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Reconfigurable Computers (RCs) with hardware (FPGA) co-processors can achieve significant performance improvement
compared with traditional microprocessor (uP)-based computers for many scientific applications. The potential amount of
speedup depends on the intrinsic parallelism of the target application as well as the characteristics of the target platform. In
this work, we use image processing applications as a case study to demonstrate how hardware designs are parameterized by the
co-processor architecture, particularly the data I/O, i.e., the local memory of the FPGA device and the interconnect between
the FPGA and the yP. The local memory has to be used by applications that access data randomly. A typical case belonging
to this category is image registration. On the other hand, an application such as edge detection can directly read data through
the interconnect in a sequential fashion. Two different algorithms of image registration, the exhaustive search algorithm and the
Discrete Wavelet Transform (DWT)-based search algorithm, are implemented on hardware, i.e., Xilinx Vertex-IIPro 50 on the
Cray XD1 reconfigurable computer. The performance improvements of hardware implementations are 10x and 2x, respectively.
Regarding the category of applications that directly access the interconnect, the hardware implementation of Canny edge detection

can achieve 544 speedup.

1. Introduction

Reconfigurable Computers (RCs) are traditional computers
extended with co-processors based on reconfigurable hard-
ware like FPGAs. Representative RC systems include SGI
RC100 [1], SRC-6 [2], and Cray XD1 [3]. These enhanced
systems are capable of providing significant performance
improvement for scientific and engineering applications [4].
The performance of a hardware design on an FPGA device
depends on both the intrinsic parallelism of the design as well
as the characteristics of the FPGA co-processor architecture,
which consists of the FPGA device itself and the surrounding
data interface. Due to the limited size of the internal Block
RAM memory, it is not applicable to store large amounts
of data inside the FPGA device. Therefore external, however,
local SRAM modules are generally connected to the hardware
co-processor for data storage, such as the example shown in

Figure 1. Furthermore, an FPGA co-processor can directly
access the host memory through the interconnect, which
generally provides a sustained bandwidth up to several GB/s.
The available number and data width of local memory banks
and the interconnect channels play important roles in the
hardware implementation on an FPGA device and decide the
parallelism a design can achieve in many cases. In this work,
image processing algorithms are adopted as a case study to
demonstrate how hardware designs can be parameterized by
the data I/O of the FPGA co-processor in order to achieve the
best performance.

Image processing applications are capable of gaining a
significant performance improvement with hardware design
[5, 6]. Two categories of image processing applications are
selected to represent hardware designs that present different
data I/O requirements. The first category of applications is
image registration, which requires the use of local memory
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for data access. The second category of applications is
edge detection, which directly reads from or writes to the
interconnect in a streaming fashion. Image registration is a
very important image processing task. It is used to align or
match pictures taken in different conditions (at a different
time, angle, or from different sensors). A vast majority of
automatic image processing systems require the use of image
registration processes. Common image registration applica-
tions include target recognition (identification of a small
target inside a much bigger image), satellite image alignment
in order to detect changes such as land usage or forest fires
[7], matching stereo images to recover depth information,
and superposing medical images taken at different moments
for diagnosis [8, 9]. As an example of the applications in the
second category, edge detectors encompass image processing
algorithms that identify the positions of edges in an image.
Edges are discontinuities in terms of intensity or orientation
or both and generally represent meaningful characteristics
of the image (boundaries of objects, e.g.). Commonly, edge
detectors are used to filter relevant information in an image.
Thus, they greatly reduce the amount of processing needed
for interpreting the information contents of an image. One of
the most important edge detection algorithms is the Canny
edge detection [10]. The Canny edge detection operator
was developed by Canny in 1986 and uses a multistage
algorithm to detect a wide range of edges in images. It
remains until now, as a state-of-the-art edge detector used
in many applications.

The implementation of image registration and edge
detection on reconfigurable computers has been previously
reported in [11, 12], respectively. In this paper, we not only
present the detail of hardware design itself, but also exploit
the role of data I/O of the FPGA co-processor in the design
process. More precisely, we demonstrate how the design
of image processing applications is parameterized by local
memory architecture and DMA interface on reconfigurable
computers. Furthermore, the hardware processing time of
both applications are formalized in terms of clock cycles.
The remaining text is organized as follows. In Section 2,
we discuss the related work based on literature survey. In
Section 3, two related image registration algorithms, the
exhaustive search algorithm and the DWT-based search algo-
rithm, and their hardware implementations are discussed.
Section 4 focuses on the design of Canny edge detection in
hardware. The implementation of all applications on the
Cray XD1 reconfigurable computer is presented in Section 5.
Finally, Section 6 concludes this work.

2. Related Work

Since image registration is a computation-demanding pro-
cess in general, hardware (e.g., FPGA device) is leveraged to
improve the processing performance. In [8], Dandekar and
Shekhar introduced an FPGA-based architecture to acceler-
ate mutual information-(MI)-based deformable registration
during computed tomography-(CT)-guided interventions.
Their reported implementation was able to reduce the
execution time of MI-based deformable registration from
hours to a few minutes. Puranik and Gharpure presented
a multilayer feedforward neural network (MFNN) imple-
mentation in Xilinx XL4085 for template search in standard
sequential scan and detect (SSDA) image registration [13].
In [14], Liu et al. proposed a PC-FPGA geological image
processing system in which the FPGA was used to imple-
ment Fast Fourier Transform-(FFT)-based automatic image
registration. In [15], El-Araby et al. prototyped an automatic
image registration methodology for remote sensing using
a reconfigurable computer. However, these previous work
only emphasized the image registration algorithm itself. The
FPGA data I/O as a factor in the design was not discussed in
detail.

Low-level image processing operators, such as digital
filters, edge detectors and digital transforms are good
candidates for hardware implementation. In [16], a generic
architectural model for implementing image processing
algorithms of real-time applications was proposed and eval-
uated. In [17], a Canny edge detection application written
in Handel-C and implemented in the FPGA device was
discussed. The proposed architecture is capable of producing
one edge-pixel every clock cycle. The work in [18] illustrated
how to use design patterns in the mapping process to
overcome image processing constraints on FPGAs. However,
most of the previous works, for example, [16-18], only
focused on the algorithms alone and did not consider the
platform characteristics as a factor in the design.

3. Image Registration

In this section, we discuss how to implement image registra-
tion algorithms in hardware to exploit the processing paral-
lelism, which is bounded by the local memory architecture.

3.1. Background. Image registration can be defined as a
mapping between two images, the reference image R and the
test image T, both spatially and with respect to the intensity
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FiGure 2: Rigid-body transformation (scale = 1).

[19]. If these images are defined as two 2D arrays of a given
size denoted by I, and I, where I;(x, y) and L(x, y) each
map to their respective intensity values, then the mapping
between images can be expressed as

L(x,y) =g(L(f(x,y))), (1)

where f is a 2D spatial-coordinate transformation and g is a
1D intensity or radiometric transformation. More precisely,
f is a transformation that maps two spatial coordinates, x
and y, to new spatial coordinates x” and y":

(', y") = f(x ). 2)

g is used to compensate gray value differences caused by
different illuminations or sensor conditions.

According to [19], image registration can be viewed as
the combination of four components:

(1) a feature space, that is, the set of characteristics used
to perform the matching and which are extracted
from the reference and test images;

(2) a search space, that is, the class of potential transfor-
mations that establish the correspondence between
the reference and test images;

(3) a search strategy, which is used to decide how to
choose the next transformation from the search
space;

(4) a similarity metric, which evaluates the match
between the reference image and the transformed test
image for a given transformation chosen in the search
space.

The fundamental characteristic of any image registration
technique is the type of spatial transformation or mapping
used to properly overlay two images. The most common
transformations are rigid-body, affine, projective, perspec-
tive, and global polynomial. Rigid-body transformation is
composed of a combination of a rotation (), a translation
(tx,ty), and a scale change (s). An example is shown in
Figure 2. It typically has four parameters, tx, t,, s, 0, which

map a point (xj, 1) of the first image to a point (x2, y2) of
the second image as follows:

X by cosf —sinb)\ [x;
= +
V2 ty ’ sin@ cosf )\ y (3)
or p,=1t+sRp,,

where p, and p, are the coordinate vectors of the two images;
t is the translation vector; s is a scalar scale factor; R is the
rotation matrix. Since the rotation matrix R is orthogonal,
the angles and lengths in the original image are preserved
after the registration. Because of the scalar scale factor s,
rigid-body transformation allows changes in length relative
to the original image, but they are the same in both x and y
axes. (Please note both (x1, 1) and (x3, y,) are coordinates in
the same Cartesian coordinate system with the origin O.)

Computing the correlation coefficient is the basic statis-
tical approach to registration and is often used for template
matching or pattern recognition. A correlation coefficient
is a similarity measure or match metric, that is, it gives a
measure of the degree of similarity between a template (the
reference image) and an image (the transformed test image).
The correlation coefficient between the reference image R
and the image T’, which is the test image after rigid-body
transformation, is given as

Sy (R(x,y) = pur) (T (x, y) — pr)
Ve (R y) = ) Sy (T7(%,9) — pr)”

(4)

where pp and yr are mean of the image R and T'. If the
image R matches T’, the correlation coefficient will have its
peak with the corresponding transformation. Therefore, by
computing correlation coefficients over all possible transfor-
mations, it is possible to find the transformation that yields
the peak value of the correlation coefficient.

In this work, rigid-body transformation is selected for
the registration between two images and the correlation
coefficient is used to measure the similarity. Further, we
assume that both the reference image and the test image are
8-bit grayscale and share the same size.

Given a search space, (A®,AX,AY) theoretically all tuples
of (0,t,,t,) are to be tested to find the tuple that generates
the maximum correlation coefficient between the reference
image and the transformed test image (In this work, the
scale factor s is fixed at 1.). Figure 3 shows the two steps
to test each tuple. The first step is to apply a rigid-body
transformation on the test image T to get T”. The second step
is to calculate the correlation coefficient between T” and the
reference image R. As shown in Figure 3(b), only the pixels
of both images within the shaded region are used during the
calculation. Since the test image T is rotated and translated
to obtain T”, some parts of 7" are beyond the shaded region.
In other words, some portions of the shaded region (shown
as crossed regions in the left Cartesian coordinate system of
Figure 3(b)) do not belong to T". For the pixels belonging to
these crossed regions, their values are treated as zeros in the
calculation.
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F1GURE 3: Two steps in image registration: (a) rigid-body transformation on the test image T, (b) calculate correlation coefficient between

the transformed test image T" and the reference image R.
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FIGURE 4: Local memory data storage layout in the exhaustive search
algorithm for image registration.

In the remaining part of this section, two different
approaches based on rigid-body transformation are dis-
cussed in details. The first approach literally tests the whole
search space to find the best tuple of (6,t,,t,). The second
approach applies DWT on both the reference image and
the test image to reduce the search resolutions in order to
improve the search efficiency.

3.2. Exhaustive Search Algorithm. As its name implies, the
exhaustive search algorithm tests all possible tuples of
(6,tx,t,) with a fixed search resolution, g, dx, and J,, on
each dimension, respectively, in order to find the tuple
that produces the highest correlation coefficient between
the transformed test image and the reference image. If this
algorithm is implemented on a scalar microprocessor, these
tuples have to be tested in sequence. However, if the same
algorithm is implemented in hardware, multiple tuples can
be tested in parallel to improve the performance.

Since the size of an image is normally bigger than the
amount of available Block RAM inside an FPGA device, the
local external memory is used to store images. Assuming
there are P + 2 individual local memory banks connected
directly to the FPGA device, and one bank keeps the reference
image R, one bank keeps the test image T. The other
remaining P banks are used to store P transformed test
images T’s using different tuples of (6,,t,), as shown in
Figure 4. If we further assume that each memory bank has
its own independent read and write ports, P transformations
of the test image can be carried out concurrently. The
calculation of correlation coefficients between the image R
and P different T's can be performed in parallel as well.

Given the coordinate of one pixel in the original image,
(3) is used to calculate the coordinate of the corresponding
pixel in the transformed image. Then, the intensity of the
pixel (x1, y1) in T can be written into 7" at the coordinate
of (x2, y2). If we assume that there are S pixels in the original
image and the hardware implementation is fully pipelined,
the transformation step would take approximately S clock
cycles. Furthermore, some extra clock cycles are needed
to initialize the intensities of all pixels within the shaded
region to zero due to two reasons. First, there are several
regions within which the pixels do not belong to T”, as
shown in Figure 3(b). Second, there may exist artifacts whose
coordinates are within both the shaded region and T”, but are
not calculated due to discretization, as shown in Figure 5. If
the intensities of these pixels are left randomly, it may affect
the accuracy of the correlation coefficient. Therefore, it is
necessary to initialize the intensities of all pixels in the shaded
region to zero in the first place. Since the data width of the
memory bank’s access ports is multiple-byte, multiple pixels
can be initialized in one clock cycle. If we assume that the
data width is D-byte, then the initialization process would
take roughly §/D clock cycles. Overall, the transformation
step of P tuples would take ((D + 1)/D)S clock cycles. The
mean intensity yr of each T’ can be calculated during the
transformation step, hence it takes no extra time. The mean
intensity yr can be precalculated by the microprocessor
and forwarded to the FPGA device later since it remains
unchanged during the whole image registration process.

Although the calculation of the correlation coefficient as
(4) between R and T's is more complicated than the trans-
formation step, it takes the same time as the initialization
process since D pixels can be read and processed in the same
clock cycle. Altogether, these three steps, including initializa-
tion, transformation and correlation coefficient calculation,
would take ((D + 2)/D)S clock cycles for testing P tuples of
(0,tx,ty). If the entire search space consists of A® * AX * AY
tuples, the whole registration process would take

A@*AX*AY*(D+2)S

PD ®)

clock cycles. Apparently, the image registration time in
hardware can be significantly reduced by increasing the
number of local memory banks. Widening the data width of



International Journal of Reconfigurable Computing

(a)

FIGURE 5: Artifacts due to discretization in rigid-body transformation ((a) the original image; (b) the transformed image).
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access port of local memory can improve the performance as
well; however, it can also hit the upper bound very quickly
due to the fact that
. D+2
lim =
D—

L. (6)

3.3. DWT-Based Search Algorithm. Although the exhaustive
search algorithm is quite straightforward, it is computation-
demanding as well. In [20], a DWT-based image registration
approach was proposed. As shown in Figure 6, both the
test image and the reference image go through several
levels of Discrete Wavelet Transform before applying image
registration. After each level of DWT, the image size is
shrunk to 1/4 of the previous level. In the meantime the
image resolution is reduced to half. For example, if k levels
of DWT are applied on both the test image T, and the
reference image Ry, two series of images, Ty, T1,..., Tk, and
Ry, Ry,..., Ry, are obtained. The registration process starts
from the exhaustive search between T and Ry among the
search space of (A®,AX,AY) with the search resolution,
2k s 8, 2% % 8, and 2k % dy, on each dimension. The
registration result between Ty and Ri, (Ok,tx,ty,) becomes
the center of the search space of the registration between
Ti-1 and Ri_;. In other words, the registration between
Tx—1 and Ri_; is among the search space of (6x = 2k %
0> ty, +2k%8,, Ly + 2k *§,). However, the search resolution
is increased to 2F°1 x 8§, 2k°1 % §,, and 2k°1 x d,, on
each dimension. In general, when the registration process
traces back one level, the search scope is reduced to half on
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TaBLE 1: Search strategy summary for rotation.
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FIGURE 8: Store the original and decomposed images in the same
memory bank in the DWT-based image registration.

each dimension, and the search resolution is increased two
times on each dimension, respectively. This search strategy
is illustrated in Figure 7. Table 1 details the search space and
search resolution at each step in which rotation is taken as an
example.

Different DWT decomposition processes have to be
carried out in a sequence. Similarly the search processes at
different levels need to be performed one after the other. Due
to these two reasons, the original image and the decomposed
images can be stored in the same memory bank, as shown in
Figure 8 in which Ry or Tk denote the decomposed image at
the level k.

If we use the same assumptions as in Section 3.2, that is,
both original images consist of S pixels, the data width of the
local memory is D-byte, and there are P+2 independent local
memory banks, then the DWT decomposition step alone will

take
Sede () -50-()) o

clock cycles.

The search between the decomposed reference image
and the test image at each level can use the same method
described in Section 3.2. By observing Table 1, it is found that
the search space at each level, except the level k, is 125 tuples

4. Edge Detection

Edge detection aims at identifying pixels in a digital image at
which the image brightness changes sharply, that is, having
discontinuities. Most edge detection algorithms involve
the convolution process between the image and a kernel.
Convolution provides a way of “multiplying together” two
arrays of numbers, generally of different sizes, but of the same
dimensionality, to produce a third array of numbers of the
same dimensionality. This can be used in image processing
to implement operators whose output pixel values are simple
linear combinations of certain input pixel values. In an image
processing context, one of the input arrays is normally just a
grayscale image. The second array is usually much smaller,
and is also two dimensional (although it may be just a
single coefficient). The second array is always known as the
kernel, as shown in Figure 9. If the image has M rows and
N columns, and the kernel has m rows and #n columns, then
the size of the output image will consist of M — m + 1 rows
and N — n + 1 columns. Mathematically we can write the
convolution between the image I and the kernel K as

m—1n-1

O(xi, 7)) = >, D I(xi +x5, 31 +32) X K(x2,92),  (10)

XZ:O)/Z =0

where x; runs from 0 to M — m and y; runs from 0 to N — n.

From Figure 9 and (10), we can find that the calculation
of different pixels in the output image is independent to each
other. Therefore, the intensities of multiple output pixels can
be computed in parallel in a hardware design. Since the input
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FIGURE 9: An example small image (a) and kernel (b) to illustrate convolution.
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FIGURE 10: Streaming data transfer mode on reconfigurable computers.

image reading and the output image writing are both in a
sequential mode, the data storage in local memory can be
avoided. Instead, the user logic can access the interconnect
directly for fetching the source image and storing the result
image. In order to optimize the hardware performance, the
interconnect and the user logic are chained into a pipeline,
and the data run through the pipeline as a stream. We call
this architecture Streaming Data Transfer Mode, shown in
Figure 10. Two DMA engines work in parallel to retrieve
raw data blocks from and return result data blocks to the
main memory. Under ideal circumstances, the reading DMA
engine receives one raw data block from the input channel
and the writing DMA engine puts one result data block to
the output channel every clock cycle.

Being one stage of the overall pipeline, the design of
the algorithm logic is parameterized by the characteristics
of other components in the pipeline, that is, the data width
of the interconnect between the FPGA device and the uP.
Because the data width of the interconnect fabric is multiple-
byte wide in general, several pixels are fed into the algorithm
logic in the same clock cycle. To maximize the throughput of
the overall architecture, the algorithm logic has to be capable

of performing the operations of multiple pixels concurrently
and taking new data input every clock cycle. In the following
discussion, we assume that (1) the image is in 8-bit grayscale,
(2) the image size is M X N and the kernel size is m X
n, and (3) the data width of the interconnect is D-byte.
Furthermore, pixels in the original image are delivered into
the algorithm logic in a stream, starting with the pixel at
the top-left corner, ending with the pixel at the bottom-right
corner.

The diagram of the algorithm logic is shown in Figure 11.
The architecture consists of four components, one Line
Buffer, one Data Window, an array of PEs, and the Data
Concatenating Block.

The quantity of PEs is D, that is, the data width of
the interconnect in byte. Every PE is fully pipelined and is
capable of taking a new input, that is, one block of m x n
pixels, every clock cycle. The output of one PE is the intensity
of one pixel in the result image.

The Data Window is a two-dimension register array of
m X (n+ D — 1) in charge of providing image blocks to the
downstream PEs. Analogously, the Data Window scans the
original image from left to right and from top to bottom
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with a horizontal stride of D pixels and a vertical stride
of 1 pixel. Figure 12 demonstrates the scanning from left to
right and shows the contents in two consecutive steps of the
data window. Once the data window receives a valid input,
that is, one block of m X D pixels, it does a D-byte left shift for
all rows with the input tailing the right most n — 1 columns.

The Line Buffer is a two-dimension register array of
(m—1) X N. The original image is transferred into the FPGA
as a stream. However, PEs request image blocks that spread
different rows. The purpose of the line buffer is to keep all
pixels in registers until one m X D block forms. One m X D
block, shown in gray in Figure 11, comprises the new arrived
D pixels and another (m — 1) X D pixels that reside at the
head of every row of the line buffer. Every time the line
buffer receives D pixels of the original image, it performs two
actions simultaneously. The first action is to deliver the new
formed image block to the data window. The second action
is to do a D-byte left shift in a zigzag form, in which two

neighbor rows are linked together by connecting their tail
and head.

The design of the Data Concatenating Block is straight-
forward because what it does is to concatenate the outputs of
the upstream PEs together. Once it receives valid output from
the PEs, that is, D consecutive pixels in the output image, it
sends them into the output channel.

In general, the four components in Figure 11 form a
pipeline chain and each of them is fully pipelined as well.
This architecture is able to accept D pixels of the original
image every clock cycle and output D pixels of the result
image every clock cycle at the same time. In case of a
multiple-stage algorithm, such as the four-stage Canny edge
detector, various stages can be chained together and each
stage consists of these components with different parameters
and functionalities. Under ideal scenario, it would take (M x
N)/D clock cycles to perform an edge detection operation
on an input image. However, the real performance is upper-
bounded by the sustained bandwidth of the interconnect in
general.

5. Implementation and Results

These two image registration algorithms and a Canny edge
detection algorithm have been implemented on the Cray
XD1 reconfigurable computer with Xilinx XC2VP50 FPGA
devices. On the Cray XD1 platform, each FPGA device
is connected to four local SRAM modules, 4 MB each, as
shown in Figure 13. Every local memory module has separate
reading and writing ports connected to the FPGA device,
and is able to accept reading or writing transactions every



International Journal of Reconfigurable Computing

(a)
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FIGURE 14: The original image and the image after applying Canny edge detection.

TasLE 2: Performance improvement of image registration and Canny edge detection on Cray XD1.

Algorithm name Computing time (s) Speedup Resource utilization
Opteron 2.4G Cray XD1 Slices Built-in multipliers
. - Exhaustive search 157.347 16.193 9.72 10.766 (45%) 42 (18%)
Image registration
DWT-based search' 1.298 0.829 1.57 20.205 (85%) 108 (55%)
End-to-end throughput (MB/s)
Canny edge detection 2.20 1.196 543.6 15.015 (63%) 200 (86%)

*The sizes of reference and test image are both 1024 x 1024. The search spaces of A®, AX, and AY are all from —8 to +8.
TThree levels of DWT are performed before the search, which is based on LL coefficients only.

clock cycle. Furthermore, the interconnect has separate input
and output channels, both of them are 64-bit wide. The
maximum operating clock rate for the user logic is 200 MHz,
which is achieved in all our hardware implementations.

For the exhaustive search approach, the reference image
and the test image are stored in two separate local memory
modules. Every time, two possible tuples of (0,t,t,) are
tested, that is, two different rigid-body transformations are
performed on the test image simultaneously and produce
two transformed test images, T” and T", which are stored
in two additional local memory modules separately. The
calculation of the correlation coefficients between these two
images and the reference image is carried concurrently as
well. All the hardware modules are fully pipelined in our
design in order to realize the full potential of a hardware
implementation. Compared with the performance of the
software implementation running on a single micropro-
cessor, an AMD Opteron 2.4 GHz, the performance of
the hardware implementation on a single FPGA device
is approximately 10X better, as shown in Table 2. The
performance improvement of hardware implementation
compared with software implementation is mainly due to
the fully pipelined hardware design. For example, during
the correlation coefficient calculation step, it only takes one
clock cycle for hardware to calculate 8 pixels. On the other
hand, the software implementation has to calculate one pixel
each time. The measured time on the Cray XD1 is the end-
to-end time including data transfer time between the yP

and the FPGA and the hardware processing time on the
FPGA. In the 16.193s, data transfer time is merely 6 ms.
Therefore, the performance of hardware implementation in
this case is almost upper-bounded by the available number
of local memory banks since only 45% of the FPGA slices
are used. As shown in (5), the hardware processing time is
reciprocal to the number of memory banks that are used
to store transformed test images. Therefore the speedup of
hardware implementation compared with software version
is linearly proportional to the number of local memory
banks.

For the DWT-based approach, three levels of DWT are
applied on both the test image and the reference image
before the registration process starts. All the original image
and decomposed images of different levels are stored in
local memory modules, as depicted in Figure 8. Since the
whole process consists of two steps, the DWT decomposition
and the search, the hardware utilization almost doubles in
this case. More built-in multipliers are used in the DWT
decomposition as well. Compared with the software imple-
mentation, the hardware is barely 2x faster for the DWT-
based search approach. The comparatively low speedup
achieved by hardware in this case is due to the fact that the
amount of computation is significantly reduced because of
the DWT decomposition.

For both cases, the hardware implementation is mainly
characterized by the local memory architecture, and
the performance can be improved if more processing
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concurrency is allowed, given that more independent local
memory modules are available.

For the category of applications that use the interconnect
for data access, a Canny edge detection algorithm is imple-
mented following the architecture in Figure 11. The Canny
edge detector comprises four stages in which each stage takes
the output from the preceding stage and feeds its output to
the following stage as follows:

Input Image — Gaussian Smoothing

— Compass Edge Detecting
(11)

— Non-maximum Suppression

— Edge Tracingand Thresholding.

Because the interconnect is 8-byte wide, 8 edge detection
operators are implemented and execute in parallel. Figure 14
shows the original image and the corresponding output after
applying the Canny edge detection algorithm. In Canny
edge detection algorithm, the processing of each pixel in
the output image involves neighbor pixels in the input
image. Furthermore, this processing consists of 4 stages and
takes hundreds of clock cycles as latency. Due to the fully
pipelined design in hardware implementation, the FPGA
device is capable of computing 8 pixels in the output
image every clock cycle no matter how complicated the
computation of each pixel is. On the other hand, the pixels
in the output image are computed one by one in the
software implementation. Further, it would take thousands
of cpu cycles to compute one pixel. Therefore hardware
implementation of the Canny edge detection algorithm
achieves 544x speedup compared with the corresponding
software implementation. Higher speedup can be achieved
if multiple images can be processed simultaneously given
several interconnect channels are connected to the same
FPGA co-processor and there are enough hardware resources
to implement multiple instances of edge detection operators.

6. Conclusions

In this paper, we demonstrate how the parallelism of a
hardware design on reconfigurable computers is param-
eterized by the co-processor architecture, particularly the
number and the data width of local memory banks and the
interconnect. Image registration algorithms based on rigid-
body transformation are adopted as a case study to represent
applications that use local memory. Two related; however,
different algorithms, the exhaustive search algorithm and the
DWT-based search algorithm, are described in detail. For
the exhaustive search algorithm, the performance is linearly
proportional to the available number of local memory
banks. On the other hand, the DWT-based search algorithm
improves the efficiency by applying DWT decomposition
on both the reference and test images before the search in
order to reduce the search scope. Compared with software
implementations, hardware implementations of exhaustive
search and DWT-based search achieve 10X and 2x speedup,
respectively. For the category of applications that directly
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access the host interconnect, edge detection is selected as
a case study. A streaming data transfer mode in which the
user logic and the interconnect are chained into a pipeline
is proposed. A user logic hardware architecture whose
parallelism is decided by the data width of the interconnect
is discussed in detail. A Canny edge detection application
following the proposed architecture is capable of achieving
544x speedup compared with the corresponding software
design.

As a future work, we will extend our work to the Tile
64 platform [21]. Parameters such as the external memory
bandwidth and the intertile bandwidth will be taken into
account to implement image processing algorithms. We
expect to take advantages from Tile 64’s capability of creating
multicore pipelines internally.
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