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Abstract. Irreversibility in quantum processes in the Bunimovichdaian and rectangular billiard
in the presence of noise is studied. For this purpose, a mogtiod based on Loschmidt echo and
quantum trajectories, as defined in the de Broglie—Bohm didaition, is used. Our results indicate
that the dynamics along the diagonal of the billiard is mesisgtive to noise when the wave packet
(or alternatively the quantum trajectories) collide witle torners of the billiard.
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INTRODUCTION

In the last years there has been a growing interest in the stiidhaotic phenomena
in mesoscopic systems [1]. Technical developments haves masisible the manufac-
turing of micro and nanostructures that allow charge trartspithout loss of electron
phase coherence [2]. For example, the ballistic transdogtextrons in semiconduc-
tor heterostructures has been recently studied experaihef&, 4]. Moreover, when the
system is confined in all dimensions and the sample is suffigielean, the correlations
in the energy spectrum against variations of parameteth, a&sithe sample geometry or
the intensity of an external field, are very similar to thamefd in quantum billiards [5],
thus making these simple systems excellent models for thisdf systems.

The classical dynamics in billiards is often chaotic [6]ddquantum chaos” is an
active field of research [7]. Most problems in quantum chaeso&theoretical nature,
falling within the category of semiclassical theories [Bhe important topic in quantum
chaos that has received recently a great deal of attentioeversibility [9, 10, 11]. This
concept has been be related to the theory of chaos, whiclagsichlly interpreted as
the result of exponential separation of trajectories. Hexen quantum mechanics, this
sensitivity is meaningless due to unitarity. For this rea$teres proposed to consider the
sensitivity to perturbations in quantum systems, as a me@véstigate the instability
of quantum motion [12]. Such quantity, called Loschmidte®@tE), in reference to the
famous Loschmidt—Boltzmann correspondence, is defined as

M(t) = (| exp(iHt) exp( —iHot) ) 2, (€]

(his set equal to unity throughout this paper). It measurealility of a system to return
to an initial state|y), after a forward evolution with a HamiltoniaHl, followed by a
(imperfect) reverse evolution with a perturbed Hamiltorlth= Hp + Z. Alternatively,
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LE can be thought of as comparing the evolution of an inittates under different
Hamiltonians (sensitivity to perturbations). For a givange of perturbation strengths,
the LE decays exponentially at a rate given by the smallesttify between the mean
Lyapunov exponent and the level broadening following frva golden rule [9, 10].

Summarizing, two basic ingredients in the idea of LE arevarsibility and sensitivity
to perturbations. However, the definition of LE’s reliesyoah magnitudes evaluated at
the end of the propagation process, an then is not able taderany information about
the involved history and the associated underlying physigchanisms. (Actually, this
can be a serious drawback as pointed out in [11].)

To avoid this problem, we propose here a new method to stuelersibility. It keeps
the same basic philosophy of the original LE, but it is basethe use of quantum
trajectories, as defined in the causal de Broglie—Bohm (BBnfilation of quantum
mechanics [13]. This complementary quantum theory of nmofiel] combines both
the accuracy of the standard quantum description with timeuexplanations derived
by a trajectory formalism, thus providing a powerful tool uaderstand the physics
underlying microscopic phenomena (see for example Ref).[This method has also
an important additional advantage, since within its framewit is very easy to consider
realistic perturbations, such as noise. This is partitpiateresting in connection with
billiards since, as stated before, they constitute ideaehfor the transport of electrons
in mesoscopic systems [7].

MODEL AND CALCULATIONS

The fundamental equations in the BB theory are derived bgdltcing the wave func-
tion in polar form,y(r,t) = R(r,t) €59 into the time—dependent Schrodinger equa-
tion, obtaining the continuity and “quantum” Hamilton—3dhtequations. The last one
contains the so—called quantum potential which, togethtr W, determines the total
forces acting on the system. Also, from it a quantum equatfanotion can be defined:
mr = OS, from which quantum trajectories are obtained by numentalration.

These orbits are used to define our measure of irrevergil@liarting from an ensem-
ble of initial conditions reproducing the initial probabjl density distribution [16], we
propagate them forward in time until a final valde, We then propagate them back-
wards, introducing in the process a perturbation congjstina kick given after every
integration step. To avoid confusions, we will denote tinisW” reversed time by. The
effect of the kick consists of a displacement of the particla new position, randomly
chosen within a given circle around the landing point. lis fhiocess we assume that the
pilot wave function do not changes during the kick. Finalg distance in configuration
spaced, between both orbits is monitored as a functiorr oin this way, we compute a
comparison, followed in time, of the unperturbed and péedrdynamics of the system.
From this, information about the mechanisms of irreveligilian be obtained. The idea
behind this procedure is to mimic noise.

The systems that we have chosen to study are two degreesdbfremodels con-
sisting of a particle of mass 1/2 enclosed in a desymmetsidium billiard of radius
r =1 and area ¥ 77/4 with Dirichlet boundary conditions, and a rectangulalidnitl of
side lengthl = 1 and the same area. The dynamics of the first system is knowe to
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FIGURE 1. Averaged distance between forward and reversed quantuta asta function of the reverse
time, 1, for different values of the perturbation strength paramét 0.003 (full line), 0.005 (dotted line),
0.008 (dashed line), and 0.011 (dashed—dotted line). Aevafity = 0.02 was used in the calculations. A
fitting to a quadratic expression of the averaged distantteegilateaus (observed for- 0.015) is shown
in the inset.

classically ergodic and the second integrable.

RESULTSAND DISCUSSION

We first examine the dynamics of a wave packet running aloaglidigonal orbit going
from the upper left (square) corner to the lower right (rouratner of the stadium at an
energy value oE=2304, for which the period i = 0.0466. As described in Ref. [17],
the packet initially moves following the classical path hwi slight dispersion. After
the first rebound at the lower right cornér~ 0.009), the packet spreads~ 0.019),
experiencing the well known defocalization effect desedibn [18]. Afterwards, the
dispersed wave collides with the upper left corner, giviisg to a noticeable series
of horizontal fringest(~ 0.028— 0.047). For subsequent times other rebounds take
place, originating at > 0.066 a complicated structure in the distribution of the quamt
probability density.

In Fig. 1 we show the distancd, averaged over 20 quantum trajectories propagated,
using a Gear stiff method with tolerance control, up to a fimak of t = 0.02, for
different values of the perturbation strength (paramegeriby the kicking radiug).
Notice that the origin of the reversed time= 0, corresponds to the final point of the
forward propagatiort;. As can be seen, the behavior of the four curves is the same. Fo
the lowest timeg, < 0.008, they grow very slowly and linearly. After that, the aaged
distance increases dramatically in a cubic fashion for gioqeto the order of ~ 0.01.

And finally, for 0.015< t < 0.020, the values ofl stabilize oscillating slightly around
some sort of plateaus.

More interesting is the relationship existing between ¢hresults and the dynamics
of the original packet [17]. The first part of tltevs. T plots (showing a linear behavior)
corresponds to a period of time in which the particle movesifithe center of the
stadium to just before the lower right corner. The packethisrin a semiclassical
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FIGURE 2. Averaged distance between forward and reversed quantuta asta function of the reverse
time, 7, for the same values of the perturbation strength congiderEig. 1 and values df = 0.04 (a),
and 0.06 (b).

regime, in which no much dispersion (irreversibility) ispexted, in perfect agreement
with our numerical findings. On the contrary, in the interwat 0.008— 0.012 the, now,
perturbed dynamics include the bounce with the corner. Héoeof interference of the
packet with itself happens, and a great dispersion due tpeh@rbation takes place.
This corresponds to the big, cubic growth observed in thepeded values ofl. Also,
for T ~ 0.02 we are at the echo, and then our results can be comparedhwtb that
would be obtained from the usual LE theory [9, 10]. This is elam the inset to the
figure, where the functional form afat the plateauslp, as a function of the magnitude
of the perturbationg, is shown. As it is seen, this dependence is quadratic witra v
good accuracy, thus indicating that we are in a regime cbetrdy the Fermi golden
rule [10]. Accordingly, we can conclude that noise—typeymdations like ours should
be considered as generic from the point of view of the LE.

Let us discuss now what happens when longer final tirgesare considered, thus
allowing a more complicated dynamics to enter into play. fd=lts are shown in Fig.
2 for two values of this parameter. As can be seen similartesne obtained [17],
i.e. big increases id and then irreversibility, takes place only for those valagthe
time for which trajectories collide with the corners of thadium, being there where
the effect of the perturbation is stronger. Also, the plassia Fig. 2 are not completely
flat, but rather they show a conspicuous decreasing behthatrfor example, in the
case of Fig. 2(b) is quite important in the rangd®< 17 < 0.047. The reason for this
behavior can be understood if one considers that in thegesanf the reverse time, the
packet is travelling from the upper left to the lower rightrers, where it takes place a
dynamics influenced by the self—focal point. This createsamtum potential that forces
the packet to return close to the original unperturbed paliich makes the separation
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FIGURE 3. Same as Fig. 1 for a rectangular billiard of side length unitgl area 1#/4. The inset
shows a cubic fit of the values dfat the echo timer = 0.02, with the perturbation parametér,

d to go down.

To conclude this section, let us compare the results oltandar with those corre-
sponding to the rectangular stadium, for which the dynansicompletely integrable,
and then regular and non—chaotic. The results are showrgs Biand 4. As can be
seen the values for the trajectories separation is alwagestgrthan in the case of the
(chaotic) stadium billiard considered before. This is imeggnent with the results ob-
tained by Prosen [19] for the standard LE. Moreover, thewations shown in Figs. 3
and 4 do not show the presence of any plateau, as opposed thag@ens in the case
of the stadium. Finally, the values dfat the echo time increase cubically (see inset
to Fig. 3) withe the parametdr controlling the perturbation strength, again behaving
differently that in the case of the stadium billiard.

CONCLUDING REMARKS

In this paper we have presented a novel method to study isiNéy in quantum
processes. This method is similar in spirit to the LE intreetiby Peres [12], but recast
in terms of quantum trajectories, as defined in BB theonhisway, useful information
about the history and mechanisms involved in the pertwhairocess are obtained.
This method has been applied to the stadium billiard witts@oa model which
is adequate for electrons transport in mesoscopic cavies principal results are
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FIGURE 4. Same as Fig. 2(a) for a rectangular billiard of side lengtityuand area 1#/4.



summarized as following. First, the dynamics is sensitivéhie perturbation mainly
when the particle is bouncing at the corners, points in wilightrajectories separate
from each other cubically in time, on average. Second, tligertype perturbation that
has been used in the present work behaves in a totally gemayicas it is indicated by
the fact that the Fermi golden rule regime is found. Thirdnparison with the results
obtained for a rectangular billiard, in which the dynamgsagular, shows that in this
later case the growth af is greater than for the classically chaotic stadium bitljan
agreement with previous results obtained for the usual LE.

Finally, we should remark that in our calculation times beyahe Ehrenfest time
have not been considered. For these longer times, largéeirgace effects in the pilot
wave guiding the quantum trajectories, and then the contplekthe associated quan-
tum potential, is much higher and widespread over all condigon space. This point
is very interesting and deserves further investigationichvlwill imply an enormous
computational effort if a reasonable average over initaditions is to be maintained.
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