b, showing how measurements are clustered in a

“Low” and a “High” cluster depending on whether the page cache is hit or not. We assume

that only measurements from the “High” cluster would trigger DMA in a real-time execution.

Parameter Description Value

N Threads 16

Rmem Files to be read when list is in memory (Disk I/O) 1000

Rdisk Files to be read when list is on disk (No-Memory I/O) 10

F Total files in list 9287

b Bytes to be read each time from a file 128K

IT I/O threshold 50µs

B Size of each prediction buffer 16

Table 4.2: Parameters used for Disk I/O benchmark

Our tests for this benchmark have been performed on Host-1 (see Appendix A). Table 4.2

shows the configuration parameters selected for this benchmark. N was selected to allow

several threads to perform I/O in parallel, while the Rmem and Rdisk parameters were chosen



116 Chapter 4. I/O in virtual time

to keep the running time limited. The total number of files F was the one found under the ’/’

directory of the simulation host, after selecting an arbitrary large number of files (here 10,000)

and removing all symbolic links. The bytes per I/O b are meant to trigger longer I/O durations

and read most files in one system call. The I/O threshold IT is set according to the clusters of

observed I/O durations found in the histogram of Figure 4.5b, to distinguish between Standard

and Cached I/O operations. B is set to 16.

No-Memory I/O benchmark

To investigate the effect of aggregating measurements at different granularities (see Section 4.2.1),

we change the Disk I/O benchmark, so that the list of files is not loaded into memory, but ac-

cessed directly from the disk in each of the R requests. Although this does not make sense from

a performance perspective, it helps with the investigation of the I/O prediction scheme, by

increasing the load on the disk and creating a set of I/O requests that have a higher probability

of being found in the page cache (the ones accessing the list).

No I/O in virtual time

Our validation approach concerns executing the “Disk I/O” benchmark in both real and virtual

time (without any time-scaling) and comparing the results for various prediction methods. The

last row of Table 4.3 (“No I/O”) shows the VEX prediction when the durations of all I/O

operations are excluded. This approach is enforced with the “iodisregard” parameter of the

VEX simulator (i.e. I/O-exclusion of 100% of the I/O operations) , which only uses CPU-time

measurements and serialises all system calls. As we disregard all I/O durations in an I/O-bound

stress test, we acquire a very high underprediction (-94%) for the total response time of the

program predictions. This clearly illustrates the need for a special module to handle I/O in

virtual time.
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4.3.2 Optimal configuration investigation

In this section we investigate how the various configuration choices of the I/O module of VEX

affect the total virtual response times of our benchmarks and determine whether there is an

optimal configuration for the prediction scheme of the simulator. Specifically, we execute our

benchmarks with each of the supported prediction policies (see Section 4.2.2), while changing

the following parameters:

• I/O threshold: deciding whether to use an I/O threshold to distinguish between Standard

and Cached I/O operations or not.

• Prediction aggregation: changing the level at which measurements are aggregated in the

same prediction buffer.

• Size M of the Markov-chain: varying the number of states of the Markov-chains that are

used to model the buffered I/O measurements in the M-markov prediction method

I/O threshold usage

The rows of Table 4.3 present the VEX predictions when all I/O system calls are treated

as Standard I/O. We observe that the predicted benchmark total time is slightly (≈4%) to

extremely (≈75%) lower than the corresponding real one. What happens in this case is that

every time an I/O system call occurs, it is recognised as “Standard I/O” and thus notifies the

VEX scheduler to allow another thread to progress in parallel. Accordingly, all system calls

allow for parallel execution of code that would otherwise be serially executed in real time; this

results in low predicted times.

The results of Table 4.3 show an inverse correlation between the average number of threads

issuing I/O in parallel (fourth column) and the (absolute) prediction error: the higher the

parallelism the closer the prediction to the observed benchmark time. Similarly, the higher

the percentage of underpredictions the higher the absolute prediction error. Underpredictions

lead to limited parallelism between threads that are actually performing disk I/O: the VEX
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Method Error (%) Overhead Parallel I/O Under (%) Correct (%) Over (%)

max -4.53 1.09 14.90 19.11 9.41 71.48

cmean -11.20 1.15 13.88 23.55 10.28 66.16

arburg -18.00 1.14 11.51 37.03 7.67 55.30

avg -18.53 1.15 11.29 27.76 9.19 63.05

sampling -27.33 1.16 9.84 28.88 9.21 61.91

linregr -47.80 1.10 7.29 35.63 6.94 57.44

median -62.13 1.16 5.03 39.57 19.28 41.14

replay -63.64 1.14 4.81 41.15 11.38 47.47

gsl -65.40 1.19 4.58 40.92 10.77 48.31

markov -67.80 1.14 4.39 38.55 21.33 40.12

min -74.60 1.13 3.69 63.88 35.91 0.21

No I/O -93.79 1.29

Table 4.3: Results for the Disk I/O benchmark without an I/O threshold. “Correct” predictions
are defined to be within a 20% (absolute) error of the observed I/O real time. Means of 15
measurements shown.

scheduler does not resume runnable threads that are suspended at a virtual timestamp higher

than the under-predicted I/O completion and so limits the chances of parallel I/O occurring.

In turn, this limits the contention on the I/O subsystem, resulting in under-predicted I/O

operations yielding lower observed I/O durations, than the ones that are found in the real

time execution of the benchmark. This leads to a vicious cycle of underprediction of I/O

durations and ultimately to the lower predictions for the total benchmark time on the lower

half of Table 4.3. The way that underpredictions affect the subsequent observed real time

durations Tobs is shown in Figure 4.6: the observed I/O times of the VEX simulation with

the min prediction method, which exhibits the highest percentage of underpredictions, provide

significantly lower Tobss than themax or the real time ones. In fact the latter two almost overlap,

thus explaining the relatively high accuracy of the max prediction method. Accordingly, the

prediction methods that provide the best results are the ones that mostly factor in the few long

lasting I/O operations (max, cmean, avg), generating higher I/O predictions for the next I/O

duration. These in turn allow for many threads to issue I/O operations in parallel, leading to

increased contention on the subsystem and thus yielding again high Tobss, perpetuating this

effect. An unexpected result is that it seems more important to avoid underpredictions than

predict correctly (within a 20% absolute error). Interestingly, the min prediction policy with

the highest correct prediction percentage provided practically unusable results, despite the fact

that it had the highest percentage of “correct” predictions.
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Figure 4.6: Histograms of the observed I/O durations in the real execution and in the virtual
time executions with the max and min prediction policies

We next enable the I/O threshold parameter IT as the limit over which predictions trigger the

scheduler to treat the next I/O system call as a Standard I/O request. If the next prediction for

a system call is lower than IT , then it is serially executed and its duration is measured in real

time. The results for this configuration are shown in Table 4.4 and present an improvement

from an average error of -41.91% between all prediction methods in the previous setting to

9.88% in this one. In contrast to the experiments without an I/O threshold, all predictions

here are higher than the ones of the real time experiments. We also observe again a positive

correlation between the underprediction percentage and the prediction error.

The effect of underprediction when the I/O threshold is enabled, differs in that no I/O paral-

lelism whatsoever is allowed. The system call is (wrongly) predicted to hit the cache and so is

does not yield the processor to other threads. The difference with the previous configuration

is that, in that case, all operations were still performed in parallel, but not to the extent of

the real-time execution – here they just run one after another. This increases both the pre-

dicted virtual time as well as the total execution time of the simulation, as seen in the results

of Table 4.4, explaining the strictly positive prediction errors observed. This observation is

also partially attributed to the noise in real time measurements on the simulation host, due to

background system load.



120 Chapter 4. I/O in virtual time

Method Error (%) Overhead Parallel I/O Under (%) Correct (%) Over (%)

max 5.96 1.34 13.21 13.99 8.18 77.83

gsl 8.38 1.41 4.35 33.55 31.82 34.64

cmean 8.50 1.25 10.38 20.80 10.19 69.02

replay 9.13 1.45 4.28 33.75 31.47 34.78

markov 9.75 1.44 4.23 33.02 32.27 34.71

linregr 9.92 1.38 5.86 31.73 17.53 50.74

arburg 10.46 1.35 11.04 36.71 10.33 52.96

sampling 10.71 1.30 7.17 29.07 14.72 56.21

avg 10.88 1.38 6.68 27.22 14.88 57.90

min 11.54 1.36 6.60 59.62 39.82 0.56

median 13.50 1.33 6.75 42.49 13.12 44.38

Table 4.4: Results for the Disk I/O benchmark using an I/O threshold of 50µs. Means of 15
measurements are shown.

Table 4.5 summarises the observations and conclusions for the effects of over- and underpredic-

tions based on the presented results.

Actual Predicted No I/O recognition I/O recognition (threshold)

Low Low Incorrectly runs in parallel with
others: lower total time

Correctly running alone and
measuring only its real time: no
effect (apart from external noise)

Low High Incorrectly runs in parallel with
others – overprediction fixed
upon exit from I/O: poten-
tially lower total time (depend-
ing upon overprediction identifi-
cation overhead)

Incorrectly runs in parallel with
others – overprediction fixed
upon exit from I/O: poten-
tially lower total time (depend-
ing upon overprediction identifi-
cation overhead)

High Low Correctly runs in parallel with
others – underprediction limits
parallelism: lower time

Incorrectly does not run in paral-
lel with others – serializing long
I/Os and increasing total time

High High Correctly runs in parallel with
others: no effect (apart from ex-
ternal noise)

Correctly runs in parallel with
others: no effect (apart from ex-
ternal noise)

Table 4.5: Issues in virtual time I/O with and without an I/O threshold. “Low” times are
supposed to hit the cache and run sequentially, while “High” ones are expected to perform an
I/O with DMA and allow other threads to make progress in parallel

Prediction aggregation

Up to this point all I/O predictions were aggregated globally (see Section 4.2.1). Recall that

measurements can either be aggregated globally for all I/O operations, per I/O operation or per

different invocation point. This is due to the setup of the previous experiment where the vast
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majority of I/O operations concern the same operation (FileInputStream.readBytes) and the

same invocation point (where the file is parsed to create its checksum). Thus no differences exist

among the various levels of aggregation. In this section we use the “No-Memory” benchmark,

that has two points with increased I/O activity: one where a file name is retrieved from disk

and one where the file is parsed block by block.

Table 4.6 presents the results for the various prediction methods and aggregation levels, when

the I/O threshold scheme is set. The table shows a clear improvement from the transition from

the single global buffer to the buffer per I/O or to the per invocation-point scheme. Indeed,

the latter two cases offer a better distinction between the I/O operations reading the file list

(possibly cached and short) and the ones reading the contents of the files (possibly uncached

and long). On the invocation point prediction level the markov method presents the best results

with a mean error of 6.5%. We note here that the overhead is significantly higher than the

case where the list of files is loaded into memory (Disk I/O benchmark), due to the increased

number of I/O system call invocations used to parse the list of files for each request (from

approximately 50,000 to 900,000).

Single global buffer Buffer / I/O operation Buffer / Invocation Point

Method Error (%) Overhead Error (%) Overhead Error (%) Overhead

arburg 7.83 5.70 5.00 5.50 7.33 5.85

avg 49.50 4.46 11.67 7.17 10.25 6.55

cmean 19.50 3.79 15.25 7.12 7.67 6.10

gsl 14.17 6.98 10.75 6.96 8.00 6.00

linregr 50.67 5.52 11.25 6.76 6.67 6.92

markov 9.88 5.26 9.64 5.41 6.51 5.23

max 7.50 5.55 5.83 6.07 13.25 6.76

median 88.33 2.86 26.75 6.64 17.25 7.64

min 83.50 3.19 24.50 6.28 39.25 5.72

replay 64.50 6.07 10.67 7.24 8.75 6.31

sampling 41.21 9.39 12.64 6.17 8.36 7.87

Mean 39.69 5.34 13.09 6.48 12.12 6.45

Table 4.6: Effect of prediction aggregation on the “No Memory” I/O benchmark, when the list
is always read directly from disk

Based on the presented results, it is not possible to identify a prediction method that con-

sistently outperforms all others. For example, max which yields good predictions for this

benchmark, presents a slightly increased error when measurements are aggregated per invoca-
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tion point. The only clear conclusion is that prediction methods like min and median, that

favour underpredictions, by filtering out higher values typically provide bad predictions for such

I/O stress-tests. The influence of the aggregation level of predictions depends on the variety of

I/O operations and behaviours per invocation point in the VEX simulated program.

Markov chain size

For a constant buffer size of B = 16, we investigate the effects of different parameters M

for the M − markov prediction method, i.e. of different number of states (in this context

levels) that describe the observed I/O values for each buffer. To visualise the effect of M , we

export the observed I/O durations of the “Single global buffer” for the disk I/O benchmark

that loads the file list into memory and experiment with an offline tool (C++ program) that

applies the algorithm that generates the Markov chain to these values. Figures 4.7a - 4.7e

illustrate the Markov chains generated for a particular subset of B = 16 measurements. All

figures have a state at the 15.9ms level, which is never returned to, which corresponds to the

first measurement of the set. Its existence leads to the creation of a quite wide state in the

2−markov case (Figure 4.7a, ranging from 1.1µs to 2.9ms. As we increase the states this state

is divided into a number of sub-states, leading to all states for M > 4 to have a maximum

range of 0.5ms with an extreme of 0.1ms for M = 8 (Figure 4.7e).

However, the effect of the chain size to the prediction accuracy is small (within 4%) for both

experimental configurations presented, as shown in Tables 4.7 and 4.8, for the memory loaded

and disk loaded file list respectively. Only in particular cases, there might exist a statistically

Single global Per I/O operation Per invocation point Total

M Error(%) Stdev Error(%) Stdev Error(%) Stdev Error(%) Stdev

2 3.89 4.44 7.22 5.15 16.33 5.27 9.15 8.78

3 7.44 6.78 13.44 4.66 3.22 4.98 8.04 8.72

4 5.11 5.01 16.00 4.88 12.67 5.15 11.26 10.29

6 3.11 1.45 5.56 5.15 9.75 5.12 6.00 7.08

8 3.67 1.73 9.89 4.93 10.50 5.35 7.92 7.97

Mean 4.64 10.42 10.49

Table 4.7: Effect of chain size in the markov prediction policy for the Disk I/O benchmark
with memory-loaded file list. Means and standard deviations of 9 measurements on Host-1
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Single global Per I/O operation Per invocation point Total

M Error(%) Stdev Error(%) Stdev Error(%) Stdev Error(%) Stdev

2 9.45 9.65 9.00 10.91 4.55 8.49 7.63 10.00

3 12.75 11.82 9.63 11.81 8.63 10.45 10.33 11.93

4 11.25 9.91 9.25 9.90 7.25 8.96 9.25 10.04

6 8.00 10.50 11.75 13.32 5.00 7.86 8.25 10.63

8 8.13 7.30 8.75 9.96 7.88 10.16 8.25 8.93

Mean 9.92 9.68 6.66

Table 4.8: Effect of chain size in the markov prediction policy for the Disk I/O benchmark
with disk loaded file list. Means and standard deviations of 9 measurements on Host-1

significant difference between two values for M : performing the t-test for the “Single global

buffer” aggregation level of the “memory” test, we find that the difference of the prediction

error between M = 3 and M = 6 is statistically significant with 95% confidence. In this

case, globally clustering the values in 6 levels outperforms doing so in 3, which we assume

is attributed to the characteristics of the program. Identification of such charatecteristics at

runtime to improve prediction accuracy (as in [151]) is left as future work.

4.3.3 Investigating I/O effects

Our focus up to this point has been to investigate the effect of the various prediction methods

and aggregation levels of VEX to the observed application real times. In a sense, we could

regard this as the configuration stage of our I/O modelling approach: for the No-Memory Disk

I/O benchmark the max prediction method with one buffer per I/O operation has provided

the lowest prediction errors, due to the high number of I/O duration overpredictions. We can

now use this configuration of the VEX simulator to identify the effect time-scaling and I/O

exclusion. We note here that such an extended “tuning” phase is not necessary; users can

typically use max that is bound to favour overprediction. However, as our previous study has

shown, this type of tuning can be beneficial to the accuracy of the virtual time execution.
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Time-scaling

We identify the effect of time-scaling in the No-Memory Disk-I/O benchmark, by modifying the

time-scaling factor (TSF ) of a method that invokes I/O operations: in this case we choose the

method that parses files to get their checksums. The x-axis of Figure 4.8a shows the ratio 1
TSF

,

increasing it by a step of 0.25. The acquired results of Figure 4.8a show a non-linear relation

between the method 1
TSF

and the VEX predicted program execution times. We clarify here

that it is not possible to verify these results without using some kind of file system simulator -

even then it would not be clear how to configure the simulator to get the equivalent effect of

VEX time-scaling.

An interesting observation regards the overhead of the VEX simulation shown in Figure 4.8b,

which remains constant for TSF > 1.0, but becomes up to approximately 13 times higher

for TSF < 1.0. This is explained by the delayed I/O execution scheme that occurs when we

are decelerating time (TSF < 1.0), under which an I/O execution is delayed until after the

(time-scaled) predicted I/O virtual timestamp is reached (see Section 4.1.4 for details).

I/O exclusion

In this experiment we use the same configuration to experiment with the effect of I/O exclusion,

which allows us to investigate the effect of reducing the number of I/O operations. A reduction

in the prediction results is expected in any case, because we replace real time with CPU-

time measurements for all excluded operations. The I/O exclusion simulation thus provides

an insight to the dependence of the overall performance from I/O. Indeed for our I/O-bound

benchmark, we observe in Figure 4.9 that the effect of I/O removal is significant and also not

linear: removing 60% random I/O operations reduces the total predicted time by more than

80%.

An interesting observation on Figure 4.9 is that the variance of the predictions is quite high

for the exclusion of a low random percentage of I/O operations (10% and 20%). Based on

our observations for the existence of two large clusters of I/O durations, if we exclude only a
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few samples, it is likely they all belong entirely to one or the other cluster. As we increase

the randomly excluded I/O operations, the probability that we exclude an adequate number of

samples from both clusters increases and the variability of the results is reduced.

4.3.4 Database prediction

We now present a setup to evaluate how the combination of VEX and JINE handles database

requests. We have created a sample database, using the original database-populating class

from the TPC/W-benchmark [49]. We spawn 16 client threads that each connect to the

database through the Derby JDBC driver. Once connected, every thread thinks for a ran-

dom amount of time Z (sampled from an exponential distribution) and then sends N ran-

domly selected SQL queries (from a set of pre-defined query templates) to the server. We

vary the thinking time Z and measure the average response times in real time. We then

execute the client with VEX/JINE with adaptive profiling turned on and explore two vari-

ants of the code: an unmodified version with no scaling and a version of Derby’s heavily

used method (org/apache/derby/jdbc/Driver40.newEmbedPreparedStatement) (the target

method), scaled by a factor of two. This is expected to reduce contention on the compilation

and optimisation schemes of the Derby SQL engine. To avoid warmup effects the procedure is

repeated within the same instance of the JVM until the results converge.

Derby DB

We use the Derby database server [4] which is fully implemented in Java and so that all

operations within the server can be monitored and controlled by the VEX scheduler, after

being instrumented by JINE. The results are shown in Figure 4.10 for N=60. This shows the

measured (real) time and the predicted virtual times with and without scaling. Also shown

(“Profiling”) is an additional estimate of the scaled performance, which is computed using

the proportion of total time spent in the target method, as measured during the unscaled

execution within the framework. This is precisely the information that would be provided by a
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conventional profiler. Although there exists an outlier for a think time of 64ms, the predicted

and observed times agree reasonably well, with an average prediction error of 16.5%. Scaling

of the target method evidently has a non-linear effect on the overall performance that cannot

be accounted for straightforwardly by conventional profiling. Unfortunately, verification of the

accuracy of the scaled performance prediction in this context is not feasible without elaborate

software performance modelling or simulation techniques, a fact that underlines the purpose

and usefulness of our framework.

MySQL DB

We repeat the experiment of the previous Section 4.3.4, but replace the the database server

with MySQL, connecting to it via the MySQL-J connector driver. Table 4.9 shows the average

prediction errors for the server response time for seven prediction policies at the I/O invocation

point level. We observe that, once again, the results that have used an I/O threshold (here

50µs), perform significantly better than the ones that haven’t. Policies max and arburg remain

amongst the most accurate. As shown in Figure 4.11, arburg converges to the observed real

time as the average waiting time increases and the load on the server stabilises.

Prediction method Error [%] Error with I/O threshold [%]

arburg 12.38 5.97

avg 29.28 11.75

linregr 25.97 7.78

markov 31.70 10.32

max 23.40 7.95

replay 30.34 3.23

sampling 38.33 13.06

Table 4.9: Average prediction errors for the MySQL database experiment with and without
the use of an I/O threshold as a function of the average think time Z

Overall we can summarise the findings of our evaluation study of the I/O module of VEX as

follows:

• To achieve a meaningful prediction accuracy for I/O-bound benchmarks it is absolutely

essential that I/O durations be included in virtual time.
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• Definition of even an approximate I/O threshold to distinguish between Standard and

Cached I/O operations improves the prediction results of the framework.

• I/O simulation with a threshold yields higher predictions for the total application time,

which can be attributed to the serialisation of I/O operations on I/O-underpredictions

and the noise incurred by real time measurements.

• No prediction method and I/O module configuration has been found to be consistently

better than any other.

• Prediction methods that favour overprediction of the duration of the next I/O operation

(e.g. max) perform better than the ones who favour underprediction by allowing a higher

level of parallel I/O.

• In cases where various invocations of the same I/O operation constantly produce different

I/O durations (e.g. the No-Memory I/O benchmark), then specifying a lower level at

which measurements are aggregated is beneficial to the prediction of the framework.

• Effects like the length of the chain in the markov prediction method have not been found

to have a significant effect on prediction accuracy.

• I/O scaling and I/O exclusion can disclose non-trivial effects on the dependence of the

total response time to I/O.
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set of B = 16 measurements with the M −markov prediction method
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Java Instrumentation Environment

We introduce the Java Instrumentation Environment (JINE) which we developed to provide

an interface to the VEX core for applications written in the Java programming language. Java

was chosen because of its widespread use [127], the fact that many languages have been ported

to the JVM, the well-documented dynamic bytecode instrumentation techniques, the user-

friendly annotation capabilities and the availability of the JVMTI functionalities that support

native-level callbacks upon the occurrence of system- or thread-related events. There is also

the potential to develop an Integrated Development Environment (IDE) module for VEX, to

facilitate its uptake from the software engineering community.

On the downside, Java adds another level of complexity, as it executes bytecode at the JVM-level

and includes language features like JIT compilation and garbage collection. In this chapter,

we present the design and implementation of JINE and elaborate on the language-specific

challenges that arise and on the ways we have dealt with them.

The key contribution of this chapter is to demonstrate how to develop an instrumentation

interface for the VEX core presented in Chapter 3. Explaining the requirements of VEX by

the upper instrumentation layer, whilst elaborating on implementation choices made for JINE,

this chapter can be used as a reference for the development of similar high-level interfaces for

other programming languages. Particular focus is set on Java-related issues, which have become

major challenges in our project, thus highlighting how non-trivial language-specific aspects may

131
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affect the virtual execution framework. In an attempt to overcome these issues, we investigate

the effect of tightly coupling VEX with the JVM, by directly modifying the latter’s source code.

5.1 Design and implementation

JINE is built on top of the VEX core as illustrated in Figure 5.1. The lower-level of JINE is

a JVMTI-agent, which is a shared library, loaded during the initialisation of the JVM. The

JVMTI-agent is written in C++ and implements callbacks, that are automatically triggered

upon predefined JVM events. The agent also exports to the upper JINE level a set of JNI (Java

Native Interface) functions that invoke the VEX API. The higher-level JINE is a Java-agent,

which dynamically checks each class during loading and transforms the methods of interest to

call the exported JNI functions of the JVMTI-agent.

By employing bytecode instrumentation, JVMTI and JNI, the JINE system (JVMTI- and

Java-agent):

• initialises and terminates the VEX simulator

• monitors thread state changes and acknowledges them to the VEX scheduling module

• supports the VEX profiling module that identifies regular methods, I/O methods and

virtual specifications.

5.1.1 System initialisation and termination

Initialization

The JVMTI-agent of JINE is responsible for initialising the VEX core. This happens with the

onLoad method, which is a callback that is always executed before any other JVM action. The

VEX initialisation procedure is invoked, which spawns the VEX scheduler thread and allocates

the data structures required for the simulation, based on the parameters provided by the users
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Figure 5.1: JINE design on top of VEX

when the JVM is launched from the command-line. A full list of VEX parameters is found in

Appendix C. This approach ensures that the VEX scheduler and data structures are defined

before any thread invokes one of their methods. The onLoad method registers all other JVMTI-

agent callbacks that are executed at runtime, when the corresponding JVMTI-captured events

occur.

To initialise the framework in absence of a JVMTI-similar feature, other languages may define

a global static flag initialised or a condition depending on the initialisation of a VEX data

structure, and include in the beginning of each instrumented code section. The first thread

that finds the flag equal to false or finds that the data structure has not yet been initialised, is

the one to initialise the framework.
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Once loaded, and if explicitly defined by the user, the Java-agent of JINE supports the ini-

tialisation process, by first profiling the instrumentation overhead of the simulation host (see

Section 3.2.3). By performing this measurement on the Java-agent level, JINE also includes the

cost of invoking the JNI function that invokes the VEX method-logging call. To avoid warmup

effects, the measurements are taken following an initial set of un-profiled ones. These results

are placed in a file for future reference and thus this profiling overhead is paid only once per

simulation host.

Termination

The JVMTI-agent offers a VMDeath callback that is automatically invoked when the JVM

terminates. This method is registered in the onLoad method of the JVMTI-agent and calls the

VEX termination procedure, which generates the various simulation outputs (see Section 3.2.4)

and cleans up any data structures used.

For programming languages that don’t support such a callback, VEX can be made to terminate

when the “main” method exits, if this event can be identified or otherwise when the stack trace

of the “main” method becomes empty. Though more generic than the use of a language callback,

this approach assumes identification and different handling of the “main” thread.

5.1.2 Thread monitoring

The virtual time execution relies on the VEX scheduler being aware of any changes in the state

of each thread, in order to control their progress accordingly. We review how the related state

changes are monitored and the corresponding actions taken by VEX.

Creation

When a thread is created, it is registered to the VEX scheduler’s data structures and pushed

into the runnable threads queue. If set accordingly during the loading of the JVM, the JVMTI
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callback ThreadStart is automatically invoked by the runtime, every time a thread is spawned

during the “Live” phase. The “main” thread is an exception, as it is registered from the VMInit

callback. To match language-specific thread ids to VEX threads, the instrumentation system

assigns a unique thread id to every newly registered thread. JINE uses the id of each Java

thread (the value of the id field from the java.lang.Thread class), to enable future mapping

of Java thread ids to VEX threads.

JINE does not take into account JVM system threads (see Section 5.2.6) or threads from

methods that are not instrumented. JINE supports this distinction by forcing each profiled

thread that is about to spawn a new one, to enter its id in a special-purpose registry together

with the virtual timestamp V T of its spawning time. Once a thread is created, it only puts

itself under VEX’s control if its id is in that registry. The initial timestamp V T is used to

determine, when this thread is scheduled by VEX for the first time. This procedure is enabled

via static instrumentation on the java.lang.Thread class.

All invocations to the private java.lang.Thread/start0 method are also statically instru-

mented, to call JVMTI-agent methods before and after the creation of each thread. These

methods call the corresponding VEX methods, which denote the passage of time during the

new thread creation and increase a counter that describes the number of threads that are cur-

rently under creation. This counter is used to forbid “virtual leaps”: if there is at least one

pending spawning thread, then no timed-waiting thread can be resumed in virtual time (see

corresponding challenge in Section 5.2.4). When a new thread is successfully registered in the

queue of runnable threads, the counter is decremented.

Termination

The ThreadEnd JVMTI callback is registered to be activated, when a thread terminates execu-

tion. At that point the JVMTI-agent invokes the thread terminating function of VEX, which

marks the timestamp of the event, updates the global virtual time (GV T ) and releases the

thread from the control of the VEX scheduler. Since the profiled virtual method times are

maintained in thread-local data structures throughout a thread’s execution, we also need to
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update the globally aggregated method time results. The thread local data structures that are

used during simulation are then cleaned up and the thread exits.

We note here that languages that do not support a similar feature as JVMTI callbacks on

thread termination, can trigger this effect when the stack trace of a thread becomes empty (i.e.

has no frames).

Sleeping

Sleeping durations are reflected in virtual times, in that a thread “wakes-up” only when the

corresponding amount of time has elapsed in virtual time. A thread that is about to sleep,

is pushed into the priority queue of runnable threads with a virtual timeout, that describes

when it should resume. To trigger this handling, all invocations of the sleep method of the

java.lang.Thread class are trapped into VEX. Interestingly, the JVM runtime does not allow

us to statically instrument the sleep0 private native method of that class (that leads a thread

to sleep within the JVM), as it performs a test that checks whether the java.lang.Thread

class defines a particular set of native methods: creating a vtf native prefix vex sleep0

method that invokes the original sleep0, as typically done in our native method handling

technique (see Section 5.1.4 for details), is thus not possible. This means that JINE has to trap

all calls to this method externally.

Dynamically instrumenting all invocations to sleep methods belonging to the java.lang.Thread

class does not cover the overriding of this method from one of its subclasses. Identifying this

set of java.lang.Thread subclasses Sthr is possible, but we don’t generally know if a class

Si belongs to Sthr, when we are instrumenting the invocation of the sleep method of Si in a

random class C. Only if Si has been loaded prior to C, are we able to know that Si is a sub-

class of Sthr and thus instrument the sleep invocation accordingly. A solution to this problem

would be to force the class loader to load Sthr, directly after finishing the loading of class C

and then reloading C and instrumenting the sleep method accordingly, namely depending on

whether Sthr was found to be a subclass of java.lang.Thread or not. As the complexity of

the solution outweighs its potential benefits, we leave it as future work and treat all encoun-
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tered sleep methods with one or two long integers as arguments as being from subclasses of

java.lang.Thread, unless they belong to the same class C that invoked them.

Timed-waiting

VEX’s handling of timed-waiting is very similar to sleeping, in that it sets a virtual timeout for

its calling thread and pushes it back to the runnables queue. In contrast to the sleep method,

the dynamic instrumentation of the wait call is simpler, because all classes are subclasses of

the java.lang.Object class that defines it. This allows JINE to instrument all wait methods

with one or two long integer arguments as virtual timeouts.

The key difference to the sleep method is that timed-waiting threads can be signalled, by

notify or notifyAll calls. To accomplish this, JINE passes a unique object id to the VEX

core, which is later matched with the ids of objects, that invoke notify or notifyAll. Threads

block at a VEX conditional variable to wait for the virtual-timeout expiry (or signal arrival).

Crucially, JINE needs to exit the monitor of the waiting object, to allow other threads to enter

it, while the waiting thread is blocked within VEX. A JNI call is used to exit the monitor for

as many times, N , as it had been entered before (synchronised blocks are re-entrant in Java).

Similarly, on a virtual timeout or signal arrival, the monitor is re-entered N times, so that it

can be correctly exited at the Java bytecode level, after the instrumentation code returns. To

identify N at the instrumentation code layer, we iteratively release the monitor via a JNI call,

until an exception it thrown. We catch the exception within the low-level JINE and set N equal

to the times the monitor was released minus 1 (the release that led to the exception should not

be counted).

Recall that, by handling the synchronisation of threads internally, VEX enforces the “update-

before-event” principle (see Section 3.1.3), which ensures that state-changes are reflected to the

system’s data structures, before they are realised by the JVM or any other runtime. This ensures

that the VEX scheduler can distinguish between blocked timed-waiting threads and timed-

waiting threads that have been notified, but are still in the “Timed-waiting” state, because the

state change has not been yet acknowledged to VEX.
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Waiting

By default, JINE uses the JVMTI callbacks for MonitorWait and MonitorWaited events; these

are triggered before and after a thread invokes the Object.wait() method without a timeout.

The MonitorContendedEnter and MonitorContendedEntered callbacks, are respectively exe-

cuted, when a thread has to block, upon entering a monitor already owned by another thread,

and right after it is resumed and enters the previously suspended monitor.

Although these techniques simplify JINE monitor handling and are used by default, they are

language-specific and are not consistent with the “update-before-event” approach enforced else-

where in VEX. Indeed, suppose that a contended monitor is exited by thread TB and thread

TA is blocked in the “Waiting” state trying to acquire it. Suppose also that TB then becomes

“Waiting” or “Timed-waiting” for some other reason, before the MonitorContendedEntered

callback is triggered for TA. From the perspective of the VEX scheduler and until TA changes

its state, when the code of the MonitorContendedEntered callback is invoked, both threads

TA and TB are in the “Waiting” state. This allows it to schedule the next thread TC , whose

virtual timestamp might be ahead of TA, thus violating the VEX scheduling policy. In the

default JINE run, we accept the possibility of this kind of violation, taking care to limit the

amount of time that TC is allowed to leap forward in virtual time (see Section 5.2.4).

To overcome this issue and support languages without JVMTI-similar callbacks, JINE sup-

ports explicit monitor trapping: all monitor entries and exits and conditional waiting (Object

waits) are notified to VEX via instrumentation. This allows VEX to manage thread synchro-

nisation internally, in a way that adheres to the “update-before-event” principle. In this case

Object.wait() calls are handled like timed-waiting calls, without a virtual timeout. They

register themselves to the list of threads waiting on an object id and wait to be notified as

explained in the following section. To pass the object ids to the VEX core, all MONITORENTER

and MONITOREXIT bytecodes of all simulated methods are dynamically instrumented. Each

synchronised method is also wrapped by a new method, that marks the monitor entering and

exiting event, before and after invoking the original method. This approach shifts the respon-

sibility of identifying lock contention to the VEX level. VEX’s API includes the corresponding
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onRequestingLock and onReleaseLock methods, that should be invoked before an entry to

or an exit from a monitor. The immediate effect of calling onReleaseLock is to change the

state of one of the threads, contending for entry to the monitor. This approach is potentially

more generic and complies with the “update-before-event” principle, but carries a significant

overhead as every monitor-related bytecode is trapped to the VEX layer. Language-specific

features like lock re-entrance, that allows a thread to re-enter an already owned monitor, are

handled with a special flag: if the flag is set then re-entrance is not allowed and threads can

block on the locks they are holding (like in POSIX mutex). The explicit monitor trapping

feature is nevertheless still at an experimental stage and has not been thoroughly tested.

Signalling

Object signalling methods like notify and notifyAll are dynamically instrumented, in the

same way as the Object.wait(J) and Object.wait(JJ) methods. They interrupt waiting or

timed-waiting threads in virtual time, by forcing the VEX scheduler to unblock them and set

their virtual timestamp to the current GVT. To select the threads to receive the notification

signal, the unique id of the notified Object is passed to VEX, which in turn matches it with

all threads waiting on that id. Using that id notify and notifyAll a single random waiting

thread is interrupted. In the case of a notifyAll call, all waiting threads do so.

As we mentioned in the previous section, JINE supports two ways of managing indefinite waiting

with Object.wait(): using JVMTI callbacks or explicitly trapping the call and registering the

id of the monitor that the thread will be waiting on, in the registry of waiting objects. The

management of notifications works independently of the approach selected: if a record exists

in the registry of waiting objects (corresponding to a timed- or indefinitely waiting thread),

then the signal resumes the thread of that record. If no such record exists, or a notifyAll

method is used, then JINE invokes Object.notifyAll at the JVM level, thus delegating the

responsibility of resuming a blocked thread to the JVM. In turn, any resumed thread will trigger

the MonitorWaited JVMTI callback, thus conveying the thread state change to VEX.

Threads are also interrupted upon invocation of the interrupt method of the java.lang.Thread
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class. JINE uses static instrumentation of this class to trap such invocations and trigger a vir-

tual time interrupt of a waiting, timed-waiting or sleeping thread. To interrupt timed-waiting

and sleeping threads that are blocked within VEX, JINE obtains the originally assigned thread

id (Java thread id) of the thread to be interrupted and provides it to VEX. In turn, the core

finds the VEX thread matching that id and interrupts it in virtual time. If it is in the “Timed-

waiting” (i.e. timed-waiting or sleeping) state or the “Waiting” state the interrupt is handled

internally by VEX. Otherwise, if the thread is in the JVM-handled “Waiting” state, then the

interrupt method is called at the Java level, after returning from the VEX instrumented

code. JINE then relies on the JVM runtime to interrupt the waiting thread and trigger the

MonitorWaited JVMTI callback, that eventually changes the thread state in VEX.

Performing I/O

Threads that perform I/O operations are trapped by instrumentation of the Java classes that

invoke them. Analysing the hierarchy of the java.io package and according to [123], we identify

the java.io.FileInputStream, java.io.FileOutputStream and java.io.RandomAccessFile

as the classes whose native methods are invoked by all other java classes to request I/O. JINE

employes static instrumentation in order to load modified versions of these I/O performing

classes before the standard system classes do so by the BootClassLoader. The classes are

preloaded with the Xbootclasspath/p command-line parameter and used throughout the VEX

simulated run.

The effect of using the pre-instrumented java.io classes is that all their invocations (even by

un-instrumented methods or threads) are trapped into VEX. To distinguish between profiled

and unprofiled threads, JINE extends the java.lang.Thread class with a vexInvocationPoint

integer field, initially set to zero. This field is changed to a unique non-zero value each time a

statically instrumented I/O method is invoked by a method profiled by VEX. If vexInvocation-

Point is zero, then the thread is not profiled and the I/O operation takes place normally. In

the lower-level (VEX I/O module), this id can be used to distinguish between I/O invocation

points. Crucially, this value plays the role of uniquely identifying the I/O point. This allows us
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to group measurements and predict durations of I/O operations in a very fine-grained fashion,

as elaborated in Chapter 4.

Our instrumentation approach covers only methods of the java.io package, thus omitting

the available NIO (New I/O) operations. These methods perform asynchronous I/O, while

multiplexing various I/O sources under the same call. For example, the epoll wait method

blocks a thread until an I/O event occurs on a predefined file descriptor. The duration of the

I/O operation cannot be measured in real time as the observed time between the method entry

and exit, because it would include the arbitrarily long blocking time of the thread. Moreover,

the thread is not performing an I/O, but remains blocked until an I/O event occurs.

In this case, JINE explicitly sets the state of the thread as “Waiting”, before it enters the call

and as “Suspended” after it does so. The same handling is enforced for the accept system

call, or the locking primitives of the java.util.concurrency package. We note here that this

essentially constitutes a performance optimisation: if we had not explicitly instrumented these

calls, VEX would eventually identify them as “Native waiting” (see Section 5.2.2) and disregard

them, without knowing when they would resume. Explicitly trapping the entry and exit times

alleviates this problem.

Yielding

Invoking the yield method of the java.lang.Thread class, results in calling the corresponding

method of the VEX subsystem, that sets the currently running thread to “Runnable” and

resumes it once all other runnable threads have executed once. Each invocation of the yield

method in a VEX-simulated class is dynamically instrumented. This is tantamount to a

Thread.sleep, that cannot be statically instrumented. This is because in order to instrument

a native method M within a class, we need to replace it with a non-native method M to wrap

a new native method named “ vex M” that will be linked by the JVMTI agent to the native

code of M (see Section 5.1.4). This violates the precondition of the HotSpot JVM, that requires

that system classes define a predefined set of native methods (including M , which it replaced

by its non-native wrapper).
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Assuming that all classes defining sleep with one or two long integer arguments are subclasses

of java.lang.Thread, all its invocations are treated as virtual timeouts. In contrast, yield

methods are treated as such, only if they belong to the java.lang.Thread class. This is a

design decision that mirrors the importance of trapping virtual timeouts from sleep calls and

possibly allowing the miss of a yielding call (from a subclass of java.lang.Thread).

5.1.3 Method handling

The Java-agent dynamically instruments Java classes on loading, while parsing the virtual spec-

ifications. The method handling techniques concern method instrumentations, specifications

parsing and adaptive profiling enforcement.

Method profiling

The Java-agent is responsible for registering methods, when it first loads the class containing

them. Specifically, it assigns a method-id based on the hashCode of the Fully Qualified Name

(FQN) of the method and registers the <method-id, FQN> pair to the VEX subsystem. We

prefer this approach, because it yields reproducible mappings, that are useful for testing and

debugging purposes. If such a feature is not necessary (e.g. in a production version of JINE),

then sequentially assigning ids, which depends on the class loading sequence, works as well.

JINE adds instruments in the “beginning” and “end” of each method that use the generated

method-id as an argument. The “beginning” of a method is defined to be the point before

its first bytecode instruction. The “end” of a method is either the last bytecode before any

kind of method returning instruction (i.e. *RETURN) or before an exception-throwing bytecode,

like ATHROW. To avoid treating exceptions caught within a method as method-exit points, JINE

uses a counter for opened exception-catching blocks: only if this counter is zero, is ATHROW

considered a method exit point.

By default JINE instruments all application methods. To selectively profile only a subset of

them, users may provide a file with method FQNs. Note here that by “application methods”,
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we exclude system classes methods, like the ones found in the java or sun packages. By instru-

menting such methods, we would inadvertently increase the overhead of the framework, without

any real benefit in the performance results provided. If any such method is the bottleneck, then

its performance overhead is still reflected in the execution times of its calling method.

Our design decision to disregard execution times of system classes, is also reflected in our

choice not to trigger JVMTI callbacks on method entry and exit. Although the usage of

JVMTI callbacks does not require any bytecode instrumentation effort, it is less flexible and

efficient than our approach: JINE decides exactly which methods it wants to instrument and

this filtering occurs only once during class loading. This is quite different from a filtering

scheme at the JVMTI-agent level, where a filtered-out method would trigger the callback, only

to return, but after paying the price for transforming the Java strings that constitute the FQN

of the executed method to a method id.

Virtual specifications

The virtual specifications are defined as method annotations. For example, time-scaling factors

are annotated in the form: @Accelerate(speedup = TSF), for TSF > 0. If TSF > 1 then

we have a speedup and if 0 < TSF < 1 we have a slowdown in the virtual execution time of

that method. ASM’s AnnotationVisitor interface is used to parse the annotations, when the

class of the annotated method is loaded. The parsed TSF is registered with the method-id

of the annotated method to VEX. Every time the method with this method-id is entered, the

corresponding TSF is going to be applied for the entire thread execution, until the method

is exited. If no annotation is defined for a method, then its regular execution time remains

unmodified during the virtual time accounting.

Adaptive profiling support

JINE supports the adaptive profiling approach of VEX (see Section 3.2.3), by checking VEX’s

profiling invalidation policy from the JVMTI-agent library every time a method exits. When the
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invalidation policy determines that a method M should no longer be profiled, the JVMTI-agent

invokes the “profiling invalidation enforcer” module. This uses JNI to invoke a Java method

from the native level, passing to it the method-id of M . In turn the high-level method reloads

and redefines the class that contains M , instrumenting the method entry and exit points of all

non-invalidated methods (thus not M). However, instruments regarding thread state changes

are still added to all methods. To disregard the methods of the class that have already been

invalidated, the JINE high-level module, maintains an array of all invalidated method-ids for

each class. Synchronising on the JVMTI-agent level, JINE forces only one thread to invoke the

class reloading and invalidation scheme at a time.

Subsequent invocations of non-profiled methods just invoke its method body, i.e. without the

entry and exit instruments. The execution times of the method up to the invalidation point are

still output in the profile, but the durations of any subsequent calls to the method are reflected

in the execution times of its calling method.

Frameworks that do not support class reloading or dynamic instrumentation may use a separate

boolean registry to distinguish methods that need to be profiled from the ones that do not.

5.1.4 Instrumentation techniques

All class transformations and parsing of annotations described above are offered by the ASM

[22] framework for modifying and creating Java bytecode. VEX uses the core API of ASM,

which represents Java classes as a sequence of events and not as objects (as in the tree API).

Each event represents an element of the class, such as its header, a field, a method declaration,

an instruction, etc. The event-based API defines the set of possible events and the order in

which they must occur. A class parser generates one event per element that is parsed, allowing

JINE to add its instrumentation code for each parsed event, according to whether it is a

method-entry, an exiting bytecode instruction, an invocation to a method of particular interest

(Object.wait, Thread.sleep) etc. At the end of the bytecode instrumentation, a class writer

generates compiled classes from sequences of such events.
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Dynamic instrumentation

The instrumentation layer of JINE is defined as a Java-agent that is loaded before the invocation

of the main method of the running class. It implements a ClassFileTransformer interface

that transforms the bytecode of classes, as they are being loaded by the JVM.

Instruments are added to the original bytecode, according to the needs of JINE and the user-

defined runtime parameters, like the definitions of packages, classes or methods that should be

profiled. The “limitProfiling=none” parameter allows the exclusion of all profiling instruments,

apart from the ones on the “main” method. Classes excluded from profiling instrumentation

like this, only have the invocations to methods that denote thread-state changes instrumented.

Static instrumentation

System classes that are loaded before the Java-agent by the SystemClassLoader, cannot be

reloaded, instrumented and re-used by the AppClassLoader at runtime, which is lower in

the hierarchy of JVM class-loaders. Therefore, the only way to modify their behaviour is to

explicitly reload them at runtime, transform them and output them into a class file one at a

time. All these instrumented system classes are put into a jar library, that is preloaded with

the -Xbootclasspath/p JVM command-line parameter. The JVM loads these classes prior to the

original system classes from rt.jar. At the point where the latter would be normally loaded,

the JVM disregards them as already loaded classes.

Native method instrumentation

Native methods do not have any bytecode to which we can add the VEX requested features.

For this reason, whenever we want to instrument a native method Mn, we create a new method

with exactly the same Fully-Qualified Name (FQN) Mn, but without the “native” modifier.

We define the bytecode of this new method according to the instrumentation needs, invoking

at some point a method with the same FQN prefixed with “ vtf native prefix ”. We then

define the method vtf native prefix Mn with the “native” identifier. Clearly, all original
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calls to Mn invoke the new Java method, which in turn invokes the new native method. As

we still need to link to the correct native implementation of method Mn, when executing

vtf native prefix Mn, we use the SetNativeMethodPrefix JVMTI call, during JVMTI-

agent loading.

5.1.5 Usage

From the user perspective, the framework achieves transparency by requiring a minimal set of

actions. Users may annotate their methods with the virtual specifications of their choice, that

determine the time-scaling factors of each method. If the source code is not available, a file

with FQNs and time-scaling factors can be provided instead. This approach requires absolutely

no changes to the source code of the application under performance testing. Selection of the

methods to be instrumented can also be parameterised with the help of a similar FQN file.

Note that the main method is always selected by default.

Having set the virtual specifications and denoted the classes to be profiled, users may use the

VEX framework on any Java application. This is allowed by defining JINE’s native shared

library as the application’s JVMTI-agent and JINE’s transformer class as its Java-agent, using

the agentpath and javaagent command-line parameters respectively. The statically instru-

mented system classes also need to be defined as preloaded classes to “override” the loading of

the regular I/O classes’ implementations with the Xbootclasspath/p parameter. More informa-

tion about the usage and parameters of the JINE/VEX framework are found in Appendix C.

If no parameters are defined, then the Java application is executed in virtual time, having all

its methods profiled, without any adaptive profiling scheme.

5.1.6 Summary

Table 5.1 summarises the key features of the interface between VEX and the upper instrumen-

tation layer. Each row shows the event that needs to be instrumented, the action it triggers in
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the virtual execution core and how it is handled by JINE. To facilitate implementation for other

languages, we show in the last column of the table how Java-specific features, like JVMTI, can

be reproduced in a generic way. Bytecode instrumentation approaches that are used in JINE

need to be replaced by language-specific instrumentation frameworks. Dynamic and static in-

strumentation techniques could be used in any way that delivers the requested information to

VEX, irrespective of the way that this happens in JINE. For example, the Pin [111] frame-

work identifies system calls and I/O invocation points at runtime and can thus dynamically

instrument such calls, despite of the fact that JINE utilises static techniques to do so.

Event Action JINE framework Generic framework

Program startup VEX initializa-
tion

JVMTI onLoad During first invocation to
VEX

Program exit VEX output and
cleanup

JVMTI VMDeath “Main” method or thread ex-
iting

Thread create Register thread to
VEX

JVMTI ThreadStart Register at any invocation of
an unregistered thread

Thread terminate Merge thread
with global
results

JVMTI ThreadEnd Upon a method exit that
leaves an empty thread stack
trace

Thread sleep Virtual timeout Dynamic instrumentation of all invocations to any
sleep(J) and sleep(JJ) methods

Thread timed-
waiting

Virtual timeout
(notifiable)

Dynamic instrumentation of all invocations to any
wait(J) and wait(JJ) methods

Thread wait Thread blocked in
VEX

JVMTI Monitor-
Wait(ed) and Monitor-
ContendedEnter(ed)

Instrument all thread locks
and waiting calls and pass a
lock id to VEX

Thread signaling Interrupt a wait-
ing thread

Dynamic instrumentation of all invocations to no-
tify(J) and notifyAll(JJ) methods

Thread interrupt Send interrupt
signal

Static instrumentation of Thread.interrupt method

Thread I/O Issue I/O in vir-
tual time

Static instrumentation of native I/O methods of core
java.io classes

Thread explicit
wait

Set and unset a
thread waiting

Dynamic instrumentation of invocations to a set of
predefined methods

Thread yield Yield in virtual
time

Dynamic instrumentation of all invocations to
Thread.yield()

Method entry and
exit

Log method entry
and exit times

Dynamic instrumentation before method’s first in-
struction and before returning or throwing exception

Virtual specs Register specifica-
tions to VEX

Annotation parsing File with virtual specs to
methods

Adaptive profil-
ing

Stop profiling a
method

Reload method class
and remove instruments

Use method-id to boolean reg-
istry to invalidate profiling

Table 5.1: Reference table on how JINE interfaces with VEX
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5.2 Challenges in Java virtual time execution

Most of the problems we encountered during this thesis were found during the verification and

validation of the VEX and JINE integrated framework. VEX is in theory independent of the

programming language that the application is written in, as long as all events described in

Table 5.1 are conveyed to it. In case of Java applications, some of these events take place in

native code within the JVM (internal synchronisation points) and are not forwarded to VEX.

As a result the combination of VEX and JINE can lead to deadlocks, high simulation overheads

and high prediction errors. To address these issues, we typically had to amend some aspect of

VEX or JINE with special handling code. In this section we present these challenges and our

approaches in dealing with them.

The assumptions at this point regard that each Java thread corresponds to exactly one system

thread. This allows the VEX scheduler to control each thread by sending POSIX signals to its

lightweight process id. This also means that “green-threads”, which are logical threads on the

JVM-level that are mapped to system threads on a many-to-one basis, are not allowed. We

also assume that the JVM handles POSIX signals, either by not ignoring them or by using a

signal-chaining facility to resolve conflicts between JVM and VEX signals.

5.2.1 Implementation note: Deadlocks in JVM

The fact that internal JVM synchronisation points are not forwarded to VEX has led to the

identification of a problem during the implementation of lower-level JINE. Specifically, in order

to invoke Java methods from the JVMTI-agent code, lower-level JINE uses JNI calls. This

happens in three cases: when a thread is spawned, when a class is reloaded to invalidate the

profiling of a method and when a thread exits and enters an object monitor, before and after

being set into the “Timed-waiting” state. In each case, the JVMTI-agent executes code that

leads back into the JVM runtime. A deadlock can then occur when the JNI method is invoked,

if another thread that has been suspended by the VEX scheduler whilst holding a JVM-internal

lock.
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Figure 5.2: Deadlock as a result of VEX scheduling and JNI invocation from JINE

To explain how the deadlock occurs, recall that threads that execute VEX instrumented code

hold a lock that forbids the VEX scheduler from suspending them. If the timeslice of the

thread expires in the meantime, the VEX scheduler is forced to block on this lock until the

thread releases it, i.e. leaves the instrumentation code. Crucially, a running thread should never

block, while holding this lock, as this would block the VEX scheduler and in turn deadlock the

simulation. Although abiding by this rule for our own code is feasible, we cannot guarantee

this when performing JNI invocations that run code within the JVM.

We illustrate the problem in Figure 5.2. Thread TA has been suspended by VEX, before

releasing a JVM-internal lock LJVM . While TA remains suspended, thread TB acquires its

VEX lock LTB to forbid the scheduler from suspending it and invokes a JNI call, which for a

JVM-internal reason needs to acquire LJVM . TB blocks inside the JVM and when its timeslice

expires, the VEX scheduler will block on LTB, while trying to suspend TB. This leads to a

deadlock, because TA cannot be resumed by the VEX scheduler to release LJVM .

To avoid this problem, threads that invoke a JNI call from instrumented code should never hold

their VEX lock while doing so. This allows the VEX scheduler to suspend them, while they are

executing the code of the instruments added by our simulator. Threads are not normally allowed

to do so, because the virtual time update within the VEX signal handler would wrongly include

overheads from the execution of the simulation framework. By updating virtual timestamps,
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before releasing their VEX lock, this overhead can be minimised.

We note here that there is nothing wrong with threads being suspended whilst holding a JVM

lock. However, in this case the progress of the threads may be somehow perturbed compared

to the real time execution: eventually the VEX scheduler resumes the thread that is holding

the JVM lock and the virtual time execution will continue as normal.

5.2.2 Native waiting threads

VEX works under the assumption that all thread state changes are conveyed to the framework’s

scheduler, which then responds to them in such a way as to generate a valid thread interleaving

in virtual time. By using a variety of JNI, JVMTI and instrumentation techniques, JINE

generally accomplishes this objective. A key exception concerns thread state changes that

take place in native code other than VEX (e.g. a native library used via JNI) or within the

JVM runtime. For example, Sun’s HotSpot virtual machine synchronises Java threads with a

mechanism called “safepointing”: operations like the stop-the-world part of a garbage collection

prerequisite that all threads are idle. This JVM internal synchronisation mechanism happens

asynchronously and is not exported via JVMTI to the agent; such events are not, and cannot

be, instrumented to be trapped by any of the techniques used by JINE. We call threads blocked

in a native method, “Native-waiting” threads.

The overall effect of “Native-waiting” is that the VEX scheduler falsely considers a blocked

thread as running. Accordingly, it allows entire timeslices to be wasted, increasing the overhead

of the simulation without any benefit. The problem is exacerbated by the fact that the scheduler

suspends a thread whose timeslice has expired, only if its CPU-time has progressed adequately

(75% of timeslice duration), since the last time the thread was resumed. This enforces a fair

schedule virtual execution, in cases where the OS scheduler does not allocate enough CPU time

to a VEX running thread during its timeslice (for example due to background load). Suppose

now that a thread is actually “Native-waiting”: its CPU-time is essentially never increased

as the thread is blocked (to be precise there is a slight nanosecond-level increase, due to the

overhead from the execution of the VEX signal handler that asks threads to suspend). In
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turn, the VEX scheduler is not suspending the thread and the simulation remains in this state

“forever”, leading to a type of livelock, which renders the simulation approach impractical.

To deal with this issue, we extend the VEX core with a new “Native-waiting” state and a

mechanism to identify such threads. Two types of identification heuristics are supported:

• The counter-based method uses a flag to determine whether the thread is executing VEX

code and counters to find how many times the thread has tried to acquire a VEX lock

(and could have been blocked waiting for it). If the counters are zero, then we calculate

the real time and the virtual time durations since the last time the thread was resumed;

if the virtual time duration is less than p percent of real time (here p = 1%), then the we

infer that the thread is not making any CPU progress and therefore should be considered

as Native-Waiting.

• The stack-trace based method uses the libunwind library [34] to parse the thread’s stack

trace, searching for an invocation of the wait method of the pthread library.

To avoid the overhead of unrolling the stack in the stack-trace based method, the two methods

can be combined to the hybrid method: only if the counter-based method identifies a thread

as possibly Native-Waiting will the stack-trace based method be used to verify this.

Once identified, “Native-waiting” threads become “uncontrolled”, in that they are no longer

scheduled by VEX. It is up to the JVM and the OS scheduler to resume them when they

become unblocked. Note that the presence of “uncontrolled” threads creates additional load

to the OS scheduler which, under the VEX paradigm for a uniprocessor simulation, should

have only one application thread to run at each point. Nevertheless, “uncontrolled” threads

still execute instrumented code and trigger JVMTI callbacks. We take advantage of this, and

modify all VEX instruments, to immediately suspend any “uncontrolled” threads executing

them, resetting them under VEX’s control.

An alternative approach to identifying whether threads are still blocked in native code is the

“poll nw” one. According to the “poll nw” approach, the VEX scheduler polls all “Native-
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waiting” threads after each timeslice and monitors their progress in CPU time. Even microsecond-

level values of CPU time progress are considered enough to denote that the thread is running

again, since the CPU time progress of a blocked thread is zero and is only increased by the

execution of the VEX signal handler that is triggered after a polling message from the VEX

scheduler. The disadvantage of polling lies in the high number of POSIX signals that might

be possibly sent to threads that spend most of their time waiting to perform an action (see

Section 5.2.6). The VEX core is extended to offer this functionality, by maintaining a priority

queue of native waiting threads and polling the thread with the lowest virtual timestamp, to

determine whether it is still native waiting.

VEX also uses a Linux-specific approach to identifying “Native waiting” threads, by parsing

the status file under the /proc/ < pid > directory, where the kernel logs the state of each

process. A thread that is found to be “Runnable” (R) can be scheduled by the OS scheduler,

which means that it is not blocked in native code. Therefore a thread in this state should not

be perceived as native waiting by VEX. “Sleeping” (S) or “Stopped” (T) threads should.

Native waiting threads also affect simulation accuracy. The CPU-time Tnw from the time they

change their state to “Native-waiting” T0 to when they return under VEX’s control Tend is still

measured correctly, but this duration is mapped onto the virtual timeline at the point when the

previously “uncontrolled” thread re-enters VEX. This can lead to arbitrarily long CPU-time

progress being mapped onto the virtual timeline at a random point in time, thus increasing

the predicted execution time of all methods executed at that point. In practice, the existence

of various traps to VEX in the program in combination with the polling methods for prompt

identification of “Native-waiting” threads, suffice to limit this effect. Our work presented in

[10] follows this way of accounting the time of native-waiting threads. VEX then adds this

duration t = Tend − T0 to the virtual timeline, moving from GV T0 to GV T1. It also keeps the

amount of time added like this in a register (called unknownParallelTime), to overlap it with

any time progress that has happened by normally scheduled threads between GV T0 and GV T1.

To summarise, “Native-waiting” threads are a nuisance, because they increase the overhead of

the framework and are not controlled by the VEX scheduler. The latter has two consequences:
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• The CPU-time progress of “Native-waiting” threads in only mapped on the virtual time-

line when they return under VEX’s control.

• The VEX scheduler is not aware of the exact state of a native-waiting thread, which might

affect scheduling decisions related to leaps forward in virtual time (see corresponding

paragraph in this section).

5.2.3 Safepoint synchronisation

Safepoints are used in the HotSpot JVM to synchronise all threads, before a virtual machine

operation like garbage collection, class redefinition, locking bias revocation etc. occurs. In

JDK6, the bytecode interpreter checks a safepoint-specific flag, before allowing threads to make

progress. Otherwise, it blocks them on a safepoint-related condition variable. Threads that

execute compiled bytecode (native methods) have the pages of the compiled instructions read

protected via mprotect, which leads them to raise a segmentation fault signal when their next

instruction is read. The signal is then caught by the JVM, forcing such threads to block within

the signal handler. Threads that are executing JNI code are taken care of by checking, when

a thread returns to the JVM from native code. Blocked threads within the JVM or newly

spawned threads that are not executing yet are also similarly handled with JVM internal flags.

But under which of these categories do the VEX-suspended threads fall?

Unfortunately, none! Regardless of whether they were executing interpreted or compiled byte-

code, they are currently blocked within the signal handler of VEX; from JVM’s perspective

they are normally runnable threads. When the JVM handles a safepoint synchronisation re-

quest for virtual machine operation VMop , VEX-suspended threads have to explicitly block at

the safepoint condition variable, before VMop takes place. JVM expects them to either invoke

the next bytecode instruction or cause a memory protection fault; until they do, the safepoint

requesting thread (typically the VMThread that processes VM operations from a queue), will

be spinning or yielding the processor to allow them to make progress.

Now assume a virtual execution that, at the point when the safepoint flag is raised and the
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safepoint synchronisation is about to take place, has one running thread T1 and (N−1) runnable

(suspended by VEX) threads T2, . . . , TN . T1 is immediately trapped into the safepoint condition

variable, but without VEX knowing about this. Only when the timeslice of the thread expires

will VEX use the lack of CPU-time progress or the stack-trace to determine that the thread is

native waiting, set it to “uncontrolled” and schedule the next runnable thread (let it be T2).

When T2 executes it will also be trapped at the safepoint condition variable, which is again

only recognised when its timeslice expires. Each of the N threads becomes “Native-waiting”

one-by-one, after time N ∗ s, where s the VEX scheduler timeslice. This significantly increases

the overhead of the framework compared to the case, when the change of the thread’s state

at the safepoint condition variable would be directly conveyed to VEX. In the meantime the

VMThread that issued the safepoint synchronisation request is spinning or yielding within a

loop (that counts threads that have still not reported themselves to be blocked in a safepoint),

thus wasting CPU cycles. Upon completion of the VM operation, all N threads will become

runnable again, allowed to make progress concurrently on the single core, violating the strict

virtual time execution as “uncontrolled” native-waiting threads. They return under VEX’s

control in the first time they invoke one of its instruments, at which point they map the entire

CPU-time progress from when they became native-waiting onto the virtual timeline.

This is the penalty to pay for making VEX JVM-agnostic and blocking threads with signals.

In Chapter 6 we see how limiting the VEX scheduler timeslice can contribute to reducing the

overheads from this effect.

5.2.4 Leaps forward in virtual time

In this section we address the issue of time warps [69, 14], in which periods of inactivity can be

skipped by moving directly to the next event in virtual time. In the context of VEX and JINE,

time warps take place when a thread Ttw with timestamp tnow starts waiting with a timeout

t or sleeping for an amount of time t. VEX updates its timestamp to texpire = tnow + t and

pushes it into the priority queue of runnable threads. This thread is resumed when it reaches

the front of the priority queue, i.e. when texpire is the lowest timestamp among all runnable
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threads. At that point we say that the thread has performed a “virtual leap forward” (V LF )

to texpire. It is important to appreciate that the real time duration until texpire is irrelevant;

what matters is the number of events that have to be processed until that point in virtual time.

For example, if no events (i.e. threads in a runnable state) are scheduled to occur until texpire,

then the virtual leap forward may be performed immediately, regardless of how long it would

normally need to reach the timeout in real time.

The problem is that V LF s work correctly, as long as non-runnable threads with a smaller

timestamp than texpire cannot change their state in the meantime. This is true in discrete-event

simulation [47], where (omitting parallel DES synchronisation issues) all events up to texpire

have already been processed: as no further changes can take place, leaping forward to texpire is

valid. In VEX, however, events that take place at a lower-level (within the JVM or the OS) are

not trapped into our framework and can change the state of a thread without VEX knowing

it. If such an event takes place at tev, tnow < tev < texpire, and VEX leaps forward in virtual

time before processing it, then the code following tev will only be executed in virtual time after

texpire. This is not the behaviour that would be exhibited in the correct virtual time schedule,

where tev happens before texpire.

We refer to this problem as a premature V LF . Premature V LF s that are incurred by lower-

level events that deal with thread creation and termination have been solved by trapping code

that will eventually cause them to VEX. For example, a counter C, that denotes the number

of threads under creation, is increased at t0 before a thread starting method is invoked at the

JVM level. C is only decreased at t1 after the thread has registered itself to VEX. Without

this handling, premature V LF s could occur between t0 and t1, when the new thread is not yet

visible to VEX. Allowing V LF s only when C = 0 solves this problem, at the cost of additional

instrumentation code whenever a thread is created.

Another case where premature leaps are avoided, due to special purpose extension to VEX,

concerns joining threads. When a thread Tx is about to terminate its execution, it triggers

the corresponding JVMTI callback and enters VEX to update its status and relinquish itself

from the control of the scheduler. At that point Tx becomes “invisible” to the scheduler, which
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Figure 5.3: Handling of joining threads in VEX to avoid virtual time leaps

resumes a new thread. In the meantime, the exiting thread Tx cleans up its data structures

and merges its VEX profiling results with the global registry, before terminating within the

JVM. Now imagine that only two other threads exist in the simulation: one (Tj) that is waiting

to join with Tx (i.e. waiting for Tx to terminate) and another one Tl that is waiting to leap

forward in virtual time. At the moment that Tx logs its exit in VEX, the only runnable thread

from the perspective of the simulator is Tl, as Tj is still indefinitely blocked (shaded part of

upper figure in Figure 5.3). Tj will only become runnable once Tx terminates. The problem is

that in the meantime, since no runnable thread exists in the simulator, VEX allows premature

V LF s. JINE solves this problem, by monitoring the joining of threads: every thread Tj that

waits on another thread Tx to exit, registers itself into a data structure, using the id of Tx as

key. When Tx exits VEX, it checks this registry for any waiting threads and updates their VEX

state, before the JVM actually does so, thus forbidding any premature V LF s (see Figure 5.3).



5.2. Challenges in Java virtual time execution 157

5.2.5 Heuristics for countering premature VLFs

Avoiding premature V LF s by indirectly monitoring system events, as happens with thread

creation and termination events, is not possible in other cases. We elaborate on them in this

section.

Case 1: A blocking thread is becoming runnable

Blocked threads do not interfere with the decision of the VEX scheduler on whether to allow

a V LF or not: as they are not able to make any progress, the VEX scheduler can allow a

V LF , without worrying whether it violates the correct order of virtual execution. However,

VEX is not able to distinguish between “definitely” blocked threads and blocked threads that

are allowed to resume (i.e. the monitor they have been waiting to acquire has been released).

For example, imagine a thread T that has been blocked, waiting to enter a contended monitor.

There exists some small but inevitable delay from the time that the contended monitor is freed

to the time that the corresponding JVMTI callback is issued to convey this event to VEX.

During this delay and though T is about to resume execution, the VEX scheduler considers it

blocked and may thus allow leaps forward in virtual time.

Case 2: Native-waiting threads

Native waiting threads (see Section 5.2.2) work by definition at a lower-level than VEX and

become “uncontrolled” only to re-enter the simulator when they invoke instrumented code. In

the meantime, their execution can progress, despite the fact that they are perceived as native

waiting by VEX. In this case the forward leap should not be allowed. Polling the current state

of these threads is possible by signalling them to acquire and parse their current stack traces,

by comparing the progress of their CPU time counters since their last state change, or even

checking the status of the corresponding system lightweight process. Knowing their state, VEX

can decide on whether they are currently blocked or not. However, the current state of a thread

does not provide any knowledge for any imminent change: what if the currently blocked thread
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on a safepoint synchronisation is about to resume because the safepoint was released?

One might argue that, since native-waiting is related to JVM internal synchronisation (for

instance safepoint synchronisations), then the scheduler should never allow any virtual leaps

forward, until the internal synchronisation is resolved. Unfortunately, this could deadlock the

system if some of the threads Tafter that need to synchronise on the safepoints are runnable,

but suspended by VEX at a virtual timestamp after texpire . Threads Tafter are not resumed by

the VEX scheduler before the virtual leap forward occurs, the virtual leap is not allowed, whilst

other threads Tnw 6= Tafter are native waiting, and the native waiting Tnw threads will never

change their state until the Tafter ones synchronise on the safepoint. This is clearly a deadlock.

Even if no such Tafter threads exist, the “Native waiting” state covers, on top of JVM internal

synchronisation, all blocking behaviours not trapped by VEX. These are:

• A thread is synchronised at a native library.

• A thread invokes an accept system call on a socket file descriptor, blocks until a thread

connects to the socket (unless marked as non-blocking).

• A thread is set to block via the classes of the java.concurrency package, that do not

convey this to VEX via JVMTI.

• A thread performs a blocking I/O operation in an uninstrumented method. In this case,

the I/O is not handled by VEX, which in turn leads to the blocking not being handled

by VEX.

• A thread performs other timeout-based system calls, like poll, select or epoll wait with

a long timeout.

This means that we cannot make any assumptions that the native waiting state will have to

change before texpire .
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Case 3: An I/O operation is taking place

Threads that perform I/O operations in the learning phase are removed from the queue of

runnable threads, to allow other threads to make progress in parallel (see Chapter 4). Typically

such threads are going to complete the I/O operation at some point and if this point is before

texpire, any virtual leap forward should be forbidden in light of such operations. But what if

these operations are about to block in I/O? For instance, in the case of socket I/O, imagine a

thread Tsend sending a message to a socket that a thread Trecv is blocked indefinitely waiting

for an I/O, and then Tsend becoming blocked itself for some reason. Eventually, the message

arrives and Trecv resumes, which means that the leap to texpire should not take place in the

meantime. On the other hand, if the message was sent to a different address, then the thread

should remain blocked and there would be no reason to forbid the virtual leap forward (in fact

doing so might lead to a deadlock). One approach is to monitor all I/O traffic between the

application threads. However, this complicates the extension to a distributed version of VEX,

since we are not able to determine the outcome of each socket I/O operation.

The “Waiting”, “Native-waiting” and “I/O” thread problems demonstrate that, at the current

level that VEX is operating, it is not always possible to know whether a state change will occur

before texpire. The only definite solution in these cases is to monitor the status of each thread

at the OS level. This is something we do not wish to do at this point, as one of the main design

objectives of VEX has been to remain at the user-level (see Section 9.3.1 on future work). One

partial solution, which retains the advantage that no change is required to the OS, is to use

heuristics.

The heuristics we have chosen for this purpose are designed to be very conservative. This

is because, during our initial verification efforts of VEX and JINE, we found that a single

premature V LF can have significant effects on the prediction accuracy. For example, the

SPECjvm2008 benchmarks (evaluated in Section 6.4) have a timeout thread that determines

the duration that each benchmark is allowed to iterate over its methods. If the timeout thread

is wrongly allowed to leap forward in virtual time, then there is a danger that the thread will

cause the benchmark to finish prematurely. The conservatism of our heuristics comes at the
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cost of simulation speed and at an additional effort to guarantee that a livelock will never occur:

we should not mistakenly forbid a V LF forever.

Heuristic 1: Timestamp

If the texpire timestamp is lower than the GVT then the leap is always allowed.

Heuristic 2: Thread states

We examine the set of threads TL with a virtual timestamp lower than texpire. We forbid leaps

forward if there exist threads in TL which are in the:

• “Running” or “Suspended” state, which either occurs if a previously I/O-issuing thread

has changed its state or in multicore simulations (see Chapter 7).

• “Performing I/O” state, performing non socket-related I/O, which is assumed to never

block.

• “Native-waiting” state and there exist no runnable threads with timestamps higher than

texpire. If such threads existed, we would assume that the “Native-waiting” thread is trying

to synchronise with the runnable threads at a safepoint and would allow the forward leap.

If these checks do not suffice to forbid the leap forward and there still exist threads in TL

that are in any of the ambiguous states (“Waiting”, “Native waiting” and “I/O”), then we

defer the decision to Rule 3. We note here that threads in the “Waiting” state are only taken

into account if their timestamp V T is V T > GV T −∆t. This heuristic limits the number of

“Waiting” threads that affect the forward leap decision, by excluding the ones that have been

blocked for a “sufficiently long” time ∆t. It was specifically introduced to disregard threads

that wait to join with a set of worker threads for the entire duration of an application. ∆t has

been selected to be equal to twice the duration of the leap forward.
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Heuristic 3: Time counters

The next heuristic that we employ is to identify changes in the GV T and the thread-local time

counters between consecutive timeslices. If their values are different, then there is some activity

in the simulated program and the leap forward should not be allowed. Although this heuristic

covers any activity in the system, it might end up wasting scheduler timeslices, if no progress

is made by any thread.

Rule 4: System states

After two consecutive timeslices without any GV T or thread-local virtual time progress, VEX

polls the status file under the /proc/ < pid > directory to check the OS states of all threads

in ambiguous states (prior to texpire). If all of them are found in either “stopped”, “sleeping”

or “uninterruptible sleep” states, then the V LF is allowed, no matter how far ahead in virtual

time it might be.

Conclusion

Premature V LF s are caused by the lack of exact knowledge about the states of VEX-controlled

threads in the OS and the JVM. We introduce a number of heuristics to avoid premature V LF s,

based on the GV T , the states of the threads before the timestamp of the V LF , the virtual

time progress between two consecutive VEX scheduler timeslices and the OS system thread

states. All of these have to be evaluated to allow a V LF to take place in the case that some

threads are in a potentially changing state (see previous section). This renders our approach

conservative, but also costly, due to the fact that scheduler timeslices can be wasted, whilst

trying to identify whether something changed in the simulation. If no such changes occur, then

the leap will eventually be allowed.

An alternative solution, besides modifying the OS kernel or using heuristics, is to use partial

information on state changes in the JVM. For example, we could trap safepoint synchronisations

and notify VEX immediately after such operations finished. Threads which would otherwise
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be in the “Native-waiting” state would then become runnable without having to enter another

JINE instrument. This would limit the time that a premature V LF could occur. Although this

does not resolve this problem completely, preliminary results suggest that such an approach

has a positive effect on the VEX simulation. Further exploration of this idea is left as future

work (see Section 9.3.1).

5.2.6 Java system threads

Operations like garbage collection or just-in-time (JIT) compilation are performed by special-

purpose internal JVM threads. They are spawned during the initialisation of the virtual ma-

chine and perform their operations periodically or when some condition is satisfied. In this

section we present the problems related to handling such Java system threads in VEX.

The main problem with internal JVM threads is that they are not handled by JINE techniques:

they never enter any method that is instrumented by VEX, they interact with other VM threads

within the JVM and most of them do not even trigger the JVMTI ThreadStart callback, as

they are created before the “Live” phase, when the callback is enabled. As system threads are

typically waiting on a conditional variable when they are not actively performing their tasks,

their state from VEX’s perspective is “Native-waiting”.

Controlling threads which are mostly in the “Native-waiting” state is hard, because the sched-

uler is never certain whether they are blocked or resumed. “Native-waiting” threads are hidden

from the simulation and are only re-scheduled by VEX once they invoke one of the methods

instrumented by VEX or its thread-event callbacks (see Section 5.2.2). Since none of these

takes place for Java system threads, we cannot apply the existing mechanism for handling

“Native-waiting” threads.

An alternative approach could be to poll Java system threads continuously, to identify whether

they are still waiting or have made any progress. This idea is both inefficient and ineffective:

excluding the case that a thread is actually running, a large number of signals to the “Native-

waiting” system threads is required just to find out that the thread has made some progress at
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some point in the past.

In either case, controlling system threads in VEX would introduce a simulation performance

penalty. Being unaware of the low-level interaction of system threads with Java application

threads, VEX assigns a full timeslice to each of them (system or application thread) and

identifies the “Native-waiting” state only at the end of the timeslice. Adding the CPU-time

progress of threads that are mostly “Native waiting” is also error prone in terms of prediction

accuracy, as the mapping of this duration to the global virtual timeline happens at an arbitrary

point.

We have decided to disregard system threads, because we cannot effectively handle them in

VEX and they can become sources of significant overhead and misprediction. Excluding GC-

threads and assuming a long-running Java application, their performance effect is typically

low. As for GC system threads, their performance impact is taken into account with a JVMTI

callback that is triggered in the beginning and end of each collection (see Section 5.2.8).

5.2.7 JIT compilation

Just-in-time (JIT) compilation is a standard feature of JVM implementations. By generating

native code and subsequently executing it instead of interpreting bytecodes, the JIT compiler

achieves significant speedups compared to the interpreted mode. The time, place and optimisa-

tion techniques of the compilation typically depend on a number of heuristics, based on method

invocations, existence of loops etc; this comprises the “adaptive optimisation” aspect of a JVM,

where only the most performance critical parts of the bytecode are compiled to native code.

The VEX and JINE virtual time framework handles compiled bytecode perfectly well, profiling

it as it would for any other method. Indeed, the framework is agnostic as to whether the

executed method is compiled or not. Nevertheless, the addition of the JINE instruments on

the bytecode-level changes the body of the methods to be JIT-compiled, leading to a different

native code than the one of the uninstrumented run. The mere execution of the VEX and

JINE instruments affects decisions on when and where JIT compilation should take place. For
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short-running programs this can lead to a discrepancy between the JIT-compilation in the real

and virtual time execution.

Longer running programs (i.e. applications where the total running time is significantly higher

than the startup time) are generally expected to be less affected by JIT compilation effects

[51]. In particular for VEX and JINE, we can assume that in the steady-state the set of JIT

compiled methods of the virtual time execution, will closely match the ones from the real time

execution. The effect of the JINE instrumentation on the JIT compilation is also alleviated

in the steady-state. This is because JINE’s adaptive profiling (see Section 5.1.3) removes the

instruments added to the most frequently executed methods. After the classes that contain

these methods have been reloaded without the VEX profiling instruments and assuming that

no thread state changing instruments exist in such methods, then the JIT compiler will generate

the same code as in the real time execution.

5.2.8 Garbage collection

Profiling the duration of garbage collection is performed in real time within JVMTI callbacks.

These are triggered before the beginning and after the end of the pause phase of the garbage

collection. Although the JVMTI reference [129] states that some collectors may never generate

these events, all types of collectors in the HotSpot JVM (stop-the-world, concurrent mark-

sweep and incremental) do so. It is the frequency and duration of the pause phase that change

amongst different collectors. The callback before the beginning of the collection forces the

VEX scheduler to suspend the currently running thread. It then measures the duration of the

collection in real time and adds the observed time to the GVT. Threads are resumed after the

collection at the new value of GVT. This allows the garbage collection duration to be reflected

in the virtual times of the methods that were executed when the collection started.

The VEX simulator works at the native level and only uses a minimal set of constant JNI global

references (for adaptive profiling enforcement purposes), which are never garbage collected.

JINE affects the garbage collection only during class loading, where a number of objects that

support dynamic instrumentation are created. Such objects only have a short-term effect, as
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they die soon after their creation in the young generation. A similar effect is also triggered

during the profiling invalidation process, that creates method adaptor objects that instrument

reloaded methods (see Section 5.1.3).



Chapter 6

Results

In this chapter we evaluate VEX and JINE on contrived test-cases and single- and multi-

threaded CPU-bound and generic tests of small and medium size. The main objective is to

verify that the predictions without any time-scaling match the observed running times of the

tests. This would mean that the effects of enforcing a virtual schedule, adding instruments and

measuring mainly CPU- and partially real time durations reproduce in virtual time a sufficiently

accurate profile of the original behaviour of each benchmark. In addition, for selected cases we

were able to evalute time-scaling results, either via a theoretical model or via manual change

of the application code. Each experiment was run on one of Hosts 1-4 from Appendix A with

their second core disabled. This will be mentioned separately for each test.

6.1 M/M/1 simulation

In order to explore the prediction accuracy and execution time overheads for CPU-bound

applications, we have written a Java program that emulates a simple client-server system with

a single-threaded server. Clients are modelled by a single thread that sleeps for a random think

time and then spawns a new thread that adds a request to a server queue. A single server

thread retrieves jobs from this queue and models a service time by making a random number

of iterations of a predefined loop; the server thread thus does ‘actual’ work in order to emulate

166
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Figure 6.1: M/M/1 simulation results with approximately 90% confidence intervals

individual service times.

By arranging the think times and service times to be exponentially distributed, with equivalent

arrival and service rates λ and µ respectively, the expected response time of the server can be

calculated straightforwardly from the mean waiting time in an M/M/1 queue, vi.z R = 1
µ−λ . In

order to test the framework’s ability to reproduce the expected behaviour we fix λ and increase

the number of iterations of the server loop to model a decreasing service rate. This imposes an

increasing load on the server. For a particular service rate, we then explore two ways of scaling

the performance of the server: 1. By changing the number of iterations of the server loop and

2. By using the method scaling factor of the virtual time framework to scale the measured

execution times for the server code in virtual time. In both cases we compare the results with

those expected from M/M/1 queueing theory.

Figure 6.1 shows the results obtained for λ = 400 and with two scaling factors, viz. a 20%

increase in service rate (“µacc” in Figure 6.1) and a 33% decrease in service rate (“µslow” in

Figure 6.1) on Host-4 (see Appendix A). Note that the choice of λ = 400 has been chosen

simply to reduce the time taken to perform the experiments. To cater for the small request

inter-arrival times used in the experiment (2.5ms average) we set the VEX scheduler’s timeslice

s to 1ms. Using the default timeslice of 100ms would result in artificially lower observed waiting
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times. For example, if 0 ≤ C ≤ s, is the time between a new thread T being spawned and the

VEX scheduler resuming it, then T will be inserted into the queue C time units later than it

should be. This results in up to s lower queueing times per request. Limiting the scheduler

timeslice we reduce this effect.

The observed response times match well the predicted times for both manual scaling of the

service times and those resulting from method scaling in virtual time. This is encouraging,

although the application is very simple and incurs no I/O.

6.2 JGF single-threaded

Next we evaluate VEX on the sequential benchmarks developed by the Distributed and High

Performance Computing group of the University of Adelaide [135], that have been later in-

tegrated into the sequential Java Grande Forum (JGF) suite. They consist of benchmarks

that stress-test specific JVM operations and kernels of well-known CPU-intensive computation

kernels. The profile of the classes and methods instrumented by JINE (i.e. excluding system

classes) is presented in Table 6.1, while their descriptions are found in Appendix B. As only

Benchmark Classes Meth. Instr. java.io
method
calls

Synchr.
points

Methods
/ class

Instr.
/
method

Invalid.
meth-
ods

Recurs.
meth-
ods

VEX
adapted
%

Array creation 6 33 1436 26 0 6 33 0 0 0.00
Exc. handling 7 35 1240 26 0 5 35 2 0 5.71
Generic 6 34 2641 26 0 6 34 1 0 2.94
Loop 6 33 1074 26 32 6 33 0 0 0.00
Method calling 6 43 1680 29 5 7 43 10 0 23.26
Object creation 16 43 2146 26 0 3 43 10 0 23.26
Thread 7 36 1030 27 0 5 36 0 0 0.00
EP 8 43 1158 29 0 5 43 1 0 2.33
FFT 7 50 1792 27 0 7 50 3 0 6.00
Fibonacci 7 40 931 26 0 6 40 0 1 2.50
Hanoi 7 41 1004 26 0 6 41 0 1 2.44
Sieve 7 40 1021 26 0 6 40 2 0 5.00
IS 8 50 1719 38 0 6 50 0 0 0.00

Table 6.1: Code profile for the single-threaded JGF benchmarks as returned by JINE

a single thread drives the workload and since JVM system threads are not profiled, the VEX

scheduler is mostly idle, thus enabling us to isolate the effect of VEX instrumentation on the

simulation error and overhead. We exclude the section-1 benchmarks of the suite that stress-test

aspects of the JVM, like object generation, fork-join etc.; these are evaluated in the next section
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(for multi-threaded JGF benchmarks). The section-2 kernels (from EP to IS ) are executed in

real time and their results are then compared with the ones acquired without time-scaling via

VEX simulation. Each run is repeated three times on Host-1 (see Appendix A).

Threads: 1 Real time VEX full profiling VEX adaptive profiling
Benchm. Res. Time M.inv. Res. Time Err.% O/h M.inv. Res. Time Err.% O/h
EP 2.65 2.74 33.5M 12.11 48.63 355.91 17.70 10040 6.21 6.53 133.98 2.38
FFT 1.31 1.39 4.2M 2.31 7.11 75.78 5.08 30050 1.24 2.56 -5.69 1.83
Fibonacci 0.60 0.68 204.7M 63.11 279.09 10367.33 409.22 10054 0.6 0.80 -0.50 1.17
Hanoi 0.20 0.28 50.3M 15.50 67.66 7461.46 235.75 10049 0.20 0.41 1.46 1.45
Sieve 0.21 0.27 25 0.17 0.35 -15.57 1.27 25 0.16 0.33 -20.75 1.21
IS 3.21 3.52 53.8M 17.29 76.14 437.92 21.58 20062 3.99 5.07 24.20 1.44
Geo-mean 492.22 24.89 8.08 1.53
Mean 3118.99 115.10 31.10 1.58

Table 6.2: Results for the single-threaded JGF. Means of 3 runs are shown for the full profile
and 30 runs for the adaptive profiling mode

Threads: 1 Real time -Xint VEX 10k adaptive profiling -Xint VEX 1M adaptive profiling -Xint
Benchm. Res. Time M.inv. Res. Time Err.% O/h M.inv. Res. Time Err.% O/h
EP 31.91 32.11 10040 32.11 34.82 0.62 1.08 1M 30.95 51.71 -3.03 1.61
FFT 5.77 5.78 30050 5.45 6.09 -5.46 1.05 2M 5.53 13.41 -4.16 2.32
Fibonacci 9.24 9.33 10054 8.82 9.75 -4.61 1.05 1M 9.16 16.71 -0.88 1.79
Hanoi 6.03 6.28 10049 5.34 5.91 -11.48 0.94 1M 5.57 10.68 -7.74 1.70
Sieve 2.45 2.31 25 2.16 2.52 -11.80 1.09 25 2.16 3.54 -11.71 1.53
IS 18.08 22.59 20062 16.52 21.13 -8.63 0.94 2M 17.21 39.03 -4.80 1.73
Geomean 5.13 1.02 4.11 1.76
Mean 7.10 1.03 5.39 1.78

Table 6.3: Results for the single-threaded JGF with the -Xint flag. Means of 3 runs are shown

The results of the VEX simulation are shown in Table 6.2. The predictions under the “VEX

full” columns correspond to the case where all methods have profiling instruments added to

their bodies. These exhibit high prediction errors and simulation overheads. Enabling the

adaptive profiling scheme, we dynamically remove the instruments in methods that are invoked

for more I times (here I = 10, 000), thus limiting the observer effects caused by excessive

profiling (see Section 3.3.2). The results under the “VEX adaptive” columns demonstrate a

clear improvement over the fully instrumented bytecode with a geometric mean of the absolute

prediction error being reduced to 8.08%.

Nevertheless, even in the adaptive profiling case the EP and IS present high prediction errors.

We investigate the cause of the prediction error in EP, by using the “-XX:PrintAssembly”

JVM option with the hsdis (HotSpot disassembly) library, that prints out the methods and

generated assembly of the JIT-compiled bytecode. We find that the method ep/KernelEP.ep()

is consistently compiled to native code in the Real Time Execution (RTE), but not in the

Virtual Time one (VTE). Although this method is invoked only once, it includes a long loop
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that performs the kernel’s computation and is thus compiled using the on-stack replacement

(OSR) technique of the HotSpot JVM that compiles methods that are already being executed on

some thread’s stack. As the counters that enable OSR (number of leaps backwards) remain the

same in both executions, we can only assume that the reason that the JIT compiler “decides”

not to compile the method in the VTE lies in the additional JINE-instrumentation related

methods, that are compiled prior to ep/KernelEP.ep(). This increases the number of requests

for method compilations from the application threads and might affect the decision for the OSR

compilation of ep/KernelEP.ep() as a means to limit background compilation time. Iterating

the kernel for a few more times enables the compilation of the method, thus showing that it is

not the existence of JINE instruments that somehow hinders this in the long run.

Indeed, executing the benchmark in the JVM interpreted mode without any compilation (pre-

sented in Table 6.3 for I = 10, 000 and I = 1, 000, 000) we acquire a much better prediction for

both EP and IS kernels and overall prediction errors of between 4% and 5% . We expect that

longer running applications that are not sensitive to such small scale warmup effects are not

going to suffer from this issue, though we note that there exist no guarantees for the matching

of JIT compilation patterns between the RTE and the VTE.

The conclusions from this set of short single-threaded benchmarks are:

• Full profiling can incur very high prediction errors and simulation penalties for short

running benchmarks, even when no VEX scheduling is involved.

• Adaptive profiling is necessary to overcome this issue, by limiting the invocation rate of

instrumented methods and invalidating the profiling of recursive methods.

• JIT compilation effects in short running programs may still yield high mispredictions

regardless of the number of method invocations.
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6.3 JGF multi-threaded

6.3.1 Basic results

The next set of results evaluate the prediction accuracy of VEX for the multi-threaded Java

Grande Forum (JGF) benchmarks [68]. They comprise stress tests that measure the throughput

of specified JVM operations and well-known CPU-bound computation kernels from cryptogra-

phy (Crypt), linear algebra (SparseMatmult, Series, LUFact, SOR), simulation (MonteCarlo)

and graphic processsing (Moldyn, RayTracer) (see Appendix B for more details). Again, we

execute the benchmarks in real time and then in virtual time without time-scaling, in hope

that the two measurements should match.

Table 6.4 presents the results for the JGF multi-threaded benchmarks for 8 threads on a unipro-

cessor (Host-1 in Appendix A) divided in four categories: one for the stress tests and one for

each of the various workload sizes for each benchmark A, B and C (ranked from the smallest to

the largest). The high prediction errors of the stress tests are attributed to the fact that events

like spawning and joining threads, as well as invocations of Thread.yield(), are instrumented

and trapped within VEX. The effect of executing instrumentation code at a high rate affects

both the prediction accuracy and the simulation overhead, due to instrumentation intrusion

effects [86], as we have already shown in Section 3.3.2 for profiling instruments. This applies to

most stress tests, yielding an overall simulation overhead of 10.88 for the experiments under-

taken. It also affects benchmarks like the SimpleBarrier, where the increased rate of entering

the thread-state changing instruments increases the virtual time, leading to an underpredic-

tion of the expected benchmark throughput. This also applies to an extent for the ForkJoin

benchmark, which, in contrast to SimpleBarrier, presents an overprediction. This is attributed

to the fact that the thread creating system call clone, which is one of the main factors for the

execution time of this benchmark, is not accounted for in CPU time. This leads to less virtual

time being accounted for and thus a higher throughput prediction.

TournamentBarrier synchronises the 8 benchmark threads in a loop, by iteratively invoking the

Thread.yield() method. When the yielding thread is resumed it checks if the barrier condition
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has been fulfilled in the meantime; otherwise, it yields again. Recall (see Section 5.1.2) that

calls to Thread.yield() are dynamically replaced by a custom VEX routine that parses the

priority queue of runnable threads to find the maximum virtual timestamp, assigns it (plus

1ns) to the yielding thread and signals the VEX scheduler to make another thread runnable.

As this process is iterated at a very high rate in the TournamentBarrier implementation, the

running time of the VTE is much higher than that of the RTE, despite the significantly lower

count of invocations to the yield call. In fact, we had to lower the number of iterations of the

TournamentBarrier benchmark to an absolute minimum (200 iterations per thread), to acquire

a result from VEX within a reasonable amount of simulation time. Despite the existence of

a few accurately predicted benchmarks, the stress tests clearly expose the limitations of the

current framework.

The virtual time measurements for the CPU-bound tests of the remaining three categories

match better the corresponding real time results. As we would expect VEX may suffer from

high prediction errors for shorter running benchmarks. For example, the prediction error of

the SparseMatMult benchmark for the smallest workload is over 100% and for the largest only

1.81%. Similarly, Crypt errors range from -53% to -8% and taking the geometric mean of

the absolute prediction errors shows a clear trend when increasing the workload size: both

prediction errors (in absolute terms) and simulation overheads decrease. This is attributed to

the warm-up effects, like the fact that selection of methods to be compiled by JIT might differ

between the two short runs due to the existence of VEX methods or that the execution time

of the compilation threads is not reflected in VEX results, as JVM system threads are not

controlled by the VEX scheduler.

The three outliers that do not follow this pattern are the LUFact, MolDyn and RayTracer

benchmarks. They all invoke Thread.yield() at a high rate in RTE (see corresponding column

under Real Time in Table 6.4), but not quite so in VTE. LUFact calls the instrumented code

that replaces Thread.yield() on average from 51,632 for workload A to 140,574 times for

workload C, which incurs a high simulation overhead penalty (651x, 207x, 13x), but offers

rather accurate predictions ranging from -0.36% to -15.53%. In contrast, the virtual execution

of MolDyn only invokes yield 4,848 times on average, which limits the simulation overhead,
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Threads: 8 Real time VEX
Ctg Benchmark Result Time Yields Meth.inv Result Time Yields Err.% O/h
Stress SimpleBarrier 39098 3.94 0 1050014 20375 62.89 0 -47.89 15.96
Stress TournamentBarrier 2899 0.17 71750 1644 6897 73.81 3410 137.91 444.65
Stress MethodSync 3057480 25.63 0 45364 3146020 28.59 0 2.9 1.12
Stress ObjectSync 2735510 25.63 0 45364 2850100 28.59 0 4.19 1.12
Stress ForkJoin 1797 10.42 0 90057 3092 178.685 0 81.59 17.14

Geomean-stress: 23.08 10.88
A Crypt 0.48 0.67 0 82 0.22 0.46 0 -53.94 0.69
A LUFact 0.28 0.44 155622 188482 0.28 181.79 51632 -0.36 651.58
A Moldyn 3.98 4.45 2254349 403729 2.41 5.16 4849 -39.52 1.15
A MonteCarlo 3.27 3.99 0 942576 2.86 14.01 0 -12.55 3.51
A RayTracer 2.39 2.46 101900 904818 2.86 16.71 309 19.95 6.79
A Series 8.55 8.58 0 30046 8.11 9.79 0 -5.07 1.14
A SOR 8.7 9.87 0 48 9.92 13.12 0 13.99 1.32
A SparseMatMult 0.38 0.7 0 47 0.84 1.27 0 122.87 1.8

Geomean-A: 14.21 3.68
B Crypt 1.69 1.89 0 82 1.59 2.05 0 -6.04 1.08
B LUFact 1.54 1.73 513973 220239 1.37 284.75 96124 -11.27 207.85
B Moldyn 28.08 27.99 1595165 456856 24.26 28.42 4848 -13.62 1.01
B MonteCarlo 16.14 16.96 0 3393542 15.25 49.96 0 -5.51 2.94
B RayTracer 19.63 19.99 333433 856716 29.08 34.65 72447 48.1 1.73
B Series 86.73 86.63 0 88311 82.75 89.37 0 -4.6 1.03
B SOR 9.23 11.38 0 48 10.1 13.61 0 9.36 1.19
B SparseMatMult 0.65 1.03 0 47 0.9 1.41 0 38.56 1.36

Geomean-B: 11.92 2.57
C Crypt 3.84 4.24 0 82 3.52 4.81 0 -8.33 1.13
C LUFact 11.27 11.66 1823172 257735 9.52 131.21 140574 -15.53 13.79
C Series 1470.32 1471.6 0 2007761 1375.12 2061.2 0 -6.47 1.5
C SOR 10.03 11.78 0 48 10.65 14.31 0 6.16 1.21
C SparseMatMult 10.95 11.86 0 47 11.15 13.77 0 1.81 1.16

Geomean-C: 6.22 2.01

Table 6.4: Results for the multi-threaded JGF benchmarks with 8 threads. The results of the
stress tests are throughputs of events, while the rest are in seconds. The count of invocations to
the Thread.yield() is shown to demonstrate the effect on prediction accuracy and simulation
overhead. Means of 3 runs are shown.

but adds to the misprediction error, as the real time cost of yielding (making the sched yield

system call, context switching and waiting to be scheduled again) is only partially compensated.

RayTracer ’s problem is quite different, because it is the only benchmark that over-estimates the

execution time of the RTE. In such cases, the problem lies typically in JIT compilation: using

the “-XX:+PrintCompilation” flag we find that the raytracer/RayTracer.render method,

which applies the main algorithm of the benchmark is not being compiled to native code by the

JVM in the VTE. This creates a slower execution in virtual time, which increases the predicted

execution time.
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Figure 6.2: Thread and time scaling results for the SparseMatMult benchmark of the multi-
threaded JGF suite. Means of 3 measurements per thread are shown with 95% confidence
intervals

6.3.2 Thread and time scaling

We select the SparseMatMult benchmark using the largest workload C to investigate how the

estimates of the VTE match the real times when we increase the number of concurrently running

threads from 1 to 64. The results shown in Figure 6.2 under the “Normal” category show how

the virtual time predicted times are close to the real ones. Interestingly, the time of execution

is reduced in both cases as we increase the number of threads, which we attribute to better

locality of reference for larger numbers of threads. Accessing the PAPI hardware performance

counters, we verify that executions with 1 thread have 21% more L2 cache misses and 32%

higher cycles per instruction (CPI) than the 32 thread case. It is important to note how these

changes are reflected in the VTE as well.

Up to this point our validation approach consists of comparing real times with un-scaled virtual

time predictions. Evaluating time-scaling is possible if there exists a way to acquire “expected”

scaled times for the RTE, which typically can only be achieved via a theoretical model (like in

the M/M/1 test). The SparseMatMult benchmark allows us to validate time scaling, because

it iterates its entire kernel computation within a loop. Increasing or decreasing the iterations
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of the loop enables us to simulate time-scaling in real time and then compare the acquired

“scaled” real times with the VEX provided ones. Specifically, we double and then half the loop

counts and acquire the scaled (“Accel” and “Decel”) real execution times. Then we revert to

the original code and annotate it to define a virtual time speedup and then a slowdown of a

factor of 2. The results are also depicted in graph Figure 6.2, showing overall a very good

prediction accuracy of 5.5% on average (4.0% geometric mean).

The conclusions from the set of multi-threaded JGF benchmarks are the following:

• Stress tests that involve thread creations and thread state changes at a high rate lead to

increased prediction errors, due to instrumentation intrusion effects.

• The size of the simulated program matters: due to warm-up effects the same benchmarks

performed much better with larger workloads.

• Invocations of the Thread.yield() method create prediction errors due to the fact that

the duration of the system call sched yield is not measured in CPU time and is compen-

sated with a constant value and that the method’s behaviour is simulated in virtual time

taking into account only the VEX controlled threads.

• Differences in JIT compilation due to VEX can also be found in longer running programs

like RayTracer.

• Thread and time scaling do not significantly affect the prediction accuracy of medium

size CPU-bound kernels.

• System effects like increased cache misses and CPIs in the real time execution are also

captured in the virtual time simulation.
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6.4 SPECjvm2008

6.4.1 Single-threaded

The SPECjvm2008 benchmark suite [128], which has a larger and more varied code-base (Ta-

ble 6.5 and see [124] for an analytical performance characterisation), is used to investigate

VEX and JINE on production-level Java code. Each benchmark in SPECjvm2008 measures

its performance in terms of a throughput, as measured by the number of benchmark iterations

completed per unit time. By automatically replacing real with virtual execution times, VEX

Benchmark Class Meth. Instr. java.
io
meth.
calls

Sync.
points

Meth
/ class

Instr /
meth.

Inval.
meth.

Recurs.
meth.

VEX
adapt%

compiler.compiler 44 491 18042 499 16 11 37 16 1 3.46
compiler.sunflow 44 486 17990 497 16 11 37 16 1 3.50
compress 46 454 18002 435 16 10 40 17 0 3.74
crypto.aes 35 415 16819 431 16 12 41 0 0 0.00
crypto.rsa 35 414 16759 431 16 12 40 5 0 1.21
crypto.signverify 35 414 16747 430 16 12 40 11 0 2.66
derby 672 12361 373328 1418 942 18 30 886 57 7.63
mpegaudio 60 634 78498 450 16 11 124 65 0 10.25
scimark.fft.large 39 451 18253 424 16 12 40 1 0 0.22
scimark.lu.large 38 448 18220 424 16 12 41 1 0 0.22
scimark.monte carlo 38 439 17657 425 16 12 40 1 0 0.23
scimark.sor.large 39 444 17836 425 16 11 40 1 0 0.23
scimark.sparse.large 38 440 17832 424 16 12 41 1 0 0.23
serial 56 517 18465 443 16 9 36 26 3 5.61
sunflow 130 1552 71403 350 17 12 46 165 13 11.47
xml.transform 109 1115 42867 533 16 10 38 85 3 7.89
xml.validation 37 428 16919 438 16 12 40 9 0 2.10

Table 6.5: Code profile for the SPECjvm2008 benchmarks as returned by JINE

provides the virtual throughputs, as they would be without any time scaling factor. Comparing

the un-modified virtual throughput to the real one, we can extract quantitative and qualitative

results on the accuracy and the overhead of VEX. Each benchmark in SPECjvm2008 is run

with a ‘warmup’ (set to 24s in each experiment here) and is run for a fixed time (set to 96s in

each experiment). To identify the overhead of VEX, the total execution time (including loading,

instrumentation, warmup and main run) was measured externally through bash scripts.

The results for a single thread execution of each benchmark are shown in Table 6.6. The single-

thread case might seem uninteresting from the point of view of a scheduler, but VEX still

needs to synchronise more than one thread; specifically the threads that are spawned to run
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Benchmark Threads: 1 Real time VEX full profiling simulation VEX adaptive profiling simulation
Benchmark Meth o/m Time o/m Time Err% O/h Meth o/m Time Err% O/h
comp.compiler 4.8M 68.05 138.65 77.22 172.08 13.48 1.24 0.51M 77.36 173.66 13.68 1.25
comp.sunflow 11.65M 24.97 132.02 26.96 168.67 7.97 1.28 0.36M 27.11 168.63 8.57 1.28
compress 9.33B 35.18 125.62 10.22 5419.82 -70.95 43.14 0.39M 36.54 145.4 3.87 1.16
crypto.aes 0.02M 11.12 127.04 12.16 142.74 9.35 1.12 0.02M 12.15 146.19 9.26 1.15
crypto.rsa 0.36M 58.31 124.21 63.23 140.63 8.44 1.13 0.31M 63.5 141.93 8.9 1.14
crypto.signver 0.74M 61.38 124.26 66.97 139.52 9.11 1.12 0.41M 66.86 142.39 8.93 1.15
derby 5.46B 38.92 208.19 26.6 3696.11 -31.65 17.75 0.95M 38.77 325.49 -0.39 1.56
mpegaudio 1.8B 18.13 127.37 16.26 1175.23 -10.31 9.23 0.95M 19.98 129.13 10.2 1.01
sci.fft.large 58.7M 8.08 131.31 6.79 202.79 -15.92 1.54 0.02M 8.1 132.93 -3.34 1.02
sci.fft.small 0.51B 59.92 125.1 61.02 415.85 1.84 3.32 0.51M 64.1 166.98 6.98 1.33
sci.lu.large 29.4M 3.01 141.45 2.83 194.68 -5.85 1.37 0.01M 3.19 163.7 8.87 1.1
sci.lu.small 0.57B 68.1 124.98 70.21 439.45 3.1 3.52 0.52M 74.77 143.34 9.79 1.15
sci.monte carlo 1.07B 32.09 124.86 7.41 3059.7 -76.91 24.51 0.17M 35.6 142.68 10.94 1.14
sci.sor.large 62.9M 9.39 128.98 7.21 205.31 -23.22 1.59 0.02M 9.89 131.57 5.32 1.02
sci.sor.small 82.05M 37.07 124.31 40.11 182.71 8.2 1.47 0.18M 40.49 140.35 9.23 1.13
sci.sparse.large 63.0M 9.03 124.51 7.16 207.67 -20.75 1.66 0.02M 9.72 134.16 5.19 1.08
sci.sparse.small 88.85M 36.19 126.3 36.58 186.26 1.08 1.47 0.17M 37.25 142.17 2.93 1.13
serial 15.51M 25.24 126.1 26.9 152.67 6.58 1.21 0.36M 27.46 143.24 8.8 1.14
sunflow 1.12B 9.31 127.7 0.48 2690.91 -94.84 21.07 13.04M 10.11 355.08 8.59 2.78
xml.transform 98.43M 49.35 149.64 55.53 243.22 12.52 1.63 10.81M 55.72 197.94 12.91 1.32
xml.validation 2.48M 68.75 124.43 74.6 146.62 8.51 1.18 0.41M 73.69 151.22 7.19 1.22

Geom. mean 11.55 2.81 6.58 1.22
Arithm. mean 20.98 6.74 7.8 1.25

Table 6.6: SPECjvm2008 benchmark results with a single workload-driving thread and no time
scaling

each benchmark iteration (one per iteration), timer threads, and any additional background

worker threads that the benchmarks (like sunflow or derby) might need.

The “Meth” column of Table 6.6 shows the number of method calls invoked during the program

execution. The tables shows two sets of results: one in which all methods are instrumented (“full

profiling”) and the other in which the adaptive profiling has been used to remove instruments

from short-running methods. The full-profiling results show a prediction error with a geometric

mean of 11.55% and overhead of 2.81. As might be expected, the magnitude of the prediction

error is found to be larger in benchmarks with a high turnover of short methods, which is the

case with the compress, derby, scimark.monte carlo and sunflow benchmarks. To enable the

adaptive profiling scheme, we define, as with the other benchmarks of our evaluation study, a

short running method to be one that executes more than a specified number times (here 10,000)

within the (fixed) benchmark running time (here 96s). The number of methods profiled under

the adaptive regime is also shown in the table (Second “Meth” column). As shown in the

table, adaptive profiling significantly reduces both the prediction error (11.55% → 6.58%) and

execution time overhead (2.81→ 1.22). On average, less than 1% of the methods were removed

by the adaptive profiling, but these accounted for around 99% of the method calls made. It is
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important to appreciate that, if the framework is to be used solely for performing time-scaling

experiments, rather than for more conventional profiling purposes, then only the methods that

need to be scaled will have to be instrumented.

The reader might note that in almost all cases the VEX results are overpredicting the through-

put. There are three factors that contribute to this effect. First, the use of CPU-timers does

not account for any background load. Secondly, system calls that take place internally within

the native JVM library code (i.e. not those initiated at the application level) are not measured

by CPU-time, as they happen in kernel space. Finally, the internal JVM threads (excluding

GC threads which are profiled in real time) are neither profiled nor controlled by the virtual

time framework. The first of these is the most significant, but we make no attempt to factor

in any background load.

6.4.2 Multithreaded

Effect of VEX parameters

In this section we conduct a series of experiments to identify how the various VEX parameters

affect the prediction accuracy and overheads of our methods for the SPECjvm2008 benchmarks.

The benchmarks are executed with four threads on a uniprocessor simulation host (Host-3 from

Appendix A with its second core disabled) and the adaptive profiling scheme with a threshold

of 10,000 method invocations is by default turned on. We also use the default value of 100ms

for the scheduler timeslice, i.e. the duration that the VEX scheduler waits in real time until it

signals the currently running thread to find how much it has progressed in virtual time.

Using the default scheduler timeslice and profile aggregation at the method-level, we acquire

the results under the corresponding column of Table 6.7. The magnitude of the prediction

error is typically low with a geometric mean of 8.12% and an arithmetic mean of 12.87%. The

highest errors and overheads are found in the two comp.* benchmarks (and also the xml.*

benchmarks), due to an increased number of native waiting thread states. Recall that native

waiting threads are only identified as such when their timeslice expires (see Section 5.2.2 for
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Threads: 4 Real time 100ms timeslice on 1 core 10ms timeslice on 1 core
Benchmark ops/m Time ops/m Time Err.% O/h ops/m Time Err.% O/h
comp.compiler 72.24 141.48 100.52 370.88 39.15 2.62 79.69 183.75 10.32 1.30
comp.sunflow 27.20 146.17 37.90 446.65 39.34 3.06 29.30 196.11 7.72 1.34
compress 41.07 138.55 42.97 172.24 4.63 1.24 42.83 158.09 4.29 1.14
crypto.aes 12.49 171.82 14.06 239.62 12.57 1.39 10.43 171.18 -16.47 1.00
crypto.rsa 67.20 126.84 68.24 135.26 1.55 1.07 68.43 136.52 1.83 1.08
crypto.signverify 69.34 128.39 70.08 140.95 1.07 1.10 73.78 156.68 6.40 1.22
derby 43.09 321.35 40.39 573.69 -6.27 1.79 41.65 450.61 -3.34 1.40
mpegaudio 22.29 141.10 26.97 247.10 21.00 1.75 26.19 209.52 17.50 1.48
sci.fft.large 7.74 199.65 8.86 196.88 14.47 0.99 8.69 197.14 12.24 0.99
sci.fft.small 67.35 128.38 74.34 283.14 10.38 2.21 72.63 157.74 7.83 1.23
sci.lu.large 2.89 392.25 3.21 397.22 11.07 1.01 3.14 403.17 8.56 1.03
sci.lu.small 74.44 129.78 84.92 531.05 14.08 4.09 82.76 186.94 11.17 1.44
sci.monte carlo 43.16 134.95 45.42 147.91 5.24 1.10 46.14 143.83 6.90 1.07
sci.sor.large 9.37 168.11 9.90 223.19 5.66 1.33 9.84 188.98 4.99 1.12
sci.sor.small 43.27 137.07 45.62 146.69 5.43 1.07 45.33 148.18 4.77 1.08
sci.sparse.large 8.63 207.16 10.03 260.97 16.22 1.26 9.36 231.82 8.43 1.12
sci.sparse.small 35.43 137.77 35.30 198.73 -0.37 1.44 35.32 160.98 -0.31 1.17
serial 30.12 145.54 31.94 193.61 6.04 1.33 27.87 150.46 -7.49 1.03
sunflow 13.22 177.27 14.40 747.90 8.93 4.22 12.40 583.95 -6.18 3.29
xml.transform 52.57 158.52 62.78 547.00 19.42 3.45 62.77 294.82 19.41 1.86
xml.validation 75.33 134.50 96.00 351.53 27.44 2.61 80.02 158.79 6.23 1.18
Geo-mean 8.12 1.70 6.40 1.26
Mean 12.87 1.91 8.21 1.31

Table 6.7: SPECjvm2008 benchmark results for 4 threads with VEX scheduler timeslices of
100ms (default) and 10ms. Means of 3 runs are shown

details). At the stop-the-world stage of every garbage collection, the HotSpot JVM requires

that all application threads are blocked at safepoints. From VEX’s perspective they all have

to become native waiting one-by-one (see Section 5.2.3), before the garbage collection may

take place. The longer the timeslice, the longer it takes for a thread to be identified as native

waiting, the longer the total safepoint synchronisation time and thus the higher the overhead

of the simulation.

Reducing the scheduler timeslice to 10ms, we acquire the results of the last four columns of

Table 6.7. This shows an improvement to the overheads of all benchmarks that suffer from

the native waiting problem as we would expect. The prediction error is also reduced for the

two comp.* benchmarks from 39.15% and 39.34% to 10.32% and 7.72% respectively indicating

that the higher overprediction is also attributed to native waiting threads. Overall, there is a

significant improvement to the geometric mean of the simulation overhead (1.70 → 1.26) and

to the prediction error (8.12% → 6.40%).

We next investigate whether there exists an “optimal” VEX scheduler timeslice that would lead

to lower prediction errors and simulation overheads for the SPECjvm2008 benchmarks. The

results for timeslices from 64 to 0.1 ms are shown in Figure 6.3. The optimal value for the
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Figure 6.3: Effect of the VEX scheduler timeslice on the prediction error and simulation over-
head of the SPECjvm2008 benchmarks with four benchmark threads. The geometric mean of
all benchmark results (using absolute values for prediction errors) are shown.

simulation overhead is found to be 1.169 for a timeslice of 1ms. This is because, as we decrease

the scheduler timeslice, we limit the simulation overhead, by reducing the times required to

resume all threads suspended in VEX and thus allowing them to synchronise at safepoints faster

(see Section 5.2.3). Indeed, using the “-XX:+PrintSafepointStatistics” JVM flag we verify

this effect. On the other hand, reduced timeslices increase the rate at which the application

threads are signalled by the VEX scheduler and become context switched - this increases the

simulation overhead. Therefore a timeslice of 1ms comprises the “sweet-spot” between these

two opposing effects.

Figure 6.3 also shows a decrease in the geometric mean of the prediction error as we reduce

the scheduler timeslice beyond 0.8ms, with an optimal value of 2.8% error at 0.1ms. Prediction

errors for timeslices larger than 0.8ms range between 6 and 7%. Further analysis indicates

that benchmarks whose threads are considered “Native Waiting” at a higher rate (e.g. com-

piler.compiler, compiler.sunflow, sunflow) for timeslices greater than 0.8ms present the largest

accuracy improvement as the timeslice decreases (see Figure 6.4). Recall that using the default

“counter-based” criteria, a thread is identified as “Native waiting” when its CPU-time progress
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is less than p percent of its last assigned scheduler timeslice s (see Section 5.2.2). This means

that for lower values of s, even a low progress of a thread in terms of absolute CPU-time is

enough for the thread not to be considered as “Native waiting”. This leads to threads syn-

chronising at safepoints without being regarded as “Native waiting”, despite the low absolute

CPU-time progress they present at the synchronisation phase. As “Native waiting” threads

account for their time only when they return under VEX’s control, they constitute a source

of inaccuracy; this is significantly contained with lower scheduler timeslices, but at the cost of

simulation overhead.

In most experiments of this chapter we have decided to use the timeslice of 10ms, which is a

middle way between the two optima: it is more accurate than the fastest 1ms timeslice and

faster than the most accurate 0.1ms.

Threads: 4 Real time 10ms timeslice stack-trace level 10ms timeslice I/O threshold=50µs
Benchmark ops/m Time ops/m Time Err.% O/h ops/m Time Err.% O/h
comp.compiler 72.24 141.48 80.50 183.63 11.43 1.30 81.35 180.95 12.61 1.28
comp.sunflow 27.2 146.17 29.97 196.17 10.18 1.34 29.95 197.55 10.11 1.35
compress 41.07 138.55 42.74 150.11 4.07 1.08 43.33 146.47 5.50 1.06
crypto.aes 12.49 171.82 10.36 240.16 -17.05 1.40 11.34 236.32 -9.25 1.38
crypto.rsa 67.2 126.84 69.33 135.34 3.17 1.07 69.71 136.72 3.74 1.08
crypto.signverify 69.34 128.39 74.75 165.07 7.80 1.29 75.92 163.06 9.49 1.27
derby 43.09 321.35 44.95 485.32 4.32 1.51 43.35 432.37 0.60 1.35
mpegaudio 22.29 141.1 24.24 206.88 8.75 1.47 23.46 198.76 5.25 1.41
sci.fft.large 7.74 199.65 8.05 214.43 4.01 1.07 8.12 206.52 4.91 1.03
sci.fft.small 67.35 128.38 72.25 155.84 7.28 1.21 71.80 157.02 6.61 1.22
sci.lu.large 2.89 392.25 3.09 396.00 6.92 1.01 3.20 394.27 10.73 1.01
sci.lu.small 74.44 129.78 82.90 184.81 11.36 1.42 82.83 167.89 11.27 1.29
sci.monte carlo 43.16 134.95 45.13 144.31 4.56 1.07 45.23 153.86 4.80 1.14
sci.sor.large 9.37 168.11 9.82 203.93 4.80 1.21 9.84 198.03 5.02 1.18
sci.sor.small 43.27 137.07 45.34 144.97 4.78 1.06 45.34 144.81 4.78 1.06
sci.sparse.large 8.63 207.16 9.61 216.87 11.36 1.05 9.41 215.26 9.04 1.04
sci.sparse.small 35.43 137.77 35.31 157.54 -0.34 1.14 35.32 160.19 -0.31 1.16
serial 30.12 145.54 28.47 194.75 -5.48 1.34 28.68 192.44 -4.78 1.32
sunflow 13.22 177.27 11.20 630.39 -15.30 3.56 13.22 607.49 0.10 3.43
xml.transform 52.57 158.52 63.42 311.45 20.64 1.96 63.97 284.49 21.69 1.79
xml.validation 75.33 134.5 79.05 157.86 4.94 1.17 78.92 156.47 4.77 1.16
Geo-mean 6.29 1.31 4.47 1.28
Mean 8.03 1.37 6.92 1.33

Table 6.8: SPECjvm2008 benchmark results for 4 threads with stack-trace level profiling and
an I/O threshold of 50µs (using the max prediction method). Means of 3 measurements are
shown.

In Table 6.8 we investigate the effect of two other VEX parameters. The first specifies that

method profiles are aggregated on a per stack-trace level and the second that an I/O threshold is

used to distinguish “Cached” from “Standard” I/O operations (see Section 4.1.2). The observed

means of the VTEs using per-method or per-stack-trace profile aggregation are approximately

equal for both prediction error and overhead.
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We also explore how the SPECjvm2008 results are affected by using an I/O-threshold of IT (here

IT = 50µs) and replaying the maximum observed I/O duration of the last B = 16 measure-

ments (max I/O prediction policy) of each invocation point; recall that previous experiments

(Section 4.3) have shown this configuration to be effective. Indeed the last four columns of

Table 6.8 show that these parameters improve the geometric mean of the prediction error to

4.47%. This is mostly attributed to the derby benchmark, which performs the most invocations

of methods of the java.io package (see Table 6.5). Without the threshold, all of them are

recognised as “Standard I/O” operations that yield the CPU to other application threads and

thus reduce the total execution time (and increase the throughput result). Using the threshold

IT , we limit this effect, whilst reducing the simulation overhead, by removing any additional

handling for I/O requests that are predicted to be below IT .

Effect of JVM performance tuning parameters

Next we evaluate how changing the parameters of the JVM affects the reproduction of real time

results in virtual time. To investigate whether effects on the JVM execution are reflected in the

virtual time execution, we use two parameters that affect garbage collection and a JIT-related

parameter that enables the use of aggressive compiler optimisations. The first parameter enables

the HotSpot concurrent mark sweep garbage collector, which minimises the pause times of each

major collection by tracing most live objects and sweeping unreachable ones concurrently with

the execution of the application. Since our experiments run on a uniprocessor, both application

and garbage collection threads contend for the single CPU resource; this is expected to lower the

observed throughput. Indeed, Table 6.9 shows the concurrent collector lowers the throughput

of operations across all benchmarks that exhibit high garbage collection activity in both the

RTE and the VTE. In fact, cases where usage of this collector (with the default heap size) led

to out-of-memory exceptions, were similarly identified in both executions, though in the case

of scimark.sor.large it took 4.66 times longer for VEX to do so. The results of such executions

have not been taken into account in the prediction error measurements and, since the excluded

benchmarks were accurately simulated in the previous experiments, the geometric mean of the

prediction error is seen to increase to 9.22%.
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ConcurrentMarkSweep 2GB available heap to limit collections
Threads: 4 Real time VEX Real time VEX
Benchmark o/m Time o/m Time Err% O/h o/m Time o/m Time Err% O/h
comp.compiler 47.59 154.11 59.59 227.47 25.22 1.48 99.16 143.84 118.35 177.39 19.36 1.23
comp.sunflow 18.44 160.03 23.82 239.68 29.18 1.50 39.85 154.03 45.60 182.03 14.43 1.18
compress 41.04 138.63 42.78 150.60 4.24 1.09 40.18 142.72 42.71 149.93 6.30 1.05
crypto.aes 12.54 184.79 13.86 250.11 10.53 1.35 12.98 178.44 13.96 257.95 7.55 1.45
crypto.rsa 63.16 129.39 68.62 134.92 8.64 1.04 69.46 129.68 69.14 141.11 -0.46 1.09
crypto.signverify 69.58 127.99 75.41 158.63 8.38 1.24 71.06 129.24 74.07 157.81 4.24 1.22
derby OOM 165.68 OOM 214.36 N/A 1.29 43.53 284.97 41.08 434.08 -5.63 1.52
mpegaudio 20.45 148.61 25.93 200.60 26.80 1.35 21.64 145.42 25.87 211.05 19.55 1.45
sci.fft.large OOM 24.69 OOM 25.65 N/A 1.04 8.44 188.62 8.05 215.08 -4.62 1.14
sci.fft.small 66.60 129.57 73.03 163.27 9.65 1.26 68.52 129.32 71.60 153.10 4.50 1.18
sci.lu.large OOM 23.27 OOM 24.78 N/A 1.06 2.96 365.17 3.14 384.33 6.08 1.05
sci.lu.small 74.50 129.14 83.19 185.12 11.66 1.43 79.40 127.27 82.78 185.09 4.26 1.45
sci.monte carlo 43.19 138.88 45.45 143.61 5.23 1.03 39.78 130.12 46.40 141.10 16.64 1.08
sci.sor.large OOM 34.32 OOM 159.93 N/A 4.66 9.37 174.87 9.83 198.50 4.91 1.14
sci.sor.small 43.11 137.22 45.34 144.97 5.17 1.06 42.84 138.31 45.34 144.70 5.84 1.05
sci.sparse.large OOM 21.11 OOM 23.12 N/A 1.10 8.93 180.59 9.49 181.32 6.27 1.00
sci.sparse.small 34.33 138.67 35.35 201.38 2.97 1.45 37.10 133.70 35.24 159.12 -5.01 1.19
serial OOM 8.51 OOM 10.39 N/A 1.22 30.33 145.06 29.07 160.37 -4.15 1.11
sunflow 13.15 178.11 13.36 581.17 1.60 3.26 14.00 168.40 13.16 603.17 -6.00 3.58
xml.transform 50.51 157.23 63.89 295.43 26.49 1.88 59.00 153.86 63.56 288.24 7.73 1.87
xml.validation 63.94 132.19 71.74 169.74 12.20 1.28 84.82 128.51 88.99 155.12 4.92 1.21
Geo-mean 9.22 1.40 6.00 1.28
Mean 12.53 1.53 7.54 1.35

Table 6.9: SPECjvm2008 benchmark results for 4 threads with the Concurrent-Mark-Sweep
garbage collector or a 2GB large heap. Means of 3 measurements are shown.

The idea for the next experiment is to limit the effect of the garbage collector on our benchmarks

by setting the minimum JVM-available heap to 2GB. This reduces the expected number of

garbage collections, but may bear a negative impact on the locality of references. We expect

both effects to be reflected in the VTE. The results of this experiment are shown in the last

four columns of Table 6.9 and demonstrate a prediction error (6.00%) and overhead (1.28), very

similar to the previous results.

In Table 6.11 we present the results, when the “aggressive optimisations” flag of the JVM is

set. This enables a number of experimental performance optimisations, which, by examining

the source of the HotSpot version we are using (1.6.0 23-b05), we find to be related to escape

analysis, biased locking and string concatenation optimisation. We repeat the experiments for

four benchmark threads using a 10ms VEX scheduler timeslice on a uniprocessor and find the

geometric mean of the prediction errors to remain consistent around the 6% mark (5.59%) and

the 1.20 overhead (1.19).

Based on the behaviour of the compiler.compiler benchmark that exhibits different performance

results for each of the above three JVM parameters (99.16 → 69.19 → 47.59 ops/min for the
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-XX:+AggressiveOpts
Threads: 4 Real time VEX
Benchmark ops/m Time ops/m Time Err.% O/h
comp.compiler 69.19 145.42 80.70 185.87 16.63 1.27
comp.sunflow 28.07 153.78 29.42 195.88 4.81 1.27
compress 41.78 136.83 41.08 153.97 -1.68 1.13
crypto.aes 12.31 167.08 13.59 181.05 10.40 1.08
crypto.rsa 69.22 129.79 67.77 136.11 -2.09 1.05
crypto.signverify 68.27 130.10 73.55 142.35 7.73 1.09
derby 42.53 330.12 40.93 457.71 -3.76 1.39
mpegaudio 22.34 140.32 25.87 205.59 15.80 1.47
sci.fft.large 7.69 201.14 8.82 191.78 14.69 0.95
sci.fft.small 67.13 128.82 71.55 139.72 6.58 1.08
sci.lu.large 2.91 376.01 3.19 382.22 9.62 1.02
sci.lu.small 74.59 128.24 83.50 139.36 11.95 1.09
sci.monte carlo 44.11 135.12 45.42 146.01 2.97 1.08
sci.sor.large 8.61 175.61 9.85 214.36 14.40 1.22
sci.sor.small 43.28 137.02 44.87 140.88 3.67 1.03
sci.sparse.large 8.94 174.65 9.56 219.43 6.94 1.26
sci.sparse.small 36.06 137.63 35.28 157.09 -2.16 1.14
serial 29.28 141.78 31.00 150.23 5.87 1.06
sunflow 12.98 179.86 12.77 347.31 -1.62 1.93
xml.transform 53.36 158.30 64.10 236.50 20.13 1.49
xml.validation 89.55 127.49 90.21 147.46 0.74 1.16
Geo-mean 5.59 1.19
Mean 7.82 1.20

Table 6.10: SPECjvm2008 benchmark results for 4 threads with the -XX:+AggressiveOpts
optimisation options enabled. Means of 3 measurements are shown

huge heap, aggressive optimisation and concurrent-mark sweep respectively) we find that VEX

reflects these changes in the VTE (118.35 → 80.70 → 59.59 ops/min) within a 25% over-

prediction error.

Effect of JVM

We now explore the effect of changing the JVM. We use the 64-bit J9 IBM JVM (build 2.4, JRE

1.6.0) with the default parameters on the uniprocessor Host-3. The VEX scheduler timeslice is

set to 10ms and returns per-method profiles, with an adaptive profiling policy at I = 10, 000

method invocations. The results for the IBM JVM are shown in Table 6.11 and generally

present low prediction errors (with 80th percentile of the absolute error being 20.34%) that

are bound at a rather higher overhead of 1.94. Although the geometric mean of the absolute

prediction error remains reasonably low at 10.53%, we identify noticeable differences between

the IBM and the HotSpot JVMs not only in terms of observed throughputs (like for benchmarks

derby, sci.monte − carlo, serial and xml.transform), but also for prediction errors: in cases

like the two xml.* benchmarks or the sunflow benchmark, we have very high errors as a
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result of a high number of native waiting threads. Specifically, most threads are waiting at

a JVM-internal conditional variable invoked by the native methods javaCheckAsyncMessages

or jitAcquireVMAccess. These waiting events are not notified to VEX, thus leading to a

very low CPU utilisation and high simulation overheads (ranging from 3.66 to 5.08) for these

benchmarks. This study once again demonstrates how the inner workings of the JVM affect

the virtual time execution.

IBM JVM
Threads: 4 Real time VEX
Benchmark ops/m Time ops/m Time Err.% O/h
comp.compiler 58.62 143.05 49.12 224.26 -16.2 1.57
comp.sunflow 24.1 149.4 19.2 265.52 -20.34 1.78
compress 42.31 132.69 41.61 178.14 -1.66 1.34
crypto.aes 20.92 148.03 23.1 243.71 10.42 1.65
crypto.rsa 53.12 133.06 55.68 167.99 4.81 1.26
crypto.signverify 53.14 134.53 55.76 382.32 4.93 2.84
derby 12.47 358.22 8.04 510.53 -35.52 1.43
mpegaudio 21.27 158.57 23.27 521.61 9.38 3.29
sci.fft.large 7.88 190.36 7.91 214.39 0.43 1.13
sci.fft.small 66.08 130.44 69.71 553.94 5.49 4.25
sci.lu.large 2.86 375.84 3.18 371.79 11.18 0.99
sci.lu.small 73.33 128.88 66.82 550.03 -8.88 4.27
sci.monte carlo 27.36 142.71 22.72 163.1 -16.97 1.14
sci.sor.large 8.78 184.25 10.28 208.18 17.08 1.13
sci.sor.small 42.63 136.87 45.36 147.14 6.4 1.08
sci.sparse.large 8.6 176.29 9.6 220.05 11.59 1.25
sci.sparse.small 31.82 137.14 35.37 300.62 11.16 2.19
serial 16.02 165.46 18.88 288.75 17.85 1.75
sunflow 11.66 163.93 6.15 833.06 -47.21 5.08
xml.transform 29.91 175.52 17.53 716.29 -41.38 4.08
xml.validation 62.35 130.52 41.69 477.46 -33.14 3.66
Geo-mean 10.53 1.94
Mean 15.81 2.24

Table 6.11: SPECjvm2008 benchmark results for 4 threads executed by the IBM JVM. Means
of 3 measurements are shown

Time scaling

The last four columns of Table 6.12 investigate the time scaling capabilities of VEX. For each

benchmark we accelerate the executeIteration() method, which has the effect of acceler-

ating the entire code by a factor of two 1. Accordingly, the expected throughput should be

approximately double the original throughput for four threads. The results in the “Pred/RT”

column show that the scaling of almost all benchmarks resulted in approximate doubling of

the throughput. Due to the fact that we are measuring throughput over a predefined period of

1Since in the sunflow benchmark the executeIteration() method merely spawns internal threads to exe-
cute the load, we scale instead the time of the org/sunflow/core/renderer/BucketRenderer.renderBucket

method, which is invoked by these threads and accounts for their entire execution time.
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Threads: 4 Real time VEX adaptive profiling 10ms VEX x2 accelerated simulation
Benchmark ops/m Time ops/m Time Err.% O/h ops/m Time Pred./RT O/h
comp.compiler 72.24 141.48 79.69 183.75 10.32 1.30 121.57 265.92 1.68 1.88
comp.sunflow 27.20 146.17 29.30 196.11 7.72 1.34 42.40 272.73 1.56 1.87
compress 41.07 138.55 42.83 158.09 4.29 1.14 85.18 293.48 2.07 2.12
crypto.aes 12.49 171.82 10.43 171.18 -16.47 1.00 26.53 437.63 2.12 2.55
crypto.rsa 67.20 126.84 68.43 136.52 1.83 1.08 132.03 249.26 1.96 1.97
crypto.signverify 69.34 128.39 73.78 156.68 6.40 1.22 143.25 294.90 2.07 2.30
derby 43.09 321.35 41.65 450.61 -3.34 1.40 89.27 615.70 2.07 1.92
mpegaudio 22.29 141.10 26.19 209.52 17.50 1.48 48.93 342.07 2.20 2.42
sci.fft.large 7.74 199.65 8.69 197.14 12.24 0.99 16.02 337.88 2.07 1.69
sci.fft.small 67.35 128.38 72.63 157.74 7.83 1.23 146.03 335.39 2.17 2.61
sci.lu.large 2.89 392.25 3.14 403.17 8.56 1.03 6.60 529.34 2.28 1.35
sci.lu.small 74.44 129.78 82.76 186.94 11.17 1.44 166.82 445.65 2.24 3.43
sci.monte carlo 43.16 134.95 46.14 143.83 6.90 1.07 90.63 271.93 2.10 2.02
sci.sor.large 9.37 168.11 9.84 188.98 4.99 1.12 19.78 320.51 2.11 1.91
sci.sor.small 43.27 137.07 45.33 148.18 4.77 1.08 90.79 273.70 2.10 2.00
sci.sparse.large 8.63 207.16 9.36 231.82 8.43 1.12 18.81 387.31 2.18 1.87
sci.sparse.small 35.43 137.77 35.32 160.98 -0.31 1.17 70.99 320.98 2.00 2.33
serial 30.12 145.54 27.87 150.46 -7.49 1.03 62.75 305.69 2.08 2.10
sunflow 13.22 177.27 12.40 583.95 -6.18 3.29 27.05 1236.83 2.00 6.98
xml.transform 52.57 158.52 62.77 294.82 19.41 1.86 116.75 435.92 2.22 2.75
xml.validation 75.33 134.50 80.02 158.79 6.23 1.18 151.07 294.03 2.01 2.19
Geo-mean 6.40 1.26 2.05 2.25
Mean 8.21 1.31 2.06 2.39

Table 6.12: SPECjvm2008 results for 4 threads with time scaling factors of 1.0 and 2.0. Means
of 3 runs are shown

time, the simulation duration has doubled as well, as time flows slower in the virtual timeline.

The predicted throughput of both compiler benchmarks is less than double. We attribute this

to the significant time of garbage collection in their execution. In the current framework GC

is not accelerated in virtual time.

Thread scaling

The final set of experiments investigates how VEX predictions and simulation overheads scale

with an increasing number of threads. Table 6.13 shows the results for 1 to 16 threads in three

different modes of VEX simulation:

• Adaptive Profiling (AP): the typical simulation with an adaptive profiling threshold of

10,000 method invocations and a 10ms scheduler timeslice (to speed up the experiment

execution)

• No Profiling (NP): VEX simulation without any profiling instruments. Only thread-

state monitoring instruments are added. As this approach significantly limits the points

where native waiting threads can be recognised as such, we need to set the “poll nw”
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flag of VEX (see Section 5.2.2) to avoid threads executing the entire benchmark as native

waiting. Accordingly, the VEX scheduler signals all threads that are considered native

waiting before selecting the next thread to resume. This mode investigates VEX without

the overhead and “observer effects” caused by the addition of method entry and exit

instruments.

• No Scheduling (NS): Benchmark execution with VEX instruments, but without a VEX

scheduler. Adaptive profiling with a 10,000 method invocation threshold is still enforced.

Threads execute freely according to the schedule defined by the OS, but times are ac-

counted in the same way as they would be in VEX (i.e CPU-time for non-I/O threads

and wallclock time for I/O threads). This mode investigates VEX without the overhead

and “observer effects” caused by the scheduling of threads by the VEX scheduler. It only

works for a uniprocessor execution, where all thread progress in CPU-time is mapped

onto the same virtual timeline.

The results are encouraging in that most VTEs present low prediction errors at low overheads.

In particular the AP mode that enforces normal VEX simulation with profiling presents a

prediction error of a 5.23% median (13.46% 95th percentile), a geometric mean of 5.59% and

an overhead of 1.26 across the various selections for benchmark threads for this configuration.

The NP mode presents slightly higher prediction errors (6.58%) and overheads (geometric mean

of geometric means equal to 1.55 instead of 1.26), despite the lack of profiling instruments. The

main issue is the increased number of signals due to the “poll nw” parameter: in benchmarks

with significant garbage collections (and thus native waiting states) and more than 8 threads,

we find overheads as high as 21.04 and 28.12 times the duration of the RTE. It is evident

that the use of “poll nw” does not scale well: the geometric mean of the simulation overhead

increases from 1.14 for 1 thread to 2.53 for 16 threads (1.16 to 4.57 for arithmetic mean).

However, recall that “poll nw” signals are only used as a way of dealing with native waiting

threads: properly identifying the latter (see Section 9.3.1) would allow a faster simulation

without profiling instruments for cases where the performance testing interest lies only in the

total application response time or throughput and not in the per-method times.
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The NS mode bypasses the VEX scheduler and is used to identify the effect of VEX scheduling

on prediction accuracy, whilst retaining the same number of profiling instruments as the normal

adaptive profiling VEX simulation (AP). The prediction error increases with the number of

threads (from 1.74% for 1 thread→ 6.07% for 16 threads), due to the higher context switching

overheads, that are not accounted for in the VTE. In any case, the overhead remains quite

low (with a geometric mean of 1.06), showing that the mere existence of profiling instruments

with our adaptive profiling policy enforced does not significantly affect simulation time. This

is consistent with our observations on the single-threaded JGF benchmarks.

The conclusions from the SPECjvm2008 benchmarks are the following:

• The prediction error and overhead of VEX and JINE remain typically within 10% and

1.3 even for benchmarks of larger size and for various VEX, JVM parameters, time and

thread scaling.

• Native waiting threads (typically due to GC and safepoint synchronisation) affect both

the overhead and the prediction accuracy of the benchmarks.

• The VLF avoidance scheme is effective: no premature leaps have been observed for this

benchmark suite for the HotSpot JVM.

• The results on the IBM JVM show reasonably low but slightly higher prediction errors

and overheads than the HotSpot underlining once again how the inner workings of a JVM

affect the virtual time execution.

• JIT effects are still present in larger benchmarks, in some cases reducing the accuracy of

the VEX execution.

• Adaptive profiling on its own has a limited effect on the simulation overhead, as demon-

strated by the thread scaling results in the NS mode.

• The fact that the NS results are slightly better than those of NP, suggests that the VEX

scheduling has a greater impact on the prediction accuracy than profiling instruments.
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Figure 6.4: VEX scheduler timeslice effect on SPECjvm2008 benchmarks with four threads
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Error % for 1 to 16 threads Overhead for 1 to 16 threads
Benchmark Mode 1T 2T 4T 8T 16T G-M 1T 2T 4T 8T 16T G-M
comp.compiler AP -11.31 0.14 10.32 25.43 59.95 7.61 1.14 1.16 1.30 1.19 1.25 1.21

NP 13.23 -0.22 -3.74 8.24 37.34 5.07 1.32 1.23 1.32 1.56 2.47 1.53
NS -5.87 -4.07 -3.10 -9.45 16.32 6.48 1.01 1.02 1.06 0.97 1.14 1.04

comp.sunflow AP -5.91 -10.39 7.72 11.38 5.65 7.88 1.11 1.09 1.34 1.21 1.09 1.17
NP 19.00 -3.21 -1.58 -3.05 -5.98 4.45 1.30 1.25 1.53 1.61 2.74 1.61
NS -13.53 -5.11 1.10 14.27 5.37 5.67 1.00 1.01 1.03 1.03 1.10 1.03

compress AP 2.03 3.70 4.29 3.64 1.51 2.82 1.09 1.09 1.14 1.12 1.07 1.10
NP 5.63 6.38 8.35 8.43 5.36 6.71 1.07 1.06 1.05 1.22 1.35 1.14
NS -2.75 -0.24 -2.61 8.94 -4.24 2.31 1.03 1.01 0.99 1.06 0.91 1.00

crypto.aes AP 8.18 -5.14 -16.47 -17.75 -7.20 9.76 1.09 1.14 1.00 1.85 2.72 1.44
NP 8.33 8.70 6.97 5.21 2.48 5.79 1.17 1.08 1.35 1.77 2.75 1.53
NS 3.14 -1.11 16.17 18.65 39.12 8.37 0.98 0.99 1.08 0.96 1.00 1.00

crypto.rsa AP 4.90 2.97 1.83 8.04 6.90 4.30 1.08 1.09 1.08 1.20 1.07 1.10
NP 6.82 4.85 -4.81 -2.75 -5.93 4.82 1.08 1.09 1.03 0.98 0.97 1.03
NS -0.09 -1.72 0.45 8.07 3.81 1.16 1.00 1.01 1.03 1.04 1.00 1.02

crypto.signverify AP 8.36 9.29 6.40 5.20 8.02 7.30 1.08 1.15 1.22 1.12 1.09 1.13
NP 9.15 8.63 -2.32 -13.65 -4.10 6.34 1.09 1.13 1.13 0.99 1.24 1.11
NS 2.84 -1.25 0.95 0.56 5.49 1.60 1.01 1.03 1.02 1.04 0.97 1.01

derby AP -8.25 -6.02 -3.34 -8.87 -2.67 5.24 1.35 1.45 1.40 1.46 1.33 1.40
NP -7.84 -9.74 -0.05 -7.04 -21.98 3.52 1.09 1.19 1.12 1.26 1.97 1.29
NS -18.54 -27.04 -18.77 -13.64 10.47 16.81 1.09 1.31 1.09 1.34 1.17 1.20

mpegaudio AP 4.76 20.71 17.50 5.00 10.38 9.78 1.26 1.40 1.48 1.56 1.38 1.41
NP 4.90 4.75 6.15 12.75 4.65 6.10 1.12 1.13 1.27 1.64 3.10 1.52
NS -6.72 -3.93 0.94 19.61 23.93 6.51 0.98 1.05 1.17 1.22 1.34 1.15

sci.fft.large AP -3.34 13.48 12.24 -4.26 OOM 8.20 1.02 1.09 0.99 1.12 1.07 1.06
NP 5.73 13.48 12.92 -4.97 OOM 9.99 1.06 1.07 0.98 1.14 1.17 1.08
NS -3.10 15.73 12.53 8.05 OOM 8.49 0.97 1.09 1.00 1.07 1.11 1.05

sci.fft.small AP 3.73 6.79 7.83 8.47 10.68 7.09 1.08 1.13 1.23 1.26 1.63 1.25
NP 6.14 6.47 -7.66 9.02 9.71 7.68 1.06 1.11 1.06 1.70 4.64 1.58
NS -3.64 -1.13 1.14 6.84 6.19 2.88 1.01 1.00 1.02 0.98 1.02 1.01

sci.lu.large AP 8.87 18.73 8.56 6.73 OOM 11.25 1.10 1.06 1.03 1.02 1.45 1.12
NP 6.48 19.10 11.42 7.07 OOM 11.22 1.03 1.09 1.26 1.24 21.04 2.06
NS 6.48 16.85 1.04 15.49 OOM 4.84 0.96 1.00 0.96 1.00 0.87 0.96

sci.lu.small AP 3.25 9.10 11.17 14.82 15.16 9.42 1.13 1.22 1.44 1.32 2.58 1.46
NP 6.30 10.09 11.71 11.99 13.94 10.45 1.07 1.25 1.51 3.03 8.07 2.18
NS -0.39 -7.62 0.75 3.48 12.40 2.49 1.00 1.01 0.98 1.00 0.97 0.99

sci.monte-carlo AP 5.28 -6.64 6.90 4.83 3.88 5.39 1.08 1.08 1.07 1.10 1.14 1.09
NP 5.36 5.45 4.94 4.51 3.93 4.80 1.07 1.06 1.17 1.14 1.22 1.13
NS 0.16 -9.76 4.26 4.05 5.72 2.73 1.01 1.02 1.02 1.07 1.10 1.04

sci.sor.large AP 5.32 5.12 4.99 4.90 4.60 4.98 1.02 1.02 1.12 1.07 1.07 1.06
NP 5.32 5.33 5.12 5.22 8.77 5.82 1.02 1.01 1.30 1.74 2.16 1.38
NS -0.11 6.08 6.30 6.39 6.84 2.82 0.96 1.01 1.01 1.11 0.99 1.01

sci.sor.small AP 5.24 13.60 4.77 4.71 4.05 5.79 1.06 1.07 1.08 1.10 1.05 1.07
NP 5.29 13.50 4.92 4.88 4.35 5.95 1.06 1.06 1.05 9.79 1.08 1.66
NS -0.05 -0.02 -3.95 4.00 4.60 0.61 0.99 0.99 1.01 1.01 0.95 0.99

sci.sparse.large AP 5.19 6.04 8.43 6.46 4.44 5.97 1.08 1.04 1.12 1.02 0.99 1.05
NP 3.57 9.44 14.02 4.81 41.23 9.87 1.09 1.15 0.86 2.13 5.52 1.66
NS -2.71 -15.03 1.39 14.44 25.16 7.29 1.02 1.12 1.00 1.17 1.09 1.08

sci.sparse.small AP -7.12 -1.18 -0.31 -0.28 -1.21 0.98 1.07 1.10 1.17 1.23 1.47 1.20
NP 4.69 9.57 10.47 10.67 8.68 8.47 1.11 1.13 1.20 1.60 3.31 1.51
NS -12.65 -9.01 -6.52 -0.74 -0.51 3.08 0.99 1.01 1.06 1.10 1.13 1.06

serial AP 5.99 3.99 -7.49 0.10 -2.09 2.06 1.17 1.26 1.03 1.28 1.29 1.20
NP 6.42 8.55 9.23 2.75 -3.42 5.44 1.14 1.19 1.39 1.21 1.09 1.20
NS -0.70 0.64 -0.40 -1.70 -5.06 1.09 0.99 1.03 0.94 0.93 0.95 0.97

sunflow AP 5.59 8.89 -6.18 5.65 6.56 6.48 1.99 2.34 3.29 5.50 3.68 3.15
NP 26.53 14.16 10.36 8.44 9.24 12.48 2.06 4.36 9.59 21.59 28.12 8.78
NS -31.19 -31.16 -24.36 0.23 -39.97 11.70 1.07 1.18 1.47 1.88 4.52 1.74

xml.transform AP 10.24 22.56 19.41 13.12 11.60 14.68 1.55 1.76 1.86 1.51 1.39 1.60
NP 8.79 21.07 10.82 -2.18 -5.89 7.63 1.08 1.32 9.91 1.01 0.98 1.69
NS 0.60 1.31 -0.13 5.36 9.24 1.39 1.25 1.24 1.21 1.24 1.20 1.23

xml.validation AP 10.63 2.86 6.23 -0.52 -1.53 2.73 1.19 1.17 1.18 1.05 0.95 1.10
NP 8.82 1.66 4.81 -9.75 -11.06 5.97 1.17 1.31 1.35 1.07 1.06 1.19
NS 0.54 -2.22 2.88 -0.05 -0.20 0.51 1.01 1.00 0.97 1.02 1.01 1.00

Geo-mean AP 5.85 5.82 6.40 4.64 5.41 5.59 1.16 1.21 1.26 1.31 1.36 1.26
NP 7.30 6.65 5.25 6.18 7.82 6.58 1.14 1.22 1.46 1.76 2.53 1.55
NS 1.74 3.17 2.31 4.15 6.07 3.17 1.01 1.05 1.05 1.09 1.12 1.06

Mean AP 6.36 8.44 8.21 7.63 8.85 7.90 1.18 1.24 1.31 1.44 1.46 1.33
NP 8.30 8.78 7.25 7.02 11.04 8.48 1.16 1.30 2.02 2.83 4.57 2.38
NS 5.51 7.67 5.23 7.81 10.26 7.30 1.01 1.05 1.05 1.11 1.22 1.09

Table 6.13: SPECjvm2008 benchmark results for 1 - 16 threads executing in various modes:
adaptive profiling (AP), no profiling (NP) and no scheduling (NS)
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Multicore VEX

In this chapter we extend VEX to simulate multicore architectures, i.e. to provide performance

predictions for a set of virtual performance specifications for a multicore target with m virtual

cores. Each virtual core allows the virtual time execution of one thread, leading to up to m

threads that can run in parallel within the same virtual timeslice. Each virtual core has its own

virtual timeline, which is updated by the next runnable thread that is scheduled on that core.

VEX allows only one thread per virtual core to be runnable and it is up to the OS scheduler

to decide when and how to schedule such runnable threads on the system. By using CPU-time

counters to measure thread progress, VEX results do not include the times that these runnable

threads were waiting to be scheduled by the OS. This is thus a generalisation of the single CPU

case presented in Section 3.1. For the most part of this chapter we assume that m is equal to

the number of physical cores on the simulation host n. Accordingly, the number of threads that

VEX will allow to be runnable is limited by the number of physical cores on the simulation

host. In Section 7.3.3 we also explore the idea of using VEX to simulate more cores than the

ones physically available, i.e. the case where m > n.

The main challenge of using VEX for simulating a multicore architecture lies in the fact that

real time and virtual time progress simultaneously, but potentially at a different pace. For

example, virtual time may progress faster or slower than real time when a time scaling factor

is used, or the virtual time of a thread can be updated to a value arbitrarily later in time

191
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when a virtual leap forward occurs. As a result a thread running on one of the m virtual cores

may be executing code that is ahead in virtual time in parallel with code that is in the virtual

past. This is tantamount to the causality errors presented in parallel discrete-event simulations

(PDES) [47]. Such errors are not possible in the uniprocessor case, because the next runnable

thread is always resumed at the virtual timestamp that the previous one released the CPU.

In order to keep the threads that are simulated in virtual time on m cores synchronised, we

employ two different synchronisation techniques. The Lax synchronisation model assumes that

threads execute on the m cores at the same pace, unless one of them uses time-scaling, leaps

forward in virtual time or simulates a performance model (details on simulating performance

models are provided in Chapter 8). Only then does VEX take synchronisation actions. This

approach is expected to limit synchronisation needs between cores, but at the loss of some

simulation inaccuracy. We also introduce the Strict Parallel Execution (SPEX) synchronisation

model, which synchronises threads on every VEX scheduler timeslice. This imposes a stricter

control on the progress of the simulation and is thus expected to be more accurate than the

Lax model, but at a higher simulation overhead.

We note here that the problem of synchronising parallel processes and dealing with causality

errors in computer simulation is not by any means new. Fujimoto [47] presents a survey of

both conservative [28] and optimistic [70] synchronisation techniques for PDES. Research from

execution-driven simulation has also used lax [29, 95], time-quanta [113, 98, 95], or barrier [152,

95] synchronisation approaches to control the progress of the parallel processes participating in

a simulation. However, such methods do not assume any relation between real and simulation

time progress, nor do they measure and depend on real time events (like I/O operations) on

the simulation host.

Methods from the field of network emulation that focus on synchronising events in simulation

time (network protocols) with ones happening in real time (application prototypes) are more

closely related to the objectives of multicore virtual time execution. Such methods synchronise

network protocols and application prototypes either using a single time-dilation factor across all

virtual nodes participating in the simulation according to the availability of physical resources
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[56], or adapting this factor according to the load in an epoch-based way [53]. Epochs are also

used by Bergstrom et al to synchronise in relativistic time (i.e. scaled real time) and allow time

warps if no activity is observed, while Weingaertner et al [142, 143] make use of a scheduler

timeslice that controls the execution progress of the simulator and the virtual hosts. Most of

these methods are similar to the ones proposed in this chapter, because they are categorised

under the conservative time window approach [82], where the difference in the simulation time

between two concurrently processed events is bound by a known constant. However, our focus

here is on fitting such techniques to the particular characteristics of the multicore virtual time

execution, i.e. the generally tight coupling between real and virtual time, the control of the

simulation at the thread level, the scheduling of threads in virtual timeslices, the existence

of profiling and state changing instruments, the dependence on real time events (like I/O

operations) and the high level at which VEX is functioning.

In this chapter we present the Lax and SPEX synchronisation methods and discuss how the

multicore virtual time execution affects other aspects of our framework, like I/O operations

(see Chapter 4) or JINE implementation issues (see Section 5). The two synchronisation poli-

cies are applied on the multi-threaded benchmarks of the Java Grande Forum [68] and the

SPECjvm2008 ones [128] that were also used in Chapter 6. In both cases, the simulation and

the target host have the same number of cores m = n = 2. The main objective of these

experiments is to evaluate the synchronisation policies in terms of simulation overhead and

prediction accuracy: we expect the Lax synchronisation policy to be faster but less accurate

than the SPEX. Although it is not our main objective, we also explore how well we can simulate

targets with more cores than the ones available at the simulation host (i.e. m > n).
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Figure 7.1: The two cases of resuming thread T on the local timeline Li of virtual core i.

7.1 Methodology

7.1.1 Multiple core simulation

In the uniprocessor VEX presented in Chapter 3, all virtual time calculations and scheduling

decisions take place on a single virtual timeline, which corresponds to the virtual timeline of

a single processor. Since only one CPU resource is available, the simulation state is tightly

coupled to the CPU state: if a thread is running then the single resource is busy and all other

runnable threads must wait. If that thread is executing in time-scaled mode or simulating a

model in virtual time, then all that happens is that the virtual time of the CPU is updated

accordingly at the end of the thread’s timeslice; the next runnable thread will resume exactly

at that point.

We extend the uniprocessor VEX by defining a local virtual timeline for each of the m virtual

cores of the simulation target. The purpose of the i-th local timeline Li is to describe the

progress of core i: if the current virtual timestamp of Li is V Li, then the next runnable thread

T with current virtual timestamp V TT , is resumed at virtual timestamp Vi = max(V Li, V TT ).

The two possible cases are illustrated in Figure 7.1:

• If V TT < V Li, then the thread T can start executing at that core only after V Li, as

the resource was occupied by another thread until that point. From the virtual times-

tamp V TT to V Li the thread is supposed to have remained runnable in the virtual time

execution.

• If V TT > V Li <, then when the resource was last released at V Li, no thread was
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immediately runnable, which only happened at V TT . From the virtual timestamp V Li

to V TT the core was idle in the virtual time execution.

Thread T executes on that core from Vi to Vi + tp, where tp is the virtual time progress of T

(CPU time, I/O time etc), with tp ≤ s and s the VEX scheduler timeslice. At the end of the

timeslice, the virtual timestamp of the thread T is set to V ′i = Vi + tp and the thread is pushed

back into the single priority queue of runnable threads, with priority V ′i . The thread with the

lowest virtual timestamp is the head of the priority queue. Newly spawned threads inherit

their virtual timestamps from their parents and are pushed onto the priority queue, waiting

to be scheduled on the next available virtual core. Despite the fact that the timestamps of

the threads are local, a global ordering of threads is still possible, as long as all local virtual

timelines remain in principle synchronised. We elaborate on synchronisation schemes in the

next section.

The previous VEX scheduler is now distributed to m VEX handlers (one per virtual core or local

timeline), which are system threads that take the next runnable thread from a single queue,

and schedule it on their own local virtual timeline Li. This also entails synchronising with

the thread that currently executes on their virtual core and suspending it when its timeslice

s expires, i.e. after the handler thread sleeps for s. We clarify here that by s we refer to the

timeslice of the scheduler of each virtual core. As a means to balance the load amongst the

VEX handlers if multiple threads are spawned in a short period of time, a load balancer notifies

virtual cores of the existence of a new thread in a round robin fashion.

7.1.2 Synchronisation

The need for synchronisation in multicore VEX deals with the problem that the m local virtual

timelines may proceed at different paces, as they are in principle independent from each other.

This might lead to causality errors, where events in the virtual time “future” (i.e. more than

a scheduler timeslice ahead in virtual time) are executed before or in parallel with ones in the

past, that might, however, affect their behaviour. In the context of virtual time execution
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this matters even in the absence of direct communication points between threads, because

VEX simulates and profiles the code on the actual host it is running and all threads share

the resources of this system. This means that if the thread that is executing further ahead

in virtual time issues a high load on the I/O subsystem, then this affects the measurements

performed on the I/O operations of the threads being executed at the other virtual cores, at a

former point in virtual time. The existence of shared memory access points might exacerbate

the problem caused by the lack of synchronisation: as long as T can find an available virtual

core to execute (in the virtual time “future”), it may update shared memory and notify other

threads, exhibiting a behaviour that would not be possible in the correct virtual schedule (see

Chapter 3).

This distinguishes multicore VEX from parallel simulation synchronisation techniques from

execution-driven simulation that either synchronise at the shared memory level [113, 98], or

the I/O level [7], or the network level [32, 14], or combinations of these [35, 21], in that there

are no specified “interaction points” (which must be processed in order) between processes.

We need that all processes progress at the pace determined by the VEX scheduler timeslice, in

order to generate and profile the load on the simulation host (memory and I/O subsystem), as

it would be observed if the virtual time schedule were realised. Our synchronisation assumption

is thus that as long as the distance between any two local timelines is limited by one scheduler

timeslice s, then the multicore simulation is considered satisfactorily synchronised.

A key observation in proposing a solution for causality errors in VEX is that the virtual time

progress is tightly coupled with real time. This means that under the assumption that there

exists one physical core for each virtual core (m = n), no other background system load is

executing on the simulation host and threads run on the CPU without invoking any system

calls (that are not accounted for by CPU-time counters), then the CPU-time progress within

a virtual timeslice s is approximately equal to s (minus some time used by the VEX scheduler

itself). As a consequence, we can assume that threads that execute on the m cores will progress

at approximately the same pace and that in the general case the independent timelines progress

in a synchronised manner without any additional effort.
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Figure 7.2: Demonstration of an erroneous simulation (wrong result and artificial I/O con-
tention), due to lack of synchronisation in multicore VEX. The thread T executing at CPU1

performs a virtual leap forward by t: without any synchronisation mechanism this violates the
correct order of execution by progressing instantaneously the virtual time of CPU1

Lax synchronisation mode

In the Lax policy threads are assumed to generally progress in virtual time in a synchronised

manner without the need of explicit synchronisation interaction. Special handling is only added

upon the occurence of specific events at which the virtual time progress deviates from the

real one. Under the assumptions that m = n and that there is no background load, then

synchronisation handling only happens, when the currently running thread on a virtual core:

1. needs to perform a virtual leap forward

2. executes under the effect of a time-scaling factor or

3. simulates a performance model.

We elaborate on the mechanisms used in the Lax synchronisation mode to handle these three

cases.

1. Virtual Leaps Forward: Imagine that T is “Timed-Waiting” (see Chapter 3) for a

timeout t which expires at V TT . Under the conditions about the state of the JVM elaborated

in Chapter 5, VEX assumes that no other event can occur between now and V TT and allows

the virtual core i to leap forward to V TT . This approach omits the fact that other threads

might be executing on the remaining m − 1 cores, leading core i to execute at a virtual time
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Figure 7.3: Time-scaling in Lax synchronisation policy on 4 cores. By using a barrier mech-
anism, the accelerated thread of CPU3 executes 3 times as many timeslices as the threads of
the other cores, while remaining synchronised with them in virtual time

arbitrarily far ahead of the other cores; this can lead to causality errors. The solution of the

Lax synchronisation mode is to check whether the minimum virtual timestamp amongst all

local timelines V Tmin is within the distance of a scheduler timeslice s from the V TT . If it is,

then the thread is allowed to leap forward to V TT , otherwise the thread handler of core i retries

after sleeping in real time for min(s, V TT − V Tmin).

2. Time-Scaling: By definition time-scaling of the execution of thread T creates a deviation

between real and virtual time: assuming a time scaling factor TSF , then one virtual timeslice of

duration s needs (TSF ·s) real time to be simulated. If other threads are progressing without (or

with a different) time scaling factor, then the synchronisation assumption between the timeline

of T and the other timelines is broken. Assume that T is starting to execute a method with a

speedup factor TSF > 1 and a current timestamp of V TT . In this case the Lax synchronisation

policy generates a barrier that will block other timelines until T progresses by the equivalent of

one virtual timeslice. This barrier is set to the maximum virtual time V Tmax that T can reach

after completing its current virtual timeslice. When T reaches V Tmax after (TSF − 1) · s real

timeslices, the handler of the core where T is currently executing removes the barrier and the

simulation progresses as normal. A simplified case of this is shown in Figure 7.3, where threads

executing on virtual cores 0 – 2 are stalled until the one in CPU3 executes three times as much

code in real time, thus simulating a TSF of 3. If TSF < 1, then we have a slowdown factor
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and T reaches the end of its virtual timeslice before other threads do so in real time. In this

case, all that the thread handler of this core needs to do after the thread completes its virtual

timeslice, is to sleep in real time for up to s, thus allowing the other timelines to catch up.

3. Performance Model Simulation: The last case where the synchronisation assumption

is broken happens when we are simulating performance models (see Chapter 8). Local virtual

resources are simulated by moving the virtual timeline forward by the duration of (or the

remainder of the current) scheduler timeslice s. Assuming that the execution time of this

operation is small in comparison to s and that the cores were perfectly synchronised before

the model simulation, then the virtual timestamp of the core where the model was simulated

will be set ahead of the rest by s. To overcome this, we force the thread handler to sleep in

real time for s, after updating a thread’s timestamp according to the simulation of the model

of a local virtual resource. This allows the other cores to make equivalent progress. If the

local model exits within the current timeslice after tp < s, then the handler thread only sleeps

for the remaining timeslice (s − tp), allowing the thread to resume for the remainder of its

timeslice. This approach resembles real time simulations [132, 39]. However, it only applies

for local resources; being serviced by a remote resource is handled in the same way as virtual

timeouts (waiting) are handled in virtual time. We also note that synchronisation points within

the models are also dealt with in virtual time.

Despite its characterisation as Lax, this synchronisation scheme is conservative, in the sense

that it does not allow progress in virtual time unless it is certain that the virtual execution

order is maintained (within the distance of a scheduler timeslice s).

The Lax synchronisation was introduced under the assumption that, if no background load

exists on the simulation host, then all cores progress in virtual time at the same pace (that

of the real time). This assumption might not always hold, leading virtual cores to progress

slower than others and lead to causality errors, even when none of the “special” cases that were

described above arise. For example, if the background load on one of the cores is higher than the

rest, then the OS scheduler might delay resuming, or assign less time to, the runnable thread
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Figure 7.4: Problem with lack of synchronisation between two virtual cores on a dual-core
machine with background load on CPU1 and the solution of SPEX

that VEX set to running. This is illustrated in Figure 7.4, where the thread that is executing on

CPU1 progresses in virtual time slower than the one on CPU0, due to the scheduling of other

processes on CPU1 by the OS. This leads thread 1 to read the updated value of the shared

variable A that was set further ahead in virtual time (at the third virtual timeslice of thread

0).

Apart from this, if the CPU time of the thread is significantly lower than its real time (for

example due to major page faults – see Section 3.3.3), or if the currently executing thread

is blocked in uninstrumented code (see Section 5.2.2 for native waiting threads), then real
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time progresses faster than CPU time for that core. A more subtle case that violates the Lax

synchronisation scheme assumption that threads generally progress at the same pace, except

from when specific events take place, occurs when the code executed by one thread on a virtual

core is trapped to VEX (for example at method-profiling or state-changing instruments) at

a higher rate than the threads on the other virtual cores. Since the CPU-time of the code

inside the profiling component of VEX is not accounted in virtual time, its execution at a

higher rate decelerates the progress of virtual time on the corresponding core. Nevertheless, we

have already found (Section 3.3.2) that invoking instrumentation code at a high rate should be

avoided through the use of adaptive profiling schemes. These adaptive profiling policies would

then also be expected to alleviate the aforementioned effects on inter-core synchronisation.

Strict parallel execution (SPEX)

To overcome these issues we introduce an alternative strict-parallel execution (SPEX) mode,

which explicitly enforces a synchronisation mechanism, so that all local timelines progress

together, with a maximum deviation of a single timeslice s. We separate cores into “active”

and “disabled”, meaning “busy” and “idle” respectively: only the local timelines of active cores

are considered in each synchronisation step. If no runnable thread exists to be scheduled on a

previously active core, then the core is disabled.

Using these two notions, we implement SPEX by defining a global virtual time (GV T ), which

is the smallest local virtual timestamp amongst all active cores. GV T is updated every time a

thread is about to change its state. Recall from Section 7.1.1 that whenever a thread handler

is about to resume a previously suspended thread T with virtual timestamp V TT at core i with

local virtual timestamp V Li, then it will resume it at a timestamp V T ′T = max(V Li, V TT ). In

this case, assuming a scheduler timeslice of s, the following rules are enforced:

• If V T ′T − GV T ≤ s, then the V T ′T is less than a scheduler timeslice ahead of the GV T ,

which means that allowing the thread to resume does not violate our synchronisation

assumption. Accordingly, the virtual core is enabled and the thread is resumed with

virtual timestamp V T ′T .



202 Chapter 7. Multicore VEX

• If V T ′T −GV T > s and another active core exists, then the V T ′T is more than a scheduler

timeslice ahead of the GV T and allowing the thread to be resumed would violate the

synchronisation assumption. Therefore, the core is disabled until the other active core(s)

catch up.

• If V T ′T −GV T > s and all cores are disabled, then even though the V T ′T is more than a

scheduler timeslice ahead of the GV T , there is no other activity in the simulation (as all

other cores are idle) and so the thread is allowed to resume with virtual timestamp V T ′T .

The above rules ensure that no two threads become separated in virtual time by more than

s. Figure 7.4 illustrates this: CPU0 becomes disabled at V T02, because the committed time

of CPU1 up to that point V T12 is more than a timeslice s smaller than V T02; this is due to

background load, for example. We note that the same policy is also enforced when a thread

handler decides on whether to continue executing a currently running thread on its virtual core

(in lack of any suspended runnable threads). Based on the distance of the virtual timeline of

the core from the GV T , the handler may force such a thread to become suspended, though no

other reason exists for the thread to context switch.

Using these rules SPEX also covers the cases that require special handling in the Lax synchro-

nisation scheme, i.e. virtual leaps forward, time scaling and model simulation. A virtual leap

forward V TT > GV T + s is only allowed, when there are no other runnable threads and all

cores are disabled. This offers a simple solution to the multicore synchronisation problem, but

adds an overhead of at most (m− 1) · s in real time, when all but one of the cores have to be

successively disabled (and stall) to allow leaps that are longer than s to take place. Time-scaled

threads that move faster in virtual time (TSF < 1) are halted, until the remaining running

threads reach them. Finally, the simulation of a model is resumed only if it does not violate

the rules, i.e. if the previous update of the V TT due to a model simulation is not too far ahead

in virtual time. Otherwise, the next update is stalled.

The strict parallel approach constitutes essentially an adaptation of the conservative time win-

dow synchronisation [82] with the distance between two parallel processes (here threads exe-

cuted on virtual cores in parallel) is bound by the VEX scheduler timeslice s.



7.2. Extensions for VEX thread handling 203

7.2 Extensions for VEX thread handling

We have seen how multicore VEX handles timed-waiting, time-scaling and model-simulation

for both the Lax and SPEX synchronisation schemes. In this section we elaborate on the I/O

and native waiting thread states.

7.2.1 I/O

I/O operations are issued according to the order defined by the virtual time schedule, but are

profiled in real time on the host’s I/O subsystem (see Chapter 4). This imposes a dependence

between the effectiveness of the synchronisation scheme used and the correctness in terms of

likeliness of the virtual schedule happening for real (see Figure 7.2). Assuming that the cores

are synchronised, then the I/O handling component of VEX works as in the uniprocessor case:

when a thread is about to perform an I/O prediction (scaled or normal), then the measurement

buffers that are used for the learning and prediction phases and that are shared amongst all

application threads are used. The rules for the correct virtual time scheduling in light of

“Standard I/O” operations (see Section 4.1.2), also apply in the multicore case without any

modifications. This is attributed to the fact that all cores share the same queue of runnable

threads: pushing onto the queue a record with a timestamp equal to PV T is then able to

control which threads should progress in parallel.

The completion of the I/O operation needs to be identified as soon as the operation finishes, to

reschedule the issuing thread and simulate priority boosting. In the uniprocessor case the VEX

scheduler reduces its timeslice and monitors the progress of the I/O predicting thread at a higher

rate (see Section 4.1.2). In multicore VEX this responsibility falls to the handler of the last

virtual core, on which the thread was scheduled, before issuing the I/O operation. The thread

that completes its I/O prediction pushes itself back to the queue of runnable threads, after

updating its virtual timestamp according to the observed I/O duration. Either the reduced-

timeslice handler or any other will find the thread on the queue and resume it, after updating

its time according to their own timelines and the thread’s virtual timestamp (see Figure 7.1).
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When no more threads are in an I/O-related state (learning or predictive period), all handlers

reset their timeslices to the defaults.

7.2.2 Native waiting

The problem with native waiting threads (see Section 5.2.2) is that we cannot know when they

start and when they finish. Using counter- or stack-trace-based techniques, we identify in the

uniprocessor VEX that a thread has become native waiting at some point in its last timeslice

(Section 3.1.2). In multicore VEX this is accomplished by the virtual core handlers.

After being recognised as native waiting at time t0, a thread is allowed to execute uncontrolled,

until it invokes a method of the VEX framework. At this point the thread returns under VEX’s

control and the simulation resumes normally. However, the CPU time that was accumulated

until that point by the supposedly natively blocked thread needs to be accounted for. In

the uniprocessor case this duration tnw was assigned to the single CPU and was mapped to

the virtual timeline taking into account the time progress of the threads that were executed

concurrently with it. In the multicore setting we add tnw to the core whose virtual timeline

has the lowest virtual timestamp. The assumption is that the minimum local virtual time

V Li implies that the virtual core i was idle when the supposedly “native-waiting” thread was

making progress.

An example that demonstrates the reasoning behind this decision is given for m = 2 virtual

cores. We have the following two cases:

• If core 0 has been idle and core 1 has been busy since t0, then the local times would be

V L0 < V L1 and the time tnw would be “correctly” mapped to core 0.

• If both cores have been busy since t0, then V L0 ≈ V L1 and the duration tnw could

essentially be mapped to any of them. This would lead to a gap between the two cores,

that could only be handled by the strict synchronisation scheme.
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In any case we see that mapping the time to the virtual core with the minimum local virtual

time, yields a “correct” virtual time schedule and one which is arguably reasonable.

7.3 Evaluation

7.3.1 JGF investigation of scaling

We first validate the multicore virtual time approach by executing the multi-threaded JGF

benchmarks [68], whose uniprocessor results have been evaluated in Chapter 6.3. First we

execute the tests on the dual-core (n = 2) Host-1, as described in Appendix A and then we

simulate them with VEX on the same host on two virtual cores (m = 2). The scheduler

timeslice is set to s = 10ms. We evaluate our approach based on how closely the observed real

time results match the ones returned by the virtual time simulation.

These results for the JGF benchmarks are presented in Table 7.1. The geometric mean of

the prediction error of multicore VEX (with Lax synchronisation) is found to be 6.94%, while

the mean simulation overhead is 1.65. As with the uniprocessor simulation the workload size

affects the prediction accuracy. The outliers (MonteCarlo, RayTracer and LUFact) remain

the benchmarks that invoke the Thread.yield() or JIT-compile different methods in the RTE

and the VTE. The only exception is the SOR benchmark whose prediction error and overhead

are increased. The reason lies in the busy-waiting synchronisation that this benchmark uses

which, in fact, produces variable results even in the real time execution (according to OS

scheduler decisions).

Overall, the simulation of the JGF benchmarks on a dual-core virtual host does not significantly

increase the prediction error or simulation overhead. Up to this point, we have only compared

the observed results of the RTE to the predicted virtual times of the VTE. A different way

to investigate the effectiveness of the multicore VTE is to determine how well it reflects the

scalability of each benchmark. The last three columns of Table 7.1 show the ratio of the result of

the dual-core RTE to that of the uniprocessor RTE and the corresponding ratio in virtual time
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Threads: 8 Real Time Multicore VEX Lax (10ms) Scaling vs 1 core
Size Benchmark Methods Result Time Result Time Error% O/h Real VEX Diff.%
A Crypt 82 0.202 0.322 0.146 0.377 -27.72 1.22 2.38 1.51 -36.59
A LUFact 188482 0.189 0.347 0.236 2.086 24.87 6.12 1.48 1.19 -19.92
A Moldyn 407503 2.117 2.226 1.755 3.437 -17.10 1.77 1.88 1.37 -26.96
A MonteCarlo 923971 1.833 2.289 1.821 4.426 -0.65 3.06 1.78 1.57 -11.96
A RayTracer 1133320 1.261 1.366 2.172 7.079 72.24 5.89 1.90 1.32 -30.53
A Series 30046 4.422 4.52 4.377 5.195 -1.02 1.15 1.93 1.85 -4.17
A SOR 48 2.57 4.116 3.653 5.843 42.14 1.39 3.39 2.72 -19.78
A SparseMatMult 47 0.201 0.447 0.172 0.523 -14.43 1.21 1.89 4.88 158.32

Geomean-A: 11.67 2.15 23.52
B Crypt 82 0.799 0.999 0.737 1.195 -7.76 1.08 2.12 2.16 2.00
B LUFact 220239 1.187 1.365 1.176 3.288 -0.93 2.94 1.30 1.16 -10.21
B Moldyn 458161 18.995 19.09 16.227 20.83 -14.57 1.36 1.48 1.50 1.13
B MonteCarlo 3357148 9.271 10.135 9.141 17.032 -1.40 2.73 1.74 1.67 -4.17
B RayTracer 1299816 11.143 11.258 19.947 19.619 79.01 1.87 1.76 1.46 -17.24
B Series 95659 45.051 45.145 45.168 48.396 0.26 1.10 1.93 1.83 -4.84
B SOR 48 3.085 4.706 4.012 6.084 30.05 1.37 2.99 2.52 -15.86
B SparseMatMult 47 0.5 0.814 0.446 0.881 -10.80 1.10 1.30 2.02 55.23

Geomean-B: 5.61 1.57 7.18
C Crypt 82 1.851 2.184 1.784 2.557 -3.62 1.09 2.07 1.97 -4.89
C LUFact 257735 10.417 10.791 8.221 12.523 -21.08 1.35 1.08 1.16 7.04
C Series 75849 696.62 697.87 701.51 750.16 0.70 1.08 2.11 1.96 -7.13
C SOR 48 4.451 6.178 4.662 7.034 4.74 1.30 2.25 2.28 1.38
C SparseMatMult 47 8.75 9.498 8.267 9.692 -5.52 1.07 1.25 1.35 7.78

Geomean-C: 4.26 1.17 4.83
Geomean 6.94 1.65 10.26

Table 7.1: Multicore VEX predictions for the multi-threaded JGF benchmarks executed by 8
threads on 2 (physical and virtual) cores. Scaling results are compared to the predictions of
uniprocessor VEX presented in Table 6.4. Means of 10 runs are shown.

predictions. This is interesting, because it allows us to evaluate how effectively the multicore

virtual time execution can be used for investigating the scalability of an application with an

increasing number of cores.

Although the prediction accuracy improves between the smallest and the largest workload set,

the results are inconclusive, in that large differences exist in all groups. Specifically, the short

running time of the dual-core SparseMatMult (which suffers from JIT effects) and the afore-

mentioned busy-waiting of SOR create large variations between the RTE and the VTE scaling.

However, the dual-core scalability of long running JGF benchmarks like MonteCarlo-B and Se-

ries that do not exhibit behaviours like synchronisation with busy-waiting or Thread.yield()

leads to close matches between the real and the virtual time execution.

7.3.2 SPEC investigation

Next we use the multicore VEX to predict the performance of the SPECjvm2008 [128], that

we have extensively investigated in Section 6.4. By enabling both cores of Host-3, we acquire
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the real time throughputs for each benchmark and measure the benchmark execution times,

when executing it for 24s of warmup and 96s of main iteration time. Then we perform the

same experiment in virtual time, by leaving both cores of the (simulation) host enabled (n = 2

physical cores) and setting VEX to simulate m = 2 virtual cores.

Threads: 4 Real time Lax sync 10ms on 2 cores SPEX 10ms on 2 cores
Benchmark ops/m Time ops/m Time Err.% O/h ops/m Time Err.% O/h
comp.compiler 175.92 131.92 195.84 160.13 11.32 1.21 223.53 190.18 27.06 1.44
comp.sunflow 80.45 133.58 89.15 161.84 10.81 1.21 91.62 173.76 13.88 1.30
compress 83.73 128.10 82.40 136.27 -1.59 1.06 86.12 141.07 2.85 1.10
crypto.aes 26.13 144.43 25.80 152.99 -1.26 1.06 27.46 162.58 5.09 1.13
crypto.rsa 131.93 126.04 114.67 130.35 -13.08 1.03 132.08 141.39 0.11 1.12
crypto.signverify 140.92 125.30 144.34 176.43 2.43 1.41 149.29 180.63 5.94 1.44
derby 90.20 267.54 77.52 352.00 -14.06 1.32 83.39 419.26 -7.55 1.57
mpegaudio 44.78 135.45 47.76 176.71 6.65 1.30 48.07 203.94 7.35 1.51
sci.fft.large 10.95 187.15 11.43 189.09 4.34 1.01 11.53 197.00 5.25 1.05
sci.fft.small 122.10 126.22 130.53 209.03 6.90 1.66 132.55 187.04 8.56 1.48
sci.lu.large 3.31 378.32 3.44 403.53 3.78 1.07 3.67 361.38 10.88 0.96
sci.lu.small 148.03 124.64 155.31 159.36 4.92 1.28 158.14 151.26 6.83 1.21
sci.monte carlo 83.30 127.35 91.10 134.03 9.36 1.05 91.96 139.69 10.40 1.10
sci.sor.large 15.66 164.82 16.41 178.49 4.79 1.08 16.54 175.36 5.62 1.06
sci.sor.small 88.08 128.03 90.40 133.18 2.63 1.04 90.62 136.41 2.88 1.07
sci.sparse.large 10.31 186.46 11.63 207.28 12.80 1.11 11.98 216.34 16.20 1.16
sci.sparse.small 65.20 129.38 62.69 156.72 -3.85 1.21 70.17 158.72 7.62 1.23
serial 57.61 132.19 61.46 145.11 6.68 1.10 63.32 155.13 9.91 1.17
sunflow 28.35 142.14 27.72 281.08 -2.22 1.98 27.77 305.61 -2.05 2.15
xml.transform 121.77 145.08 120.58 206.36 -0.98 1.42 130.42 209.60 7.10 1.44
xml.validation 169.92 124.18 180.52 143.12 6.24 1.15 182.07 152.11 7.15 1.22
Geo-mean 4.81 1.21 5.89 1.26
Mean 6.22 1.23 8.11 1.28

Table 7.2: Multicore SPECjvm2008 predictions for 4 threads on 2 (physical and virtual) cores.
Means of 3 runs are shown.

The results of the SPECjvm2008 for 4 threads executing on the dual-core host with a 10ms

timeslice are presented in Table 7.2. Lax is slightly more accurate than SPEX with a geometric

mean of prediction error of 4.81% (compared to SPEX’s 5.89%). As expected, SPEX yields a

higher simulation overhead (with a geometric mean of 1.26 compared to Lax’s 1.21), due to the

delays added to synchronise the timelines of the virtual cores.

We observe that SPEX predicts higher throughputs than Lax for all benchmarks. This is

attributed to an unrealistic virtual time schedule that is observed in light of native waiting

threads in the Lax synchronisation policy. Specifically, assume that a native waiting thread

commits the CPU-time progress ∆t that it made while remaining uncontrolled by VEX. ∆t

is then added to the timeline of the virtual core i with the minimum virtual time V Lmin (see

Section 7.2.2). If the difference of V Lmin to the other timelines is small and ∆t is high (i.e.

greater than a scheduler timeslice s), then the virtual timeline i will “leap” for up to ∆t time
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further ahead in the future than any other core j with j 6= i, j = 0...m − 1. In SPEX, this

leads to i being stalled (disabled) until the other cores synchronise with it. In Lax, however,

the simulation will continue normally, as this “leap” is not recognised as an event that requires

any special handling. What happens then is that any threads Ti that are scheduled on core i

will resume at the virtual timestamp of that core, V Li, which is higher than the timestamps

of the other cores. When these threads Ti become suspended and pushed onto the queue of

runnable threads, their virtual timestamp will thus be higher than the one of the threads that

are executing on any other virtual core, because, after the “leap” V Li > V Lj for any j 6= i.

Threads Ti will only be scheduled on i, whilst the other m − 1 virtual cores execute exactly

m− 1 threads with lower timestamps (assuming such threads exist). Eventually, this leads to

the same m−1 threads executing on the virtual cores with lower virtual timestamps than i and

all other threads executing in a round robin fashion on core i. This situation is only resolved,

when the other cores reach the virtual timestamp of i.

This effect results into an unrealistic and imbalanced virtual time schedule, which lowers the

predicted throughput of the Lax method, as m − 1 threads are essentially bound on a single

core and all other threads contend for the other one. In contrast to this, SPEX allows a

round robin execution, even when a virtual core is stalled. Interestingly, it is Lax that offers

the most accurate predictions; the strict parallel round robin schedule of SPEX yields higher

throughput results. We believe that though both synchronisation methods disregard the effect

of background load and system threads, Lax’s unusual mode of operation in light of native

waiting threads, indirectly compensates for this, thus returning more accurate results.

7.3.3 Simulating a large number of CPUs

Up to this point our focus is on simulating the behaviour of an application on a specific host,

with the same number of the virtual cores in the multicore VTE as the simulation host, i.e.

m = n. In this section we explore how well our synchronisation methods cope with an increasing

number of virtual cores m to up to 64 on a dual-core machine n = 2 (Host-3 of Appendix A).

The case where m > n is tantamount to exploring the application’s behaviour on a different
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host. However, as it is straightforward to do we validate this using a contrived toy example,

which consists of a floating point calculation iterated for a number of times within a loop. Our

focus is on the correctness of the virtual time accounting scheme and the differences between

the synchronisation schemes for normal and time-scaled executions.

The execution time of the loop was profiled to be approximately q = 170ms on a uniprocessor.

The loop is CPU-bound. No caching effects are exhibited as all operands of the calculated

expression fit in CPU registers and there is no interaction between the T threads executing the

loop in “parallel” on the m virtual cores. This allows us to assume that the model f(T,m) =

qd T
m
e returns the total execution time as a function of T and m. The idea is that in such a

simple and scalable program, any deviations from f(T,m) must be attributed to the simulator

and not to any other system factors.

Figure 7.5a shows the VEX-predicted times of our program vl(T,m) as T threads (from 16 to

256) are executed on an increasing number of m Lax-synchronised virtual cores. The results

confirm our expectations of low prediction errors in such trivial CPU-bound cases, since they

are close to f(T,m) with a geometric mean of 5.33% amongst all sample (and arithmetic mean

of 10.39%).

Analysing the results we find that the lower the ratio T
m

the higher the prediction errors (related

to f(m)) (see Table 7.3). This is attributed to lack of synchronisation between the cores in the

Lax SPEX

T / m f(T , m) Prediction [s] Error % Prediction [s] Error %

1 0.17 0.19 8.99 0.18 6.29

2 0.34 0.49 44.08 0.36 6.75

4 0.68 0.76 11.06 0.70 2.64

8 1.36 1.46 7.28 1.37 0.96

16 2.72 2.81 3.17 2.70 -0.87

32 5.44 5.51 1.20 5.35 -1.61

64 10.88 10.80 -0.73 10.64 -2.17

128 21.76 21.19 -2.62 21.10 -3.04

256 43.52 41.24 -5.23 41.36 -4.95

Geomean 5.33 1.84

Mean 10.39 3.01

Table 7.3: Multicore VEX predictions for the ratio T
m

with T threads and m virtual cores

Lax synchronisation scheme. Specifically, for T
m

= 1, the load balancer assigns one thread to
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each virtual core and each thread runs to completion uninterrupted. This is not the case for

higher values of T , where OS scheduling might lead a core to execute more threads than its T
m

share. This happens if a thread completes at a core and another runnable thread is immediately

assigned to it, though there could have been another virtual core that was available at a former

point in virtual time. Since we measure the time that all threads require to complete their

loops and join with “main” (that spawned them), even a single core making progress faster and

executing a higher load than it should, increases the estimated application response time.

We overcome this by enabling the SPEX mode (results demonstrated in Figure 7.5b): in this

case a core that is further ahead in virtual time awaits until the others reach it. This yields

more accurate results, because threads are only resumed when they don’t violate the s timeslice

barrier (Table 7.3). Table 7.4 shows that the simulation times of the two synchronisation modes

without any time-scaling (“Normal” columns) are very close, with Lax synchronisation being

marginally (3%) faster than SPEX.

Next we use our toy program to investigate the effects of time-scaling. The effects of the scaling

factor TSF = 0.5 are theoretically reflected in the expected running time of the program via

the function f ′(T,m) = f(T,m)
TSF

.

Parameters
Lax SPEX

SPEX/Lax
TSF 0.5 TSF 0.5

m T f ′ Res. Time Err.% Res. Time Err.% Norm TSF
4 16 0.34 0.38 3.94 11.57 0.34 3.92 0 1.15 0.99
4 32 0.68 0.73 5.46 7.61 0.68 5.4 0 1.01 0.99
4 64 1.36 1.44 30.33 6.19 1.36 8.5 0 1.04 0.28
4 128 2.72 2.91 56.42 7.04 2.69 14.39 -1.1 1.02 0.26
4 256 5.44 5.6 62.41 3.03 5.4 27.59 -0.74 1.03 0.44
8 16 0.17 0.2 3.9 15.81 0.18 3.95 5.88 0.99 1.01
8 32 0.34 0.36 5.33 5.75 0.35 5.36 2.94 0.98 1.01
8 64 0.68 0.71 14.77 3.96 0.68 8.33 0 1.03 0.56
8 128 1.36 1.4 36.63 3.07 1.36 14.05 0 1.01 0.38
8 256 2.72 2.78 60.91 2.14 2.71 25.38 -0.37 1.05 0.42
16 16 0.09 0.09 3.88 6.4 0.1 3.94 17.65 1.04 1.02
16 32 0.17 0.19 5.37 10.45 0.18 5.3 5.88 1 0.99
16 64 0.34 0.38 26.29 13.15 0.35 8.39 2.94 0.99 0.32
16 128 0.68 0.7 19.72 3.28 0.68 14.04 0 1.02 0.71
16 256 1.36 1.39 38.67 2.36 1.36 25.67 0 1.07 0.66
32 16 0.09 0.09 3.95 10.17 0.09 3.91 5.88 1 0.99
32 32 0.09 0.1 5.29 15.95 0.09 5.34 5.88 0.94 1.01
32 64 0.17 0.19 13.71 10.85 0.19 8.3 11.76 1.07 0.61
32 128 0.34 0.38 29.79 12.32 0.35 14.05 2.94 0.99 0.47
32 256 0.68 0.71 33.92 4.75 0.69 25.57 1.47 1.18 0.75
Geomean 6.52 0.19 1.03 0.63
Mean 7.79 3.05 1.03 0.69

Table 7.4: Multicore VEX predictions and overheads for “Normal” and time-scaled (accelerated
by 50%) executions of T threads on m virtual cores
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The results under the “TSF 0.5” columns of Table 7.4 show that both synchronisation schemes

provide predictions for f ′ within 6.52% error. Between them, SPEX performs much better,

with a geometric mean of the absolute prediction error compared to f ′ (column f’ Error%) of

less than 0.5%. An interesting observation is that, when TSF s are defined, SPEX significantly

outperforms Lax. This is despite the fact that the overheads of the SPEX and Lax synchroni-

sation schemes in the unscaled VTE are approximately the same (last columns of Table 7.4)

with Lax being marginally faster by 3%. Clearly, the barrier of the Lax synchronisation scheme

does not scale well with increasing numbers of threads and virtual cores, as each barrier is more

likely to block one or more otherwise runnable threads from making progress. This forces the

virtual core handler to sleep and retry.

We note here that in the general case of simulating more complex applications, than the pre-

sented one, with m > n, we would not expect the multicore virtual time execution to be

accurate. This is because the effects on the simulation host (TLB misses, cache misses, etc.)

as a result of the contention of the m virtual cores on the n physical ones affects our profiling

measurements and/or creates synchronisation deviations in the Lax policy. On the other hand,

cache invalidation costs or cache-to-cache transfers and thread migrations that may affect stall

cycles on a core [75] and that could be observed with m real cores are not captured by multicore

VEX. Predicting such effects would require knowledge of cache levels, cache-sharing and sizes

of the virtual cores and instrumentation of the access patterns of the application under test.

Recall that VEX’s objective is to offer high-level lightweight performance predictions, with-

out resolving to full system simulation [84, 90, 149]; instead it models processing resources by

performing measurements on the existing ones. Although the latter might be affected by the

existence of VEX (in the uniprocessor simulation) or running threads of other virtual cores in

the multicore version, reduced accuracy is the price we expect to pay for keeping the simulation

overhead low.

In conclusion, we simulated two sets of benchmarks on a dual-core host for m = n = 2, relying

on the OS scheduler to map the threads that VEX defined as running to the underlying physical

cores. The conclusions from this study are:
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• The multicore VEX provides fairly accurate but variable results for the JGF multithreaded

benchmarks for reasons similar to the uniprocessor case, like JIT effects, synchronisation

with Thread.yield, busy-waiting etc.

• The SPEX and Lax synchronisation policies can accurately predict the throughput of the

SPECjvm2008 benchmarks at a slightly higher overhead than the uniprocessor case.

• In the SPECjvm2008 benchmarks the Lax synchronisation has been found to be more

accurate than SPEX, which we attribute to its less intrusive nature and the existence of

native waiting threads and safepoint synchronisations.

We also experimented with a contrived program for the case that m > n and found that:

• SPEX yields better predictions in any case due to its independence from OS scheduling

decisions

• When T
m
≈ 1 and m >> n, the Lax synchronisation schem might lead to a virtual core

being assigned a higher load than it should, due to OS scheduler decisions.

• The overheads of SPEX and Lax are similar in an unscaled VTE, but SPEX is significantly

faster when TSF s are defined.



7.3. Evaluation 213

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40

T
o
ta

l 
p
re

d
ic

te
d
 t
im

e
 [
s
]

Virtual cores m

Scaling virtual cores in multicore VEX for contrived parallelizable loops

16 threads
32 threads
64 threads

128 threads
256 threads

(a) Lax synchronisation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40

T
o
ta

l 
p
re

d
ic

te
d
 t
im

e
 [
s
]

Virtual cores m

Scaling virtual cores in multicore VEX for contrived parallelizable loops in SPEX

16 threads
32 threads
64 threads

128 threads
256 threads

(b) SPEX

Figure 7.5: Scalability of multicore VEX in terms of virtual cores m on a toy example with
simple loops with approximately 95% confidence intervals (3 runs)



Chapter 8

Model integration

In this chapter we present an extension to the VEX framework to support continuous, lifecycle-

wide performance testing. The main idea is to integrate performance models for specified parts

of an application with measured execution times from those parts for which there is existing,

instrumentable, code. The performance models can be used to provide alternative timing

estimates for existing code or for code that has yet to be written. The ability to mix real code

and performance models seamlessly allows us to test performance metrics from the inception to

completion of a software development project. Typically, this process will begin with a skeleton

application comprising mostly, if not exclusively, performance models; at the end of the cycle

we will have a complete application comprising ‘production’ code. VEX enables the virtual

execution times from the simulation of models to be mapped together with real execution-time

measurements onto a global virtual timeline. In principle, any formalism can be used to define a

performance model; here we will focus on (open) queueing networks that are specified using the

Java Modelling Tools (JMT) [16] and simulated in virtual time using a separate discrete-event

simulation tool. The virtual time spent in a queueing network corresponds to a particular

method/function call at the application level and this time is used by VEX in part to control

the thread schedule. Importantly, different methods can invoke the same model by injecting

virtual jobs into it, typically at different virtual times. If the model has no state (for example a

simple infinite server node), then the model-predicted time delay can be determined instantly.

214
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In general, however, the time spent in the queueing network will be dependent on the network’s

current state and possibly also future virtual jobs arrivals (if there is overtaking, for instance).

A key idea to this approach is that the contention on resources described by models is also taken

into account when executing the real threads of the application. Models are simulated, while

real-code is executed in a normal, or possibly time-scaled, manner. The simulation models

resource consumption and queueing, so that a thread that is awaiting a virtual resource in

the model is suspended waiting for the resource to be released. VEX provides a fair schedule

of threads in virtual time, regardless of whether they are executing real code or simulating

performance models. VEX updates the virtual time of a model-simulating thread instantly and

still maintains a valid execution order by deciding which thread is to be scheduled next. This

means that models and code can be used interchangeably.

This approach also allows us to use modelling in post-implementation stages to investigate

hypothetical scenarios, by associating performance models with methods whose code is already

implemented. In that case, the method is executed normally, but the execution time logged onto

the virtual timeline is provided by a model. This decouples the functional and non-functional

behaviour of the code, much like traditional execution-driven simulation approaches presented

in Section 2.2.1.

Up to this point VEX models the time-scaling of a method’s execution time by allowing a thread

to progress at a different pace than others in virtual time. We now extend VEX’s modelling

capabilities, by entirely decoupling the duration of the thread execution on the simulation

host from its virtual-time performance. Instead, its expected performance is now defined by

simulating a performance model in virtual-time. The immediate effect is that the method body

is no longer needed to determine the virtual-time performance, which allows us to investigate

hypothetical performance scenarios throughout the lifecycle, for example using stubs and mock

objects [46].

Entire subsystems may be investigated in the same way. For instance VEX can model the

behaviour of an alternative I/O subsystem and identify the effect that its deployment would

have on the application performance. I/O requests are executed as normal in real time. When
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many requests are issued concurrently, they are simulating the same subsystem model, thus

contending for its resources. Their sequence and their execution times are defined in the virtual

timesphere of VEX.

This chapter discusses the methodology for integrating performance models and real code mea-

surements in virtual time to enable end-to-end performance testing throughout the software

development lifecycle. Details are provided on the extensions to the VEX framework and the

JMT suite to support the integration of queueing networks and executing code. We demon-

strate the performance engineering methodology that VEX facilitates by documenting a sample

scenario – the development of a client-server application based on a MySQL database.

8.1 Integration of models and code

Performance models and implemented programs are used differently in performance analysis.

Performance models yield predictions by simulating statistically described workloads in virtual

time, abstracting away implementation details. In contrast to this, programs execute the

designated workloads on a particular system so the measured performance reflects the actual

consumption of resources. To enable the co-existence of models and code for performance

analysis, we need to reconcile their differences.

8.1.1 Merging the notion of time

The notion of time in the execution of programs is typically related to observed wall-clock

real times, calculated as machine clock cycle counts divided by clocks per second. All system

counters are related to accumulated clock cycle counts, thus progressing “continuously” in time

at the granularity of a single clock cycle. In a performance model time is virtual and in a

simulation model in particular time is advanced instantaneously from one scheduled event to

the next.

Incorporating real time observations to simulation times [125] or vice versa [39], may either



8.1. Integration of models and code 217

abstract away implementation details or increase the simulation time. The two notions of

time are merged by being mapped onto a single virtual time line within the VEX framework.

The role of the VEX scheduler remains to control the progress of the program threads by

maintaining timestamps for each of them (executing real code or simulating models), within a

timeslice distance as explained in Section 3.1.2. For example, if an event is scheduled to happen

∆t in the future according to some model, then existing threads are assigned ∆t of execution

time, before the event is triggered. Only if no other runnable threads exist at the time, is the

framework allowed to advance the virtual time by ∆t. By controlling the execution of threads

based on thread-local (virtual) time stamps, VEX maintains a virtual time schedule that is

consistent with both code execution and performance model simulation.

VEX is also in control of virtual time logging, thus being able to select which execution times are

to be included in its measurements (see Section 3.2). Up to this point this allowed us to isolate

the overhead of the simulation framework itself and disregard it in the profiling results. With

the model integration approach, the same feature enables us to replace the measured execution

time of an implemented method with a (virtual) time computed by a model. This may be

desirable in a “what if” experiment aimed at determining the sensitivity of some performance

measure to the execution time of a particular method.

8.1.2 Merging workloads

When a thread T invokes a method whose execution time is described by a performance model,

we trigger a new job arrival event in the model simulation as shown in Figure 8.1. The VEX

scheduler then simulates the progress of the job within the model, whilst changing VEX’s

internal state associated with T . The overall effect is that the other threads proceed in virtual

time using the state of T as defined by the performance model.

From the operating system perspective, thread T remains runnable. This means that T pro-

ceeds to execute the body of the model-simulated method (thus implementing the correct

functional behaviour) whilst the VEX scheduler controls the scheduling of events within the

model. Figure 8.1 shows an example execution where a thread T executes a method M in real
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time, whilst the time VEX uses to advance T ’s virtual clock is determined by a performance

model.

Both T , and its associated virtual job in the queueing network, synchronise at the point where

both the method body and the job within the simulated model complete. Note that it matters

not which happens first in real time, nor does it matter whether the virtual time predicted by

the model is greater or smaller than the real execution time of either the model or method.

This is the key advantage of the virtual time execution framework. In Figure 8.1, which shows

the execution progress in real time, the sample execution time for method M happens to be

greater than the actual (real) time taken to execute M ’s body. Once the completion time, tM ,

of M has been determined (dashed vertical line in Figure 8.1), any other threads whose virtual

timestamp is less than tM will be allowed to resume. T1 itself will only be resumed when tM

becomes the smallest timestamp among the various threads, as shown in the diagram.

Once a method and its associated model job “join”, the thread is assigned a virtual timestamp

according to the performance model and waits to be rescheduled. This allows us to guarantee

a correct virtual time schedule, ensuring that the thread T and the rest of the simulation is

consistent with the model prediction.

The key idea of this approach is that jobs within a model are associated with threads on a one-

to-one basis. This means that any background load will need to be modelled by one or more

separate threads whose sole purpose will be to inject virtual jobs into the queueing network.

8.1.3 Guaranteeing functional consistency

In the trivial case where a model-simulated method is a stub, the thread T that enters it

returns immediately and starts waiting for its associated job to “pass through” the model. A

model-simulated method with a defined method body executes “outside” the VEX framework,

because the actual (real) execution time of the method has no direct bearing on the VEX thread

schedule, which is based on virtual time. By “outside” we mean that the methods executed

by the associated threads are instrumented as usual (for example at method entry/exit and
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Figure 8.1: Simultaneous execution of methods body and performance model (shown in real
time). Thread T1 triggers the arrival of a new job in the model describing method M and
continues to execute the body of M . Other simulation threads are scheduled according to the
sample method execution time, as determined by the model.

synchronisation points) but that VEX events that are triggered at those points are ignored by

VEX.

This simplifies the treatment of model-simulated methods but it can lead to a problem: what

happens if the method blocks at a synchronisation point? There is now a subtle combination

of events that can cause the VEX-controlled execution to deadlock, as illustrated in Figure 8.2.

Suppose that the job has completed its course within a model and has produced a sample

method completion time, i.e. point (1). Now assume that while the model is being simulated

and while T1 executes the code of method M , the VEX scheduler resumes another thread T2

which enters a synchronised block on some object obj (2), before suspending when its timeslice

expires (3). At this point, the model-predicted virtual timestamp of thread T1 is the smallest

in the simulator so the scheduler waits for the completion of M before resuming T1. When T1

tries to enter the monitor for obj it blocks (4), and the VEX-controlled execution deadlocks. We

note here that it is perfectly possible for a thread to keep on executing a method for any amount

of time, whilst the rest of the simulation is waiting on it to “join” a completed model-job. It is

the lack of any progress that brings the system to a halt.
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Figure 8.2: Description of the scenario, where the body of a model-simulated method leads
the executing thread to block: the thread is recognised as blocking by the VEX scheduler and
another thread is allowed to make progress.

In the prototype implementation of the model integration we solve the problem by implementing

a deadlock detection algorithm. We set up a thread that periodically polls each thread that

is executing the body of a model-simulated method to identify whether it is making progress

or is currently blocked. If a thread is blocked (point (5) in Figure 8.2 for T1, for example)

and no other thread is allowed to execute before it in virtual time, then the strict virtual-time

ordering is suspended and another thread T2 is allowed to resume (6). If no other runnable

thread exists, then the deadlock is an artefact of the application itself. Allowing other threads

to make progress will eventually lead to a real code event (in this example release of the monitor

of obj at point (7)) that resumes the blocked thread (8). This particular situation results in a

temporary violation of VEX’s normal scheduling policy, but such situations are rare in practice.

Note that an arguably more elegant solution would be to trap the event corresponding to the

blocking of a model-simulated method within VEX, whilst ignoring all other events associated

with the corresponding thread. However, in the case of Java, this depends on being able to

detect synchronisation points within the JVM itself. The only way such events can be detected
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by VEX is to modify the underlying JVM and that is something we wish to avoid, at least at

the present time.

8.1.4 Merging resource contention

Performance models simulate contention for virtual resources, whilst real programs use real

resources. We merge the two cases by treating performance models as virtual resources and

monitoring the contention of the application’s threads on them. The performance prediction

of VEX is the result of the contention on both system and virtual resources. Threads either

execute regular methods consuming real resources or contend for the model’s virtual resources,

after triggering the arrival of new jobs in a queueing network. Crucially, the state of the threads

is monitored in both cases to distinguish between running, runnable, blocked or timed-waiting

threads, and in order to schedule any other threads controlled by VEX.

Virtual resources are characterised as local or remote, depending on whether or not they contend

with real code executing threads for the system hosts’ CPU. This allows us to simulate CPU

contention between real code and performance models that contain “local” resources. For

real code execution the scheduler sleeps for time t to allow the executing thread to make one

timeslice of progress. If the thread is associated with a job in a queueing network then the

thread’s virtual time (and VEX’s global virtual time) is advanced by t. Remote resources

cause the threads that “execute” them to block for an amount of virtual time specified by the

queueing model. CPU resources remain available to any runnable (or local-resource simulating)

threads.

8.2 Integrating open Queueing Networks with VEX

The objective is now to define the performance models that will be used in the virtual time

execution to simulate the performance of methods. These performance models are open queue-

ing networks, although there is nothing in principle that precludes the use of other types of
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Figure 8.3: Local resource simulation: T1 enters a local resource and its job is scheduled in a
round-robin fashion with threads T2 and T3 that are executing real code. The scheduling of
the job concerns subtracting a timeslice from the model-estimated service time.

models, such as stochastic Petri nets, stochastic process algebras or a bespoke discrete-event

simulation. An advantage of queueing networks is that notions like threads “running” or be-

ing “blocked” are trivially matched to jobs being “serviced” or “queueing” respectively in the

model. Similarly, method entry points correspond to source nodes and exit points to sink

nodes.

As explained in Section 8.1.2, jobs are injected at the source nodes of a queueing network

when a thread starts executing the method described by it. When a job reaches a sink node, it

synchronises with the thread that corresponds to it (see 8.1.1). Routing decisions are determined

by the model’s parameters. We handle queueing by setting the state of the thread Tj that

corresponds to the queueing job as blocked. Since Tj cannot make further progress until the

resource is released, the VEX scheduler resumes a different thread. Note that only the VEX

internal state for the thread is set to be blocked; the thread itself remains runnable as far as the

operating system is concerned and is able to make progress executing the body of the method

whose performance it is simulating. The same applies for other similar state changes described

here.

An important feature is that existing performance tools, like workload generators, profilers

and analysis tools can be used in conjunction with VEX. By replacing the system timestamps

with corresponding virtual ones, VEX will automatically deliver virtual timing results, possibly
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generated from a performance model, to any framework that invokes it. As an example, the

JUnitPerf [1], that builds on the popular JUnit [73] unit-testing framework, can enable VEX

simply by invoking the appropriate JVM parameters to turn a real time performance test into

a virtual time one. The idea here is to set up a JUnitPerf test so that a test will fail if the total

estimated virtual time is higher than a specified limit. We use this approach in the case study

presented in Section 8.4.

8.2.1 Defining method-level performance models

The queueing networks we assume are generated by the open-source Java Modelling Tools

(JMT) suite [16]. Specifically, we export the XML descriptions generated by the JSIMgraph

application of the suite, that provides a user-friendly interface for defining the structure of open

queueing networks. This includes the defined job classes, the connection between elements and

the corresponding routing probabilities, the service-time distributions and the queueing policies

of each queue. We modified the GUI of JMT to allow the characterisation of the virtual resource

consumption of servicing nodes, as “local” or “remote” (see Section 8.1.4) and amended the

related parameters to the exported XML file.

Queueing networks are assigned to methods via an extension to the annotation mechanism of

the Java Instrumentation Environment (JINE) (Chapter 5), that interfaces Java applications to

the VEX core, by instrumenting the bytecode of each class during class loading. Although the

only required parameter is the name of the XML file that was exported by JMT, the annotation

interface supports three optional parameters:

• Whether the body of the simulated-method should be replaced or not (via bytecode

instrumentation).

• The label of the “source” node (as defined by the JSIMgraph application), to which new

jobs are added, when this method is executed.

• The class of the jobs created from this method.
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The overall effect of the last two parameters is that methods may contend for the same virtual

resources in a different way, depending on the source nodes they are injected into and their

associated job (customer) classes. As an example, the annotated method:

@virtualtime.ModelPerformance (

jmtModelFilename = "models/qn.jsimg",

replaceMethodBody = false,

customerClass = "Class0",

sourceNodeLabel = "Sell_Transaction")

void M() { ... }

causes the body of the method M to be executed as is, but for its execution time to be

determined by a queueing network model located at “models/qn.jsimg” by injecting a virtual

job of the class “Class0” at the source node labeled “Sell Transaction”. If the source code is

not available, or for testing reasons, the use of annotations can be replaced by a file mapping

method Fully Qualified Names (FQNs) to model-simulation parameters.

The XML file names that describe the queueing networks for model-simulated methods together

with the optional “source” node and customer class parameters, are registered to the native-

level VEX core, which uses a low-level XML parser to extract node information. In turn,

this generates a queueing network object which is processed by a C++ implementation of the

JINQS Java simulation framework for multiclass queueing networks ([45]); we refer to it here as

“CINQS” for want of a better name. We note that the CINQS core, including event scheduling

and the management of virtual simulated time, simply defers to VEX, which already supports

this functionality.

8.2.2 Assumptions

The prototype implementation does not support all of the features of either JMT or JINQS so

the queueing networks have some limitations at present. In particular, we currently exclude
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finite-capacity regions and class-dependent routing and assume that jobs that are rejected when

a finite-capacity queue is full are forwarded to the sink node of the corresponding queueing

network. None of these restrictions are significant and all of them could be straightforwardly

relaxed with additional work.

VEX is, however, currently tightly-coupled with the queueing network approach. Although the

CINQS module is separate from the core of the VEX framework, an integration driver is used

to convey events in the queueing network to the scheduler. Nevertheless, the idea of integrating

performance models and real code is in principle applicable to other types of models. One could

consider replacing the simulation of a model by a performance simulator, which would have

to be synchronised with code prototypes in virtual time (much like the SliceTime approach in

[143], for example). This would be perfectly possible as long as a specific “driver” were used to

interface VEX with the custom simulator. We raise these issues again in Section 9.2.3.

8.2.3 Simulating models in VEX

Suppose that a thread T with a VEX-maintained virtual timestamp t0 enters a model-simulated

method M . The method entry traps T into the VEX core and a new job J is added to the

queueing network associated with M . At this point the operating system thread associated with

T has the (sole) responsibility for executing the body of M (i.e. outside the VEX framework)

whilst the progress of the virtual job through the queueing network is administered by the

VEX scheduler. The thread T next comes under the control of VEX when it completes M and

synchronises with J on its departure from the queueing network – see Section 8.1.2. Before

this synchronisation happens, the operating system thread associated with T is essentially

“invisible” to VEX but, importantly, VEX will update the virtual timestamp it associates with

T as J progresses through the queueing network. It is important to understand the distinction

between the operating system thread associated with T and the additional information about

T that is maintained internally by VEX. Remote and local nodes within a queueing network

are thus handled as follows:
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Figure 8.4: Matching of VEX thread-states to the states of their jobs in a sample queueing
model

• If J goes into service at a “remote” server (see Section 8.1.4), then VEX assigns T a

new virtual timestamp t1 = t0 + tserv where tserv is the sample service time of the server.

Once t1 becomes the smallest virtual timestamp amongst the threads managed within

VEX, the scheduler removes J from the server and moves it onto the next node in the

queueing network. VEX thus increments the (internal) virtual timestamp associated with

T , mirroring the progression of J through the queueing network.

• If J is serviced in a “local” queueing node (see Figure 8.3), then the residual service time,

r say, is given by s − tserv, where tserv is the service time. If r > 0 then the virtual

service completion will have happened within the current timeslice so J can progress to

the next node. If r ≤ 0 then −r represents that part of the service time that must happen

in the next timeslice. We thus assign tserv = −r and give T a new virtual timestamp

t1 = t0 − r within VEX and add T to the list of runnable threads being maintained by

VEX. A virtual job can thus pass through several nodes in a queueing network during a

timeslice.

At any point in time a simulated queueing network can thus contain many virtual jobs, each of

which is associated with a (real) thread in the application. If a job starts queueing at a node

(remote or local), then its associated thread state changes to “Waiting”, denoting that the

thread should not be scheduled to progress until its state changes. To illustrate this, Figure 8.4
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shows an example of a queueing network with ten jobs (application threads) located at different

queues/servers in the network. Job Ji corresponds to thread Ti, whose virtual timestamp is

depicted by its location on the virtual timeline and whose current state is maintained internally

by VEX. Threads illustrated below the timeline are resumed when their virtual timestamp

becomes the smallest in the simulation, while threads shown above the timeline are waiting for

an event to happen before they can be resumed. There are two possible events: the releasing

of a resource in the queueing network and the completion of a job, which in turn represents

the completion of a method in virtual time. Thread T11 corresponds to a thread executing real

code. Although it is not associated with any job in the queueing network, it is treated similarly

to any other thread.

In the context of a single CPU execution a key difference between the way jobs and real threads

are handled is that real threads are always resumed at the virtual time point at which the last

running thread changed its state (becoming runnable, waiting etc). The same approach is also

followed by jobs that are serviced by a local resource in a queueing network. This is shown

in Figure 8.5 (lower part). In contrast, jobs that are being serviced by remote resources can

resume the model simulation at the virtual timestamp defined by the previous remote resource,

regardless of the current global virtual timestamp, as illustrated in the upper part of Figure 8.5.

In this way, a model simulating a series of remote resources may run in parallel with any locally

serviced or real-time executed threads.

VEX synchronises the event corresponding to thread T completing the execution of method

M with the associated job exiting the queueing network. At that point the virtual timestamp

of T , tx say, is the one determined from the queueing network and the VEX-maintained CPU

time of thread T is updated accordingly. The estimated duration of M is tx − t0.

8.3 Application in performance engineering

In this section we summarise our vision on how the model-integrating version of VEX can

support performance engineering throughout the software lifecycle. Although this approach is
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Figure 8.5: Differences in virtual time scheduling after a remote resource, depending on whether
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applicable to any software engineering methodology, it fits very well with existing processes

from test-driven agile development. Specifically, in the beginning of every iteration, a number

of use cases (or “stories”) are defined. Tests for these scenarios are implemented and a code

skeleton is set up to enable functional testing. This structure comprises code stubs, which are

methods that return a value, or mocks, that simulate the behaviour of objects. The idea is that

the performance engineer then identifies the scenarios with the highest performance risk and

develops performance tests to compare their execution times with the predefined performance

targets for each scenario. The performance tests execute/simulate the code of the corresponding

use-case in virtual time through VEX. This means that the predefined performance targets are

compared with virtual execution times, i.e. accumulated virtual times on the timeline of VEX,

rather than real execution times.

For Java applications the stubs and mocks of the performance critical path are annotated with

the XML files and parameters that correspond to open queueing networks that describe their

performance. The parameters of the network nodes correspond to service times of different
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resources, such as critical sections, external servers, CPUs of the simulating system or any

other shared system resource. Job arrival rates of the models are not taken into account.

These parameters can be populated as best- and worst case estimations, as in SPE [125] and

two corresponding performance tests can be defined for every scenario. Failure of the best-case

scenario performance test is considered as more critical than the worst-case one.

Having setup the stubs, the tests and the models, the idea is for the development team to

write code with a view to passing all tests successfully - both functional and performance ones.

Similarly to what happens when functional tests fail, performance test failures are notified to

the performance engineer. VEX provides a profile of the integrated application and supports

“what-if” performance prediction via update of the model parameters. When all performance

and functional tests are successfully passed, the performance engineer repeats the performance

critical tests on the complete code base in real time without VEX. The real time performance

tests should be successful, though to an extent this depends on the selection and parameteri-

sation of the models. This last step constitutes model validation.

Consider now what happens when a new “story” is to be incorporated in the code, as it

often happens in agile development. The use-case is implemented by a new method N , which

requires access to the same sources of an existing method M . Virtual time execution provides

performance predictions immediately, by re-using the model that describes M and enhancing

it with the features of the new method N . The engineers either annotate the code of M with

the new model, or define a subclass and override M there, associating the subclass’s method

with the new model. Any other method is “modelled” in virtual time using its existing code.

When N is implemented, the annotation of M is removed, and the complete code base is

performance-tested once again.

We note here that frequent application-wide testing, as the one performed during continuous

integration, may require a significant amount of time. In contrast, the duration of performance

tests in virtual time can be extremely fast, especially when many parts are simulated as models.
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8.4 Case study

We demonstrate how models are integrated in VEX by walking through the development of a

contrived server-client application based on a MySQL server. The purpose of this section is

to demonstrate the ability of VEX to allow models and code to ‘cooperate’ in a performance

engineering exercise and to deliver predictions that are ‘correct’, in that they correspond to

whatever models happen to be provided.

It is important to appreciate that this is not meant to be a performance evaluation case study.

Nor do we attempt to devise accurate or ‘realistic’ performance models for the various parts of

the case study application. Indeed, we have intentionally devised very simple models in order

to focus on the tools and methodology, rather than the case study itself. For the purposes of

this exercise the accuracy of the models we refer is therefore largely immaterial.

The exercise mimics the VEX-based performance engineering process that we envisage during

the development of an application. A key aspect is that at every point we have some combina-

tion of code and performance models that can be used to facilitate performance testing:

• At the outset of a project we specify quantitative performance targets for the application,

which might typically define minimum acceptable Quality of Service requirements or

Service-Level Agreements.

• The first phases of application development begin with a pure performance model, or

possibly a skeleton implementation that is capable of making calls to, as yet unimple-

mented, methods corresponding to the key top-level components of the application. Any

unimplemented code sections are stubs that have associated performance models and

may compute some minimal synthetic result so that they function correctly upon their

invocation.

• As the development proceeds, we gradually replace stubs with code which, in general,

will render the associated performance models obsolete. As the application development

proceeds, so the performance model predictions are replaced automatically with results
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from code profiling.

• The process ends with a complete application which, we hope, meets its specified per-

formance targets. As in the Software Performance Engineering methodology proposed

in [125] we can validate the models used throughout the process against the final code.

We essentially get validation for free.

• At any point the performance implications of any alternative implementation or design

decision can be explored by replacing measured method execution times with predictions

from a model or by time-scaling observed measurements.

VEX thus integrates traditional model-driven and profile-driven performance analysis into a

single framework.

In the scenario we consider the client-side issues a number of requests R to a server at a specified

average rate λ. Each thread will first check a local cache to see whether its request is served

locally. If not, the request will be sent to, and serviced by, a remote MySQL server that has its

query cache disabled. The result returned by the server will be cached for future use; the local

cache is assumed to use an LRU replacement policy. There are N different request types which

are issued as SQL queries to the server, which accesses the database of the TPC-W benchmark

[49]. The server always returns an integer.

The cache comprises a buffer of size Sc and is direct-mapped using a key that corresponds to the

request type. The maximum number of request types is N so, assuming the cache elements are

accessed randomly, we can prescribe the size Sc required to generate a hit rate of ρ = Sc/N . ρ

is used in a queueing model of the system to determine the routing probability from the request

source to the MySQL server; in the code it is used to determine the cache size (Sc = ρN).

The various parameter values/distributions we assume are summarised in Table 8.1. All mea-

surements have been taken on Host-2. In this example scenario we only consider single CPU

hosts and so the second core of the system is disabled. A number of dummy requests is issued

prior to the actual measurement start to limit warm-up effects from the JVM. For the MySQL

server we use version 5.5.
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No. of requests, R 3000
Request arrival rate, λ 400
No. of request types, N 52
Cache size, Sc 39
MySQL service time distribution Det(0.007)
Cache service time distribution Exp(20000)
Cache hit rate, ρ 0.75

Table 8.1: Parameter values and distributions used in the modelling case study

Figure 8.6: demo select.jsimg: Queueing network for the Pure model version

8.4.1 Pure model

We start the process by defining a code skeleton for the client, which spawns a new thread for

every new request. It then “thinks” for an amount of time by calling the think() method of a

ThinkingBehaviour interface. Initially, this method is described by a single infinite server node

sampling from an exponential distribution with rate λ. This simulates the time that the client

spawning thread is sleeping without occupying a resource. Each spawned client then invokes

the service by calling the service() method of a ServiceBehaviour interface. This method is

originally simulated by the model of Figure 8.6. In this model, the “Local Cache” is simulated

by a local infinite server node and the “MySQL Server” by a remote single-server queueing

node. Consistent with the assumptions set for the case study, the routing probabilities from

the source to the two nodes are ρ for the “Local Cache” and 1 − ρ for the “MySQL server”.

Running a virtual time performance test on the version with the model-simulated think() and

service() methods for R requests, we acquire the results of the “Pure model” line in Table 8.2.
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Figure 8.7: Code for unimplemented select() method.

8.4.2 Client-thinking implemented

In the next step we implement the thinking behaviour by executing real code that invokes

Thread.sleep() instead of simulating an infinite server. The sleep duration is defined by the

same exponential distribution as the model (with rate λ), while the rest of the unimplemented

code remains the same. We repeat the performance test with VEX and acquire the results of

the second row of a Table 8.2. The expected total time of the method remains close to the

“Pure model” one, though the standard deviation is higher, as measurements on (the now-

larger) implemented code increase the non-determinism of the results. We note here that if

instead of sleeping, a thread performed some work, it would contend for the same resources as

the “Local Cache” node of the model of Figure 8.6.

8.4.3 Partially-complete code

We start implementing the service() method by developing the cache handling. The new

form of the service() method is shown in Figure 8.8. The model-described method is now the

makeRequestToDBserver() method, invoked only upon a cache miss. The body of this method

is actually being executed returning always the same value. Its performance behaviour is defined

by the model provided in its annotation, which is depicted in Figure 8.9. This shows clearly

how real code and performance models are integrated in VEX. The control flow determined

by the execution of the real code determines the job arrival process in the performance model.

For the purposes of this exercise we have used a prescribed cache hit rate, whereas it would be

equally possible for the workload to be driven by a more elaborate caching scheme that would

not be as easy to model in a queueing network. Performance testing this version of the code

we get a similar execution time, as shown in Table 8.2.



234 Chapter 8. Model integration

Figure 8.8: Code for select() method with implemented cache. Note that the value returned
by the DB server is arbitrary (here 53 as shown).

Development stage Time [ms] Stdev [ms] Error (%)

Pure model 7857.10 53.366 -16.53

Client-thinking implemented 7751.67 145.938 -17.65

Partially-complete code 7800.30 158.632 -17.13

VEX complete code 8576.93 123.045 -8.88

Real complete code 9413.07 140.633 0

Table 8.2: Total times of performance tests in the different development stages of case study
using the modelling integration feature of VEX (30 runs per result)

8.4.4 Complete code

Completing the code base, we replace the body of the makeRequestToDbServer() method (code

in Figure 8.10) to issue the request to the MySQL server running on Host-3 from Appendix A

on the same local area network (code in Figure 8.11). Executing the performance test in

virtual time results in a slight increase in the expected times (fourth row of Table 8.2). We

regard this to be related to the overheads from real time I/O measurements, that also include

some background system noise, due to the fact that the OS scheduler determines when the

thread that is performing the measurement is resumed. Since the entire code base is complete,

we can also perform the performance tests in real time. Doing so we acquire the result next

to the “Real time” row of (Table 8.2), which is higher than the originally predicted values by

approximately 17%. This is because the OS scheduler does not resume sleeping threads exactly

at the time determined by each think-time distribution sample. Indeed, we measured a 12%
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Figure 8.9: demo select only db.jsimg: Queueing network for remote server only

Figure 8.10: Code for the implemented select() method invoking method getMySqlServerRe-
sponse of class SqlDriverInfo

increase in the average think time of the real-time execution compared to the requested λ rate.

This increases the total running time and decreases the load on the remote MySQL server,

which also leads to lower response times as shown by the histograms of Figure 8.12. Although

we could build this delayed resumption into VEX very straightforwardly, we have chosen not to

tie the tool to a particular operating system or JVM. With that said, it would be a simple task

to provide parameterisations of the tool for individual platforms with such known ‘artefacts’.

8.4.5 Cache study

To demonstrate a simple validation test, we might wish to compare the effect of the coded

cache size Sc of the “Partially-complete code” section, to the one observed in real time. The

total test time per cache size Sc = 1,. . . ,N for the “Real” and the “Partially-complete code”

are illustrated in Figure 8.13. This presents a good prediction accuracy for VEX for lower

cache sizes Sc. The prediction error is increased for higher values for Sc, due to the differences

in the think-times between the real-time execution and those in the partially-complete code

simulation (see Section 8.4.4 above).
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Figure 8.11: Implementation of SqlDriverInfo.getMySqlServerResponse that makes the request
to the MySQL server.
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Conclusion

9.1 Summary of Thesis Achievements

In this thesis a new approach for software performance engineering has been presented. We

have introduced the notion of virtual time execution, as a language-independent high-level

execution-driven simulation [32] approach, that offers performance predictions for hypothetical

performance scenarios at the method-level. Time is either modelled as a linear transformation

of observed real time or as an arbitrary transformation determined by the simulation of a

performance model. By doing so, we are able to simulate the execution of an application without

requiring any low-level system models. We have explored the tradeoffs between simulation

overhead and performance prediction accuracy in this context and have observed that our

approach provides performance predictions that are typically within 10% of the observed real

time at overheads of less than 1.5. However, fully profiled codebases and some short running

applications and stress tests led to significant outliers.

We have designed and developed a prototype for our methodology, by combining a language-

independent simulation core (VEX), with a Java-oriented instrumentation framework. During

the verification and validation process on synthetic and real benchmarks, we investigated the

impact of non-trivial effects to the virtual time methodology. We explored how the execution of

the framework’s instruments, scheduling decisions or JVM features like JIT compilation modify

238
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and affect the profiling of the application code.

Our approach differs from previous work on instrumentation intrusion [87, 86] and compensa-

tion [37, 42] in that it has to deal with the fact that the framework itself controls the execution

progress of the code it is profiling. We discussed how other JVM features like safepoint syn-

chronisation and garbage collection modify the states of threads at a lower level than VEX can

monitor, leading threads to run uncontrolled (assumed as waiting at a native synchronisation

point) or wrongly perform time warps in virtual time (virtual leap forward). We presented ex-

tensions to the VEX code to cover such cases, via adaptive profiling, the management of native

waiting threads or heuristics, and identified how “uncaught” effects are typically responsible

for the high simulation mispredictions. Thus we highlighted the limitations of the language-

independent core for Java applications and of execution-driven simulation in general at this

high level.

A separate component of our work concerned the simulation of I/O operations in VEX. To

account for such operations correctly, and simulate DMA in virtual time, we developed an

empirical runtime I/O-duration prediction scheme [50, 151, 122] and have investigated the

accuracy of various black-box prediction methods for the entire I/O subsystem. Each I/O

invocation point is identified via a unique id that is transparently added using dynamic bytecode

instrumentation techniques [23] on the application classes and static instrumentation on the

system classes. We have proposed a solution for time-scaling and a solution for random exclusion

of I/O operations as means to identify the overall performance effect of I/O on the application.

A threshold-based method to distinguish cached predictions has also been introduced. Our

methods have been evaluated on custom disk I/O stress tests and JDBC database drivers,

providing low prediction errors, showing how underpredictions have a significantly adverse

effect on prediction (in contrast to overpredictions). We also show that using an I/O threshold,

based on a histogram of I/O measured samples, improves the simulation accuracy.

In order to model a multicore simulation host, we have addressed the issue of parallel virtual

time execution, by fitting well known conservative time window [82] synchronisation schemes

to VEX. One such approach allows parallel progress until an action that decouples virtual time
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from real time progress occurs. The other approach uses a quantum-based synchronisation

scheme for all cores, that uses the VEX scheduler timeslice as a barrier. These methods have

been compared for our benchmarks generating predictions of similar accuracy as the unipro-

cessor simulation, when the number of virtual and physical cores match. We also demonstrate

the framework’s ability to simulation more cores than the ones physically available on the

simulation host, although this is not its intended use.

Finally, we outlined a vision for continuous performance testing in virtual time, by simulating

the durations of unimplemented, or even completed, methods with performance models. Queue-

ing networks have been used as examples to describe local or remote resources that respectively

contend or not for access to the CPU with threads that execute code. Code execution has

been decoupled from its timing aspect and a synchronisation scheme, that takes into account

JVM effects like native waiting, has been proposed to match the functional and timing aspects

of the virtual time execution. We have also demonstrated, by way of a case study how our

methodology might be used to performance test a database client application.

Overall our results demonstrate that, despite the various language-specific issues we encoun-

tered, the virtual time execution idea presents significant potential for future research to offer

a novel lightweight technique for performance testing throughout the software lifecycle.

9.2 Open Questions

9.2.1 Performance prediction quality

The performance predictions provided by VEX have presented considerable variability. Al-

hough predictions are generally within a 10% error, there have been cases that due to observer

effects and changes in JIT compilation schemes, major page-faults or program behaviour (native

waiting states or safepoint synchronisations), for which the prediction error was considerably

higher. This applies for both single- and multi-core architectures.

To deal with this issue we could quantify the expected accuracy of our approach. For instance,
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we could provide the user of the framework with warning signals that would indicate a risk of

mispredictions in the results reported by VEX. This is accomplished by measuring simulator

events that we have found to have a negative impact on prediction quality and define thresholds

over which we would issue warning signals.

For example, observer effects could be quantified by the total number of invocations to VEX

instruments, including method calls, I/O functions, synchronisation routines etc. The higher

the rate of such traps to the execution time of the simulation, the higher the expected prediction

error. The total number of major page-faults, whose duration is not accounted for in VEX, is

monitored by system counters. The frequency of transition to the native waiting state or the

number of invocations to Thread.yield are also quantifiable and can be used as indicative of the

expected prediction quality.

We have not validated the time-scaled results, except for cases where the expected results

were theoretically known in advance. Excluding the implementation of an optimised version

of a time-scaled code and timing it, using some kind of lower-level simulation to acquire the

“correct” value for a time-scaling factor would be possible in principle. This would either

require us to integrate a full-system simulator [84, 109] in VEX, convey to it the system state

at the point of method time-scaling and scale accordingly the returned timing result or execute

our benchmarks using a full-system simulator and modifying the timing results at the method

level.

9.2.2 Evaluation on large scale applications

VEX and JINE have been evaluated in terms of short synthetic and well-known small and

medium size multi-threaded client-side Java benchmarks, in an attempt to validate the simula-

tion approach on various workloads. However, VEX has not been used in an industrial-strength

scenario, that would allow it to address an existing performance problem. Indeed, the various

component parts of VEX (single/multicore simulation, JINE, I/O simulation and models) have

been presented more or less in isolation from each other - a larger case study that would involve

all of them, would better frame our work and indicate any further issues from the interactions
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of the components. The lack of such a study is attributed to the problems that have arisen

in the simpler case scenarios due to JVM specific issues and to the fact that most large scale

scenarios are multi-tier or distributed applications, that require a mechanism of synchronising

different processes in virtual time. Our work on multicore VEX constitutes a first step in this

direction.

9.2.3 I/O modelling

The I/O prediction scheme presented attempts to provide a high-level approximate empirical

prediction for I/O operations. Although our evaluation studies converge to the conclusion that

prediction schemes that favour overprediction yield good prediction results, there is no clear

optimal prediction method. In this respect, we could apply an adaptive prediction scheme,

similar to [151], that would evaluate different policies at runtime, before selecting the one that

provides the most accurate I/O predictions. The same could apply for parameters like the

size of the Markov chain, if that prediction approach was used, or the size of the prediction

buffer. Our scheme could also be supported by a more accurate I/O threshold, that would be

extracted from the simulation host, rather than being arbitrarily set by the user. However,

only integration with the OS would definitely distinguish between cached and disk hitting I/O

operations, thus alleviating the need for such a threshold.

Simulating a performance model (i.e. a queueing network), instead of measuring I/O durations

might also improve the prediction accuracy of the online I/O prediction system. All traffic

to the I/O subsystem (at the system call level) would be thus treated as job arrival events

to the designated performance models. Developing a generic VEX-modelling-driver interface,

we could even include a disk simulator [2] and map its predicted times on the VEX virtual

timeline. Alternatively, we could use the observed I/O durations to calibrate models of the file

system [101] and then simulate these models in the current or future virtual time executions.
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9.2.4 Full integration in the JVM source

Another direction for future research is to integrate all functionalities of VEX and JINE within

the JVM source. This would limit the discrepancy between the bytecode executed in real-time

and instrumented bytecode of the virtual time execution and relax the requirement to preload

a set of statically instrumented system classes. Conditionals or virtual methods in JVM classes

could be used to distinguish between regular and virtual time executions. These effects could

improve the prediction accuracy of the simulation, though it is not clear how significant this

improvement might be. Moreover, still experimental features like the explicit monitor trapping

and the low-level trapping to VEX within the JVM need to be properly tested and evaluated.

9.2.5 Optimisation choice selection

We have presented VEX as a simulator for analysing the sensitivity of the application’s perfor-

mance on a defined post-development optimisation choice, manifested as a time-scaling factor of

a method. However, no attempt has been made to automatically identify the main performance

bottlenecks and investigate how various time-scaling factors affect them. In turn, and taking

into account the typically low simulation overhead of VEX, we can imagine various optimisa-

tion choices being compared against each other at runtime. Virtual performance metrics like

response times, resource utilisation and thread waiting times could then be gathered for each

time-scaling factor to form an optimisation problem to find sets of method time-scaling factors

that yield the best performance improvements. These sets could then guide the performance

optimisation process. Performance models could also be used in a similar way.
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9.3 Future Work

9.3.1 Lower-level virtual time executions

An interesting future direction is to explore modifications to the underlying OS, e.g. by making

scheduling decisions on the basis of virtual time. Special-purpose traps to VEX would have to

be added to the kernel, to identify major page faults or any I/O operations hitting the cache.

We would also be able to distinguish the device that each I/O operation targets, which allows

us to investigate the effect of aggregating measurements at the I/O-device level to the accuracy

of the I/O-prediction scheme. In principle, processes would be distinguished to the ones been

scheduled in virtual time and ones running normally. The research questions here involve how

this might be implemented, what would be the side-effects to the system operation and the

effect this has on the prediction accuracy and overhead.

We have already discussed in Section 5.2.4 how using a lower-level integration of VEX and Java

can convey thread state changes within the JVM to VEX. This approach is particularly helpful

for the identification of “Native-waiting” threads, which remain otherwise “uncontrolled” by

the VEX scheduler until they invoke one of our framework’s instruments. This can lead to

inaccuracies on virtual time accounting and virtual time scheduling, whilst complicating the

management of virtual leaps forward. The custom JVM would follow the update-before-event

principle, according to which upcoming state changes are conveyed to VEX, before they take

place in real time. Besides the implementation complexity, the main disadvantage of this

approach is that it would require that users execute their programs on the modified version of

the JVM.

Preliminary results show that integrating VEX with the JVM indeed reduces the overhead of

virtual time simulation. This comprises encouraging evidence that more radical changes to the

JVM or the OS might well pay off.
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9.3.2 Native code integration

Integration of VEX with a native binary code is expected to overcome many of the issues

highlighted in this thesis, like safepoint synchronisation and hidden thread state changes, that

have rendered the JVM simulation such a challenging task. On the other hand, we would have

to find new and efficient ways to support features like adaptive profiling and class reloading.

9.3.3 Distributed VEX

Allowing different processes to synchronise on the same virtual timeline, would create a dis-

tributed VEX. This could follow the principles of Lax multicore synchronisation presented in

Chapter 7, under which only specific events are conveyed from one process to another. Al-

ternatively, we could identify and monitor the inter-process communication, correcting and

synchronising only when messages are sent from one process to another (like PDES approaches

[47]). At this point it is not clear, whether the Lax or this message-based approach would

perform best in light of time-scaling and virtual time leaps. Developing the distributed VEX

would enable us to apply our methodology to contemporary applications and address problems

of significant performance interest.

9.3.4 Integration of other modelling techniques

Following the classification presented in [8], the behavioural modelling of VEX is based on

real code execution (no-modelling) and the performance modelling of unimplemented methods

in queueing networks. A possible extension could replace queueing networks with annotated

UML profiles, that would then be transformed to the corresponding queueing networks. The

objective here is to hide the mathematical modelling side and bring the procedure closer to the

current practices of software engineering.



Appendix A

Experimental machines

A.1 Table of machines

Table A.1 presents the architectural details of the hosts that have been used throughout our

experiments.

Name Host-1 Host-2 Host-3 Host-4
Machine nb605-laptop scaramanga irmabunt nb605-laptop
Type Core 2 Duo Mobile Core 2 Duo Core 2 Duo Core 2 Duo Mobile
Model number P8600 E6750 E6850 P8600
Cores 2 2 2 2
Threads 2 2 2 2
Frequency (GHz) 2.4 2.66 3 2.4
L1 instruction cache (KB) 2 x 32 2 x 32 2 x 32 2 x 32
L1 data cache (KB) 2 x 32 (write-back) 2 x 32 (write-back) 2 x 32 (write-back) 2 x 32 (write-back)
L2 cache (KB) 3072 (shared) 3072 (shared) 3072 (shared) 3072 (shared)
Main mem (GB) 3 4 4 3
Instruction Set 64-bit 64-bit 64-bit 64-bit
Turbo Boost No No No No
Hyper-Threading No No No No
Linux kernel 2.6.38.15 2.6.28.10 2.6.38.2 2.6.28.0
Ubuntu release 11.04 9.04 10.04 9.04
Perfctr patch No Yes No Yes

Table A.1: Experiment hosts
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Benchmark descriptions

Benchmark Description
Array creation Measure the performance of creating arrays of integers, long, float and Object
Exception handling Measure the performance of exception throwing for default and user defined exceptions
Generic Measure the performance of generic code to increase a counter
Loop Measure the performance of for/while loop constructs
Method calling Measure the performance of calling normal/synchronised instance/static methods
Object creation Measure the performance of creating objects of classes with various fields
Thread Measure the performance of creating spawning and joining threads
EP NAS EP benchmark to generate 16M normally distributed random numbers
FFT 256-point Fast Fourier Transform (and inverse)
Fibonacci Calculate the 40th Fibannaci Number
Hanoi Solve the 25 disk Tower of Hanoi problem
Sieve Use sieve of Erasthosthenes to find prime numbers up to 10.000
IS NAS Integer Sort Benchmark for 1M integers

Table B.1: DHPC sequential JGF benchmark descriptions

Benchmark Description
SimpleBarrier Measure throughput of synchronising threads on a barrier using monitors
TournamentBarrier Measure throughput of synchronising threads on a barrier using Thread.yield
MethodSync Synchronise threads on a synchronised method
ObjectSync Synchronise threads on an object
ForkJoin Measure throughput of creating and joining threads
Crypt IDEA encryption
LUFact LU Factorisation
Moldyn Molecular Dynamics simulation
MonteCarlo Monte Carlo simulation
RayTracer 3D Ray Tracer
Series Fourier coefficient analysis
SOR Successive over-relaxation method
SparseMatMult Sparse matrix multiplication

Table B.2: JGF multi-threaded benchmark descriptions
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Benchmark Description Threaded I/O
compiler.compiler Compile the OpenJDK compiler 1/core Limited due to input data

in memory
compiler.sunflow Compile the sunflow benchmark 1/core Limited due to input data

in memory
compress Compress and decompress data using a modified Lempel-

Ziv method
1/core Data buffered

crypto.aes Encrypt and decrypt using AES 1/core Reading input files
crypto.rsa Encrypt and decrypt using DES 1/core Reading input files
crypto.signverify Sign and verify using md5 and sha hashing 1/core Reading input files
derby Derby DB performing BigDecimal computations 4 threads per db I/O in communication

with DB
mpegaudio Mpeg audio decoder 1/core Read 6 MP3 files
scimark.fft.large Fast Fourier Transformation for 2MB data set 1/core No
scimark.fft.small Fast Fourier Transformation for 512KB data set 1/core No
scimark.lu.large LU factorisation on a dense 2048 x 2048 matrix 1/core No
scimark.lu.small LU factorisation on a dense 100 x 100 matrix 1/core No
scimark.monte carlo Approximate value of pi using Monte Carlo simulation 1/core No
scimark.sor.large Jacobi Successive Over Relaxation for 2048x2048 grid 1/core No
scimark.sor.small Jacobi Successive Over Relaxation for 250x250 grid 1/core No
scimark.sparse.large Sparse matrix multiplication of a 200k x 200k matrix with

4m non-zero elements
1/core No

scimark.sparse.small Sparse matrix multiplication of a 25k x 25k matrix with
62.5k non-zero elements

1/core No

serial Serialise and de-serialise objects 1/core No
sunflow Use ray tracing to simulate graphics and visualisation 4/core No
xml.transform Compile xsl style sheets into java classes 1/core Reading 10 input files
xml.validation Validate XML instance documents against XML schema 1/core Reading 6 input files

Table B.3: SPECjvm2008 benchmark descriptions
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Framework usage

In this section we briefly present how VEX and JINE are used on a hypothetical class Main.class.

If the generic form that Main is executed on the JVM is:

java -cp <classpath> Main <args>

where <args> are the space-separated arguments of the class, then VEX simulation can be

triggered by:

java -cp <classpath> -Xbootclasspath/p:vtf.jar

-javaagent:jine.jar=<JINE options>

-agentpath:libjine.so=<VEX options> Main <args>

where vtf.jar is the jar file with the statically instrumented Java classes for the specific JVM,

jine.jar is the Java-agent (with options appearing in Table C.2) and libjine.so the low-level

JVMTI-agent that links to VEX (with the options of Table C.1). The classpath of libjine.so

needs to be included in the $LD LIBRARY PATH environmental variable. Although the directories

that contain the shared libraries used by libjine.so (amongst which libvex.so) are set during

the compilation of the library, it might be worth checking that all dependencies are correctly

resolved by using the ldd and ld linker tools. Any missing paths should be included in the

$LD LIBRARY PATH.
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C.1 Building and Options

C.1.1 VEX

The provided Makefile.inc file has to be modified for the local installation to link to the

PAPI, libunwind and GSL libraries. The compilation has been tested with gcc versions 4.3.3,

4.4.3, 4.6.1 and 4.6.3, PAPI 4.1.0 (configuring with the “–with-perfctr”, the “–with-perf-events”

or none), libunwind 0.99 and GSL 1.15. The compilation generates three shared libraries:

the libcinqs.so for the Queueing Networks simulator, the libvex.so for VEX and the

libjine.so for the low-level JINE.

C.1.2 JINE

The provided ant file is responsible for building both vtf.jar and jine.jar. To build the

jar of statically instrumented system classes for a particular JVM vtf.jar, the JAVA HOME

environmental variable has to be set to the home directory of that JVM installation. The jar

is created by typing:

# export JAVA_HOME=<path to JDK>

# ant create_static_classes

in the same directory as the build.xml file provided.

Following this, the JINE Java-agent jine.jar is built by:

# ant



C.1. Building and Options 251

Accepted parameters in form < parameter > [=< value >], < parameter > [=< value >], ..., < parameter > [=< value >]
VEX scheduler parameters
cpus=value Number of virtual cores to simulate
delays file=filename File with delays incurred by the instrumentation code. Otherwise using .vex delays file.

Otherwise profiling delays at runtime
help Print this parameter menu and exit
no recursive change Do not re-adapt recursive calls
no scheduling Do not schedule the threads in virtual time. Just profile their times
profile yield Profile the duration of sched yield
spex Enforce SPEX multicore synchronisation scheme [default: off]
timeslot=value Timeslot duration of the scheduler. If value < 10 000 then timeslot=value ms (1ms to 10sec)

otherwise timeslot=value ns
version Print version of VEX before starting simulation

VEX - Java specific parameters
exclude threads=filename File with the names of threads to be excluded
natwait=value Identification method for native waiting threads. Values: none — vexStats — stackTrace —

combined [default: vexStats]
no gc time Do not take into account the duration of garbage collections in method times
no jvmti Explicit monitor trapping: Do not rely on JVMTI to track monitor changes
poll nw Poll native waiting threads to determine whether they should be put back into the framework

VEX output parameters
output dir=dir Directory where output files will be written. [default: ./]
output format=value Format of output. Values: vtf—hprof [default: vtf]
print recursion Runtime output of recursive method names that will be re-adapted
profiling HPC Profile hardware performance counters (including VEX overhead) into < output dir >

/vtf cpi and cache stats.csv
prune percent Methods with estimated real time (inclusive) less than prune percent will not be reported

[default: disabled]
scheduler stats Print statistics for thread states found by the scheduler into < output dir >

/vtf scheduler stats.csv
stack trace mode Store results in stack trace mode (not only according to method names) - use only in com-

bination with with JINE’s stackTraceMode
time stats=value Print time increase statistics into < output dir > /vtf time stats.csv. Values: global —

thread — samples [default: global]
visualize Log the visualization information into < output dir > /vtf events.csv

I/O handling parameters
io=value I/O method used. Values: serial — strict — normal — lax [default: normal]
iobuffer=size Size of I/O prediction buffer [default: 16]
iopred=value I/O prediction method. Values: replay — avg — min — max — median — sampling — gsl

— cmean — linregr — aryulwalk — arburg — markov [default: avg-16]
iolevel=value Select the level of I/O prediction. Values: none — global — invpoint — ioop (invocation

point) [default: invpoint]
ioexclude=value Random exclusion of value % I/O operations measuring their duration in CPU time [default:

off]
iodisregard Opt-out all I/O operations. Only their CPU time is taken into account. Same as ioex-

clude=100. [default: off]
iothreshold=value I/O operations less than value ns will not be recognized as I/O but still measured in real

time [default: off]
iostats=value Generate I/O prediction statistics on the defined level. Values: off — global — invpoint —

all [default: off]
iolog=value Enable extra I/O logging options (iostats enables basic ones). Values: ext — gsl [default:

off]
ioimport=file prefix Import I/O measurements from file prefix into the current predictor [default: off]
ioexport=dir Export I/O measurements from current predictor into directory dir [default: off]
no io reporting Do not report I/O method times

Table C.1: VEX options
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adaptedMethods=< file > a file containing the methods that should be adapted together (time scaling factor/describing
performance model)

adaptiveProfiling< value > set invalidation policy. value can be ”=samples” (per method), ”:int absolute ms” (per
method) or ”:float relative time” (per method)

externalInstrumentation put profiling instruments externally of each profiled method to avoid changes in JIT-compiler
help print this menu and exit
limitJvmti do not use JVMTI to trap MonitorWait(ed) and MonitorContendedEnter(ed) events explic-

itly instrument the calls
limitProfiling=< value > limit the adding of profiling instruments. Value=none
lineLevelStackTrace I/O invocation points differentiate according to the calling methods lines
methodFile=< file > a file containing the methods that should be instrumented
noModifyTimeCalls do not modify calls System.nanoTime() and System.currentTimeMillis() to return simulation

timestamps
noWait do not instrument Object.wait calls
outputInstrClasses=< dir > output the instrumented classes bytecode under the specified directory
package=< file > a file containing the packages that should be instrumented
printoutMethodsFile=< file > a file containing classes and methods that should print out a message when executed (for

dbg reasons)
profileHost=option profile the instrumentation delays on this host and store them to .vex delays or file of de-

lays file VEX parameter option can be min — avg — median
profilingRun do not instrument the synchronised keywords
removeMonitors (only effective with limitJmvti): replace monitors by low-level locks
stats=< value > output instrumentation statistics to /data/jine instrumentation statistics.csv. Value =

global — class — method
trapIPs trap Interaction Points

Table C.2: JINE options
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