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Abstract. Irreversibility in quantum processes in the Bunimovich stadium and rectangular billiard
in the presence of noise is studied. For this purpose, a novelmethod based on Loschmidt echo and
quantum trajectories, as defined in the de Broglie–Bohm formulation, is used. Our results indicate
that the dynamics along the diagonal of the billiard is most sensitive to noise when the wave packet
(or alternatively the quantum trajectories) collide with the corners of the billiard.
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INTRODUCTION

In the last years there has been a growing interest in the study of chaotic phenomena
in mesoscopic systems [1]. Technical developments have made possible the manufac-
turing of micro and nanostructures that allow charge transport without loss of electron
phase coherence [2]. For example, the ballistic transport of electrons in semiconduc-
tor heterostructures has been recently studied experimentally [3, 4]. Moreover, when the
system is confined in all dimensions and the sample is sufficiently clean, the correlations
in the energy spectrum against variations of parameters, such as the sample geometry or
the intensity of an external field, are very similar to those found in quantum billiards [5],
thus making these simple systems excellent models for this kind of systems.

The classical dynamics in billiards is often chaotic [6], and “quantum chaos” is an
active field of research [7]. Most problems in quantum chaos are of theoretical nature,
falling within the category of semiclassical theories [8].One important topic in quantum
chaos that has received recently a great deal of attention isirreversibility [9, 10, 11]. This
concept has been be related to the theory of chaos, which is classically interpreted as
the result of exponential separation of trajectories. However, in quantum mechanics, this
sensitivity is meaningless due to unitarity. For this reason, Peres proposed to consider the
sensitivity to perturbations in quantum systems, as a mean to investigate the instability
of quantum motion [12]. Such quantity, called Loschmidt echo (LE), in reference to the
famous Loschmidt–Boltzmann correspondence, is defined as

M(t) = |〈ψ|exp(iĤt)exp(−iĤ0t)|ψ〉|2, (1)

(h̄ is set equal to unity throughout this paper). It measures theability of a system to return
to an initial state,|ψ〉, after a forward evolution with a Hamiltonian,̂H0, followed by a
(imperfect) reverse evolution with a perturbed Hamiltonian Ĥ = Ĥ0 +Σ. Alternatively,
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LE can be thought of as comparing the evolution of an initial state under different
Hamiltonians (sensitivity to perturbations). For a given range of perturbation strengths,
the LE decays exponentially at a rate given by the smallest quantity between the mean
Lyapunov exponent and the level broadening following from the golden rule [9, 10].

Summarizing, two basic ingredients in the idea of LE are irreversibility and sensitivity
to perturbations. However, the definition of LE’s relies only on magnitudes evaluated at
the end of the propagation process, an then is not able to provide any information about
the involved history and the associated underlying physical mechanisms. (Actually, this
can be a serious drawback as pointed out in [11].)

To avoid this problem, we propose here a new method to study irreversibility. It keeps
the same basic philosophy of the original LE, but it is based in the use of quantum
trajectories, as defined in the causal de Broglie–Bohm (BB) formulation of quantum
mechanics [13]. This complementary quantum theory of motion [14] combines both
the accuracy of the standard quantum description with intuitive explanations derived
by a trajectory formalism, thus providing a powerful tool tounderstand the physics
underlying microscopic phenomena (see for example Ref. [15]). This method has also
an important additional advantage, since within its framework it is very easy to consider
realistic perturbations, such as noise. This is particularly interesting in connection with
billiards since, as stated before, they constitute ideal model for the transport of electrons
in mesoscopic systems [7].

MODEL AND CALCULATIONS

The fundamental equations in the BB theory are derived by introducing the wave func-
tion in polar form,ψ(r, t) = R(r, t) eiS(r,t) into the time–dependent Schrödinger equa-
tion, obtaining the continuity and “quantum” Hamilton–Jacobi equations. The last one
contains the so–called quantum potential which, together with V, determines the total
forces acting on the system. Also, from it a quantum equationof motion can be defined:
mṙ = ∇S, from which quantum trajectories are obtained by numericalintegration.

These orbits are used to define our measure of irreversibility. Starting from an ensem-
ble of initial conditions reproducing the initial probability density distribution [16], we
propagate them forward in time until a final value,t f . We then propagate them back-
wards, introducing in the process a perturbation consisting of a kick given after every
integration step. To avoid confusions, we will denote this “new” reversed time byτ. The
effect of the kick consists of a displacement of the particleto a new position, randomly
chosen within a given circle around the landing point. In this process we assume that the
pilot wave function do not changes during the kick. Finally,the distance in configuration
space,d, between both orbits is monitored as a function ofτ. In this way, we compute a
comparison, followed in time, of the unperturbed and perturbed dynamics of the system.
From this, information about the mechanisms of irreversibility can be obtained. The idea
behind this procedure is to mimic noise.

The systems that we have chosen to study are two degrees of freedom models con-
sisting of a particle of mass 1/2 enclosed in a desymmetrizedstadium billiard of radius
r = 1 and area 1+π/4 with Dirichlet boundary conditions, and a rectangular billiard of
side lengthl = 1 and the same area. The dynamics of the first system is known tobe
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FIGURE 1. Averaged distance between forward and reversed quantum orbits as a function of the reverse
time,τ, for different values of the perturbation strength parameter,ξ : 0.003 (full line), 0.005 (dotted line),
0.008 (dashed line), and 0.011 (dashed–dotted line). A value of t f = 0.02 was used in the calculations. A
fitting to a quadratic expression of the averaged distance atthe plateaus (observed fort > 0.015) is shown
in the inset.

classically ergodic and the second integrable.

RESULTS AND DISCUSSION

We first examine the dynamics of a wave packet running along the diagonal orbit going
from the upper left (square) corner to the lower right (round) corner of the stadium at an
energy value ofE=2304, for which the period isT = 0.0466. As described in Ref. [17],
the packet initially moves following the classical path with a slight dispersion. After
the first rebound at the lower right corner (t ≃ 0.009), the packet spreads (t ∼ 0.019),
experiencing the well known defocalization effect described in [18]. Afterwards, the
dispersed wave collides with the upper left corner, giving rise to a noticeable series
of horizontal fringes (t ≃ 0.028− 0.047). For subsequent times other rebounds take
place, originating att ≥ 0.066 a complicated structure in the distribution of the quantum
probability density.

In Fig. 1 we show the distance,d, averaged over 20 quantum trajectories propagated,
using a Gear stiff method with tolerance control, up to a finaltime of t f = 0.02, for
different values of the perturbation strength (parameterized by the kicking radiusξ ).
Notice that the origin of the reversed time,τ = 0, corresponds to the final point of the
forward propagation,t f . As can be seen, the behavior of the four curves is the same. For
the lowest times,t ≤ 0.008, they grow very slowly and linearly. After that, the averaged
distance increases dramatically in a cubic fashion for times up to the order oft ∼ 0.01.
And finally, for 0.015< t < 0.020, the values ofd stabilize oscillating slightly around
some sort of plateaus.

More interesting is the relationship existing between these results and the dynamics
of the original packet [17]. The first part of thed vs.τ plots (showing a linear behavior)
corresponds to a period of time in which the particle moves from the center of the
stadium to just before the lower right corner. The packet here is in a semiclassical

221 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.

Downloaded to  IP:  157.92.4.75 On: Wed, 03 Dec 2014 17:07:18



0 0.01 0.02 0.03 0.04
τ

0

0.02

0.04

0.06

d

0 0.01 0.02 0.03 0.04
0

0.02

0.04

0.06

0 0.01 0.02 0.03 0.04 0.05 0.06
τ

0

0.02

0.04

0.06

0.08

d

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.02

0.04

0.06

0.08

(b)

(a)

FIGURE 2. Averaged distance between forward and reversed quantum orbits as a function of the reverse
time,τ, for the same values of the perturbation strength considered in Fig. 1 and values oft f = 0.04 (a),
and 0.06 (b).

regime, in which no much dispersion (irreversibility) is expected, in perfect agreement
with our numerical findings. On the contrary, in the intervalτ = 0.008−0.012 the, now,
perturbed dynamics include the bounce with the corner. Herea lot of interference of the
packet with itself happens, and a great dispersion due to theperturbation takes place.
This corresponds to the big, cubic growth observed in the computed values ofd. Also,
for τ ∼ 0.02 we are at the echo, and then our results can be compared withthose that
would be obtained from the usual LE theory [9, 10]. This is done in the inset to the
figure, where the functional form ofd at the plateaus,dp, as a function of the magnitude
of the perturbation,ξ , is shown. As it is seen, this dependence is quadratic with a very
good accuracy, thus indicating that we are in a regime controlled by the Fermi golden
rule [10]. Accordingly, we can conclude that noise–type perturbations like ours should
be considered as generic from the point of view of the LE.

Let us discuss now what happens when longer final times,t f , are considered, thus
allowing a more complicated dynamics to enter into play. Theresults are shown in Fig.
2 for two values of this parameter. As can be seen similar results are obtained [17],
i.e. big increases ind and then irreversibility, takes place only for those valuesof the
time for which trajectories collide with the corners of the stadium, being there where
the effect of the perturbation is stronger. Also, the plateaus in Fig. 2 are not completely
flat, but rather they show a conspicuous decreasing behaviorthat, for example, in the
case of Fig. 2(b) is quite important in the range 0.03< τ < 0.047. The reason for this
behavior can be understood if one considers that in these ranges of the reverse time, the
packet is travelling from the upper left to the lower right corners, where it takes place a
dynamics influenced by the self–focal point. This creates a quantum potential that forces
the packet to return close to the original unperturbed path,which makes the separation
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FIGURE 3. Same as Fig. 1 for a rectangular billiard of side length unityand area 1+π /4. The inset
shows a cubic fit of the values ofd at the echo time,τ = 0.02, with the perturbation parameter,ξ .

d to go down.
To conclude this section, let us compare the results obtained so far with those corre-

sponding to the rectangular stadium, for which the dynamicsis completely integrable,
and then regular and non–chaotic. The results are shown in Figs. 3 and 4. As can be
seen the values for the trajectories separation is always greater than in the case of the
(chaotic) stadium billiard considered before. This is in agreement with the results ob-
tained by Prosen [19] for the standard LE. Moreover, the calculations shown in Figs. 3
and 4 do not show the presence of any plateau, as opposed to what happens in the case
of the stadium. Finally, the values ofd at the echo time increase cubically (see inset
to Fig. 3) withe the parameterξ controlling the perturbation strength, again behaving
differently that in the case of the stadium billiard.

CONCLUDING REMARKS

In this paper we have presented a novel method to study irreversibility in quantum
processes. This method is similar in spirit to the LE introduced by Peres [12], but recast
in terms of quantum trajectories, as defined in BB theory. In this way, useful information
about the history and mechanisms involved in the perturbation process are obtained.

This method has been applied to the stadium billiard with noise, a model which
is adequate for electrons transport in mesoscopic cavities. Our principal results are
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FIGURE 4. Same as Fig. 2(a) for a rectangular billiard of side length unity and area 1+π /4.
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summarized as following. First, the dynamics is sensitive to the perturbation mainly
when the particle is bouncing at the corners, points in whichthe trajectories separate
from each other cubically in time, on average. Second, the noise–type perturbation that
has been used in the present work behaves in a totally genericway, as it is indicated by
the fact that the Fermi golden rule regime is found. Third, comparison with the results
obtained for a rectangular billiard, in which the dynamics is regular, shows that in this
later case the growth ofd is greater than for the classically chaotic stadium billiard, in
agreement with previous results obtained for the usual LE.

Finally, we should remark that in our calculation times beyond the Ehrenfest time
have not been considered. For these longer times, large interference effects in the pilot
wave guiding the quantum trajectories, and then the complexity of the associated quan-
tum potential, is much higher and widespread over all configuration space. This point
is very interesting and deserves further investigation, which will imply an enormous
computational effort if a reasonable average over initial conditions is to be maintained.
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